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We present an improved method to calculate defect formation energies that overcomes the band-
gap problem of Kohn-Sham density-functional theory (DFT) and reduces the self-interaction error
of the local-density approximation (LDA) to DFT. We demonstrate for the silicon self-interstitial
that combining LDA with quasiparticle energy calculations in the G0W0 approach increases the
defect formation energy of the neutral charge state by ∼1.1 eV, which is in good agreement with
diffusion Monte Carlo calculations (E. R. Batista et al. Phys. Rev. B 74, 121102(R) (2006), W.-K.
Leung et al. Phys. Rev. Lett. 83, 2351 (1999)). Moreover, the G0W0-corrected charge transition
levels agree well with recent measurements.
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Defects often noticeably influence the electrical and op-
tical properties of a material by introducing defect states
into the band gap. Reaching a microscopic understand-
ing of the physical and chemical properties of defects in
solids has long been a goal of first-principles electronic
structure methods. Probably the most widespread theo-
retical method in this realm today is density functional
theory (DFT) in the local-density (LDA) and general-
ized gradient approximation (GGA), but certain intrin-
sic deficiencies limit their predictive power. Artificial
self-interaction and the absence of the derivative discon-
tinuity in the exchange-correlation potential [1] present
the most notable deficiencies in this context. They give,
amongst other things, rise to the band-gap problem – the
fact that the band gap in LDA and GGA underestimates
the quasiparticle gap [1, 2]. In this Letter we show that
the band-gap problem in LDA/GGA not only affects the
reliable computation of defect levels, but in certain cases
(e.g. filled defect states in the band gap) also that of for-
mation energies. We present a formalism for calculating
formation energies of defects in solids that combines LDA
with quasiparticle energy calculations in the G0W0 ap-
proximation [3] to reduce the self-interaction error and to
overcome the band-gap problem. In some cases a heuris-
tic “scissor operator” approach may approximately cor-
rect the problem. However, particularly when the exper-
imental answer is unknown, a more accurate method is
needed.

We illustrate our approach with the example of a self-
intersitital in silicon (Sii), a defect of high technological
relevance [4, 5, 6]. In the neutral charge state the Sii has
several stable and metastable atomic configurations [7, 8]
(see Fig. 1), in all of which two electrons occupy a de-
fect level in the band gap. The LDA formation energies
of all these configurations are underestimated severely
(by ∼1.5 eV) compared to diffusion Monte Carlo (DMC)
calculations [9, 10]. However, no insight into this dis-

FIG. 1: (Color online) a) Split<110>, b) hexagonal, c) C3v

and d) tetrahedral configuration of the Sii. Defect atoms are
shown in red and nearest neighbours in grey. The middle
panel depicts the formation of the neutral Sii from the 2+
charge state. A+ and A2+ are short for the electron affinities
A(+,R0) and A(2+,R2+) (see text), respectively, and Rq

denotes the atomic positions in charge state q.

crepancy is provided by the DMC calculations.

In our formalism the formation of the neutral defect is
expressed as successive charging of its 2+ charge state,
for which the defect level is unoccupied. This allows us
to decompose the formation energy into that of the 2+
state (Ef (2+)), a lattice and an electron addition part.
This decomposition is not only insightful for analyzing
the underestimation of the LDA formation energy, but
also permits us to apply the most suitable method for
each type of contribution [11]. For the lattice part we re-
tain the LDA and argue that the relaxation energies and
Ef (2+) are not as strongly affected by the deficiencies of
the LDA as in the positive and the neutral case since the
defect level in the band gap is unoccupied. For the elec-
tron affinities, on the other hand, we employ Hedin’s GW
method [3]. Since self-consistency inGW is still discussed
controversially [2] we obtain the quasiparticle corrections

ar
X

iv
:0

81
2.

24
92

v1
  [

co
nd

-m
at

.m
tr

l-
sc

i]
  1

2 
D

ec
 2

00
8



2

to the LDA Kohn-Sham energies from first order pertur-
bation theory (G0W0), which is currently the method
of choice for computing quasiparticle band structures in
solids [2, 12]. While not completely self-interaction free
[13] G0W0 significantly reduces the self-interaction error.
With this combined approach the formation energy in the
neutral charge state increases by ∼1.1 eV compared to
the LDA. Recent DFT calculations employing the HSE
hybrid functional, which also significantly reduces the
self-interaction error, yield a similar improvement [10]
and lend further substance to this notion. Moreover, the
G0W0-corrected charge transition levels agree well with
recent experimental measurements [4].

We will present our combined DFT+G0W0 approach
for the example of the Sii, but it can easily be generalized
to defects in other materials. An additional silicon atom
in an interstitial site can adopt different configurations
with similar formation energies (cf. Fig. 1). In the tetra-
hedral (tet) geometry the extra silicon atom gives rise
to an a1 and a threefold degenerate t2 state. The lat-
ter is empty and in resonance with the conduction band.
The partial occupation of the degenerate t2 state triggers
a Jahn-Teller distortion along the <111>-axis into a ge-
ometry with C3v symmetry, also referred to as “displaced
hexagonal structure” in previous studies [14]. The addi-
tion of a second electron displaces the atom further in
the <111>-direction stabilizing the neutral charge state.
This sequence is illustrated in Fig. 2. Moving the inter-
stitial atom along the <111>-direction into the center
of a six-membered ring (hexagonal (hex) configuration)
lowers the neutral state further in energy. It reaches its
lowest position in the split<110> configuration, where
the added atom and a host atom share an interstitial site
oriented in the <110>-direction.

For the 2+ charge state the tetrahedral is the most
stable configuration [8] (see also Table I) and we will use
it as a starting point for building our scheme. The pos-
itive charge state is then formed by adding one electron
as depicted in steps 1 and 2 in Fig. 1. Mathematically
this can be expressed by starting from the expression for
the formation energy in the positive charge state

Ef
D(+, εF ) = E(+,RD

+)− Eref + εF . (1)

E(q,RD
q′) is the total energy in charge state q and atomic

positions RD
q′ of defect configuration D in charge state

q′. Eref is a suitably chosen reference system, here bulk
silicon, and εF the Fermi level of the electrons referenced
to the top of the valence band. Adding and substracting
first E(+,Rtet

2+) and then E(2+,Rtet
2+) leads to

Ef
D(+, εF ) =∆(+,RD

+ ,R
tet
2+) +A(2+,Rtet

2+)

+ Ef
tet(2+, εF = 0) + εF . (2)

The energy difference E(+,Rtet
2+) − E(2+,Rtet

2+) defines
the vertical electron affinity A(2+,Rtet

2+) of the 2+ state

(in its tetrahedral configuration), step 1 in Fig. 1,
referenced to the top of the valence band, whereas
E(+,RD

+) − E(+,Rtet
2+) gives the subsequent relaxation

energy ∆(+,RD
+ ,R

tet
2+) in the positive charge state (step

2).
Similarly the neutral charge state emerges from the

positive one by addition of an electron. Mathematically
we again achieve this by adding and substracting first
E(+,RD

0 ) and then E(+,RD
+) to and from the expression

for the neutral formation energy Ef
D(0, εF ) = E(0,RD

0 )−
Eref :

Ef
D(0, εF ) =A(+,RD

0 ) + ∆(+,RD
0 ,R

D
+)

+ ED
f (+, εF = 0) . (3)

Again A(+,RD
0 ) denotes a vertical electron affinity

E(0,RD
0 ) − E(+,RD

0 ) (step 4) and ∆(+,RD
0 ,R

D
+) =

E(+,RD
0 ) − E(+,RD

+) the relaxation energy from the
neutral to the positive geometry in the positive charge
state (step 3). An expression for the negative charge state
can be obtained completely analogously once Ef

D(0, εF =
0) has been computed.

The decomposition in Eq. (2) and (3) is not only ap-
pealing from an intuitive point of view, but also groups
the required total-energy differences into two categories:
lattice contributions in a fixed charge state and electron
addition energies at fixed geometry. This permits us to
go beyond a pure DFT description in an easy fashion
by employing the most suitable method for each type of
contribution [11]. Since we expect relaxation energies in
the same charge state to be given reliably by LDA we
retain DFT for the lattice part. For the electron ad-
dition energies, i.e., changes in charge state, which are
typically problematic in LDA, we instead resort to the
G0W0 method.

The last remaining quantity to be assigned is
Ef

tet(2+, εF = 0), which we compute in the LDA. Un-
like for the neutral state, the absence of DMC reference
data unfortunately does not permit an assessment of the
LDA error in this case. However, since the conduction-
band-derived defect levels are unoccupied the effect of
the self-interaction and the band-gap error on the forma-
tion energy should be small. We therefore expect LDA
to be more reliable for the tetrahedral 2+ state than for
the neutral or the positive states.

The LDA calculations in the present work have been
performed with the plane-wave, pseudopotential code
S/PHI/nX [15]. 64-atom supercells were used through-
out, unless otherwise noted. To remove the contributions
arising from the homogeneous compensation charge den-
sity that is added to charged supercell calculations we
have performed calculations for supercells with 64, 216
and 512 atoms. In these the interstitial atom was placed
in the tetrahedral (2+) and the C3v (+) position of a
perfect (undistored) Si lattice. Fitting the formation en-
ergies up to cubic order in the inverse cell length and
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D A(+,RD
0 ) ∆(+,RD

+ ,Rtet
2+) ∆(+,RD

0 ,RD
+) Ef

D(2+) Ef
D(+) Ef

D(0)
LDA LDA G0W0 LDA G0W0

hex 0.08 0.402 0.012 3.73 3.41 4.31 3.40 4.40
split<110> 0.02 0.502 0.030 3.91 3.49 4.41 3.29 4.46
C3v 0.44 −0.021 0.182 2.65 3.00 3.89 3.36 4.51

TABLE I: G0W0 vertical electron affinities for different Sii configurations D and LDA relaxation energies. ∆(−, RD
− , RD

0 ) is
-0.028 eV for the split<110> and A(2+,Rtet

2+) amounts to 1.26 eV in G0W0. The tetrahedral configuration is taken as the 2+
state of the C3v. Corrections for charged supercells (see text) have been added. All values are given in eV.

FIG. 2: (Color online) Vertical electron affinities for different
configurations of the Sii: LDA Slater transition states (blue)
and G0W0 quasiparticle energies (red).

extrapolating to infinite length we obtain corrections to
the 64-atom cell of 0.17 eV and 0.04 eV for the 2+ and
+ state, respectively. Our extrapolated formation energy
for the unrelaxed tetrahedral 2+ state of 3.19 eV agrees
well the 3.31 eV obtained by Wright and Modine for a
slightly larger lattice constant [16]. With this correc-
tion the formation energy of the relaxed tetrahedral 2+
configuration amounts to 2.65 eV. Applying a recently
developed improved correction scheme [17] yields a cor-
rected value of 2.66 eV, in excellent agreement with our
extrapolated value.

For the G0W0 calculations [18] we have employed the
G0W0 space-time code gwst [19, 20, 21]. For compu-
tational convenience we calculate the electron affinity of
positive charge states (A(+, RD

0 )) by their inverse pro-
cess, the electron removal from the neutral state, since
no spin polarization or partially filled defect states are
encountered then. Separate G0W0 calculations for bulk
silicon yield a band gap of 1.27 eV in good agreement
with previous pseudopotential G0W0 calculations [12].

The computed vertical electron affinities are shown in
Figure 2. For comparison the LDA affinities calculated
as Slater transition states [22] at half occupation have
been included. The G0W0 corrections for the +/0 state
are similar for the three configurations and relatively
small (∼0.2 eV). For states that in the LDA are in reso-
nance with the conduction band, however, the G0W0 cor-
rections are much more pronounced. Since these states
have a contribution from delocalized conduction-band

states the delocalization error of the LDA [23] leads to
a breakdown of Slater transition state theory. The re-
sulting severe underestimation of the vertical affinities
is akin to the band-gap problem. In LDA the band
gap Eg = I − A, where I is the ionization potential
and A the electron affinity, is underestimated regard-
less of whether I and A are calculated as total energy
differences or by Kohn-Sham eigenvalues, because the
exchange-correlation functional is a continuous function
of the electron density and therefore does not exhibit a
derivative discontinuity. Many-body perturbation theoy
in the GW approach, on the other hand, does not suffer
from this problem.

Having identified the relevant electron affinities we can
now return to the formation energies in Eqs. (2) and (3).
Table I shows that already upon adding the first electron
to the 2+ state we observe a large correction (∼0.9 eV)
for the formation energy of the positive state. This er-
ror subsequently carries over to the neutral charge state,
and adding the second electron incurs a further increase.
The G0W0-corrected formation energies are now on aver-
age 1.1 eV larger than in the LDA. Since the quasiparticle
shift of the empty defect state in the split<110> config-
uration is smaller than the band-gap opening the state
is moved into the band gap (A(0,Rsplit

0 )=1.1 eV). As a
result the negative charge state becomes stable in G0W0,
which is not the case in LDA, and has a formation energy
of 5.53 eV.

For the neutral charge state our G0W0 corrected for-
mation energies compare well with recent DMC calcula-
tions that find an average increase of ∼1.5 eV (with a
statitistical error bar of ±0.09 eV) and DFT HSE hybrid
functional calculations that significantly reduce the self-
interaction error and yield an average increase of ∼1.2 eV
[10]. Earlier DMC calculations give a larger average in-
crease of 1.7 eV compared to the LDA, but also a much
larger statistical error bar (±0.48 eV) [9]. Assuming a
migration barrier of ∼0.2 eV [9] our computed activa-
tion enthalpy (formation energy + migration barrier) of
∼4.7 eV for the neutral split<110> interstitial is also in
very good agreement with the experimentally determined
value of 4.95 eV [24].

Finally we address the stability of the different defect
configurations when the Fermi energy is varied through-
out the band gap (cf Fig. 3). For clarity this is shown
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FIG. 3: (Color online) Formation energies (Ef
D) as a function

of Fermi energy in LDA (left) and G0W0 (right). The lower
panels show the split<110> as representative configuration
and the upper the configuration with the lowest energy for a
give Fermi level. The dotted line marks the LDA band gap.

only for the split<110> configuration (lower panels) and
the configuration with lowest energy at a given Fermi
level (upper panels). The situation for the hex and
C3v configurations is qualitatively similar to that of the
split<110>. If each configuration is considered sepa-
rately, the formation energy diagram looks startlingly
different in LDA and G0W0. Since LDA underestimates
the formation energies of the + and 0 state relative
to the 2+ it does not exhibit the negative-U behavior
(Ef

D(+) > {Ef
D(0), Ef

D(2+)} for all Fermi energies) ob-
served in G0W0. In addition G0W0 stabilizes the nega-
tive charge state for the split<110> interstitial. If, on
the other hand, the configuration with the lowest energy
is considered, LDA and G0W0 superficially give a more
similar picture: the tetrahedral 2+ state is stable for 60-
70% of the respective band gaps. While LDA then gives
preference to the neutral split<110> for larger Fermi lev-
els, the G0W0 corrections marginally stabilize the neutral
hex configuration, in agreement with the earlier DMC
calculations [9]. The actual energies and transition levels
between LDA and G0W0, however, differ appreciably.

Every point at which two lines in Fig. 3 cross corre-
sponds to a charge-state transition level εq/q′ . Bracht
et al. have recently determined these for the silicon
self-interstitial in high temperature diffusion experiments
[4]. They identified two levels, at ≈ 0.1-0.2 eV and at
≈ 0.4 eV above the valence-band maximum, that they
ascribed to ε0/+ and ε+/2+, respectively. These would
most closely correspond to the G0W0-corrected charge-
state transition levels ε0/+=0.09 eV and ε+/2+=0.58 eV
for the hexagonal configuration or ε0/+=0.05 eV and
ε+/2+=0.50 eV for the split<110>, while those of the
C3v configuration are noticeably different (0.62 eV and
1.24 eV). Although lowest in formation energy and there-
fore highest in concentration, the C3v 2+ configuration
(which is identical to tet 2+) most likely plays a negligible
role in the diffusion experiments, since its diffusion would

have to proceed through a hexagonal site. The activation
energy for this process (formation energy + energy bar-
rier at the experimental situation of a Fermi level close
to the middle of the band gap [4]) would thus be consid-
erably larger than the activation energy for diffusion pro-
cesses involving the other configurations. Refinements in
the diffusion models (e.g. inclusion of multiple configura-
tions and charge-state dependent diffusion barriers) may
be able to clarify the role of the tet 2+ configuration in
future experimental studies.
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