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Abstract

Common salt, NaCl, is a everyday material that we are all familiar with. It has
been of fascination and played a central role in society since at least the middle ages,
when it was known as “white gold” because of its essential role as a food preserva-
tive. However, many fundamental physical and chemical properties of NaCl and in
particular NaCl surfaces remain unanswered. Given the relevance of NaCl surfaces
to physical processes in the upper atmosphere or the importance of NaCl/water
in biophysics, there is an increasing need to better understand salt surfaces. This
thesis tackles the issue of the properties of salt surfaces with the application of a
variety of electronic structure techniques.

To begin, the properties of bulk NaCl, NaCl(001), and defects on NaCl(001)
surfaces have been examined with density-functional theory within the plane-wave
pseudopotential approach. Aiming to remedy the lack of quantitative energetic and
structural knowledge of such surfaces, several DFT exchange-correlation functionals
are employed to determine the surface energy and surface structure. A range of
9–15 meV/Å2 is obtained for the surface energy of NaCl(001), and the surface is
predicted to undergo only small relaxations of the top layer atoms.

The isolated step formation energy of monoatomic (100)-like steps on NaCl(001)
is estimated to be about 40–60 meV/Å2 and the interaction energy between adja-
cent steps is weak. The ab initio atomistic thermodynamics has been employed to
determine the relative stabilities of stoichiometric (100)-like and non-stoichiometric
(111)-like steps on NaCl(001), revealing that (100)-like steps are significantly more
stable than (111)-like steps at all accessible values of the chlorine chemical potential.

In addition to these DFT studies, we have used Møller-Plesset perturbation the-
ory to examine the adsorption of halogen atoms on several alkali halides surfaces.
To some surprise, these studies indicate that the halogen atoms bind preferentially
to halide substrate atoms on a series of alkali halide surfaces, rather than to the
alkali atoms as might be anticipated. An analysis of the electronic structures in
each system reveals that this novel adsorption mode is stabilized by the formation
of a textbook two-center three-electron covalent bond.

Finally, water adsorption on NaCl(001) is examined. It is shown that the ad-
sorption energy is very sensitive to the exchange-correlation functionals employed
yielding values that range from 280 meV to 640 meV. Considerable effort is then
employed with MP2 and CCSD(T) to arrive at a reliable estimate of the adsorption
energy of 517 meV. This represents one of the most reliable theoretical estimates of
an adsorption energy on a solid surface obtained so far. In the end, a careful analy-
sis of the electronic structure of the water/NaCl(001) adsorption system reveals the
nature of the adsorption bond.



Zusammenfassung

Gewöhnliches Kochsalz, Natriumchlorid (NaCl), ist ein aus dem Alltag bekann-
ter Stoff, mit dem wir alle vertraut sind. Mindestens seit dem Mittelalter, als
(Koch-)Salz auf Grund seiner Verwendung als Konservierungsstoff als “weißes Gold”
bekannt war, hat es eine Faszination auf Menschen ausgeübt und eine zentrale
Rolle in der Gesellschaft gespielt. Viele fundamentale physikalische und chemis-
che Eigenschaften von NaCl und insbesondere Oberflächen von Kochsalzkristallen
sind jedoch noch immer unbekannt. Berücksichtigt man jedoch die Bedeutung von
NaCl-Oberflächen für physikalische Prozesse in höheren Regionen der Erdatmo-
sphäre oder die Bedeutung von in Wasser gelöstem NaCl in der Biophysik, so gibt
es ein zunehmendes Interesse daran, Kochsalzoberflächen besser zu verstehen. Diese
Dissertation beschäftigt sich daher mit den Eigenschaften von Kochsalzoberflächen
durch Anwendung von einer Vielzahl von Methoden aus dem Bereich der Elektro-
nenstrukturtheorie.

Zunächst wurden Eigenschaften von NaCl-Volumenkristallen und NaCl(001)-
Oberflächen einschließlich Defekten im Rahmen von Dichtefunktionaltheorie (DFT)
mit ebenen Wellen und Pseudopotentialen untersucht. Um den Mangel an quanti-
tativen Kenntnissen über Energetik und Struktur von diesen Oberflächen zu beseit-
igen, werden verschiedene DFT-Austauschkorrelationsfunktionale zur Bestimmung
von Oberflächenenergien und -strukturen eingesetzt. Für die Oberflächenenergie
wird ein Wert von 9–15 meV/Å2 ermittelt, und es wird vorhergesagt, dass nur die
Atome in der obersten Schicht geringfügig relaxieren.

Die Energie zur Bildung von monoatomaren (100)-artigen Stufen auf NaCl(001)
wird mit 40–60 meV/Å2 angegeben, wobei die Wechselwirkungsenergie zwischen be-
nachbarten Stufen schwach ist. Die “ab initio atomistic thermodynamics”-Methode
wurde verwendet, um die relative Stabilität von stöchiometrischen (100)-artigen und
nicht-stöchiometrischen (111)-artigen Stufen auf NaCl(001) zu bestimmen, mit dem
Ergebnis, dass für alle erreichbaren Werte des chemischen Potentials für Chlorine
(100)-artige Stufen deutlich stabiler als (111)-artige Stufen sind.

Zusätzlich zu diesen DFT-Studien haben wir die Møller-Plesset-Störungstheorie
benutzt, um die Adsorption von Halogenatomen auf Alkalihalogenid-Oberflächen zu
untersuchen. Ein wenig überraschend haben diese Untersuchungen ergeben, dass das
Halogenatom auf einer Reihe von Alkalihalogeniden bevorzugt an Halogenatomen
des Substrats bindet, anstatt, wie zunächst erwartet, an den Alkaliatomen. Eine
Analyse der elektronischen Struktur in jedem System enthüllt, dass dieser neu ent-
deckte Adsorptionsmechanismus durch die Ausbildung einer aus den Lehrbüchern
bekannten kovalenten Zweizentren-Dreielektronenbindung stabilisiert wird.

Abschließend wurde die Adsorption von Wasser auf NaCl(001) untersucht. Es
hat sich herausgestellt, dass die Adsorptionsenergie sehr stark vom verwendeten
Austauschkorrelationsfunktional abhängt, so dass sich Werte zwischen 280 und
640 meV ergeben. Mit beträchtlichem Aufwand sind dann MP2- und CCSD(T)-
Rechnungen durchgeführt worden, um eine verlässliche Abschätzung für den Wert



der Adsorptionsenergie von 517 meV zu erhalten. Dies ist einer der besten theoretis-
chen Werte, die jemals für eine Adsorptionsenergie auf einer Festkörperoberfläche
ermittelt wurden. Zuletzt wurde durch eine sorgfältige Analyse der elektronis-
chen Struktur des Wasser-NaCl(001)-Adsorptionssystems die Natur der Adsorp-
tionsbindung ermittelt.
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Chapter 1

Introduction

Atomic-scale computational materials science has become an interdisciplinary sub-
ject that straddles physics, chemistry, biology, and geophysics. This field can also
be considered as the art of the computer experiment and certainly computational
materials science or computer experiments have enlarged and deepened the scope
of understanding from traditional laboratory experiments. Generally one might say
that for the experiment in the laboratory, it will tell us what happens in most cases,
while in principle, computational materials science should allow us to find out why
something happens and hopefully also to predict what will happen under certain
circumstances. Furthermore, computer experiments can readily access conditions
which laboratory experiments can not easily reach. For example, geophysical pres-
sures of thousands of GPa representative of the earth’s core require considerable
effort to reach in a laboratory experiment, yet for theory can be computed without
any particular difficulty [1, 2].

The key point with all simulations is how reliable they are and whether they
accurately model reality. Traditionally, pre-parameterised empirical potentials were
used to model the interaction between collections of atoms. These have achieved
considerable success in many areas. Increasingly popular although, computation-
ally much more expensive, are so-called first principles approaches. In this thesis
a variety of first principles approaches have been applied, often with the goal of
describing the system with the highest possible accuracy.

The central task in first principles simulations is to solve the many-body Schrödi-
nger equation and obtain the total energy and wave function of the system which are
the starting point for the most physical properties of the materials. There are many
and varied first principles approaches. Often it is useful to categorize them as wave
function based methods, e.g., quantum chemistry methods and quantum Monte
Carlo, or electron-density based (density-functional theory (DFT)) methods1. Both
have gained great success and particularly in condensed matter electronic structure
calculations, DFT predominates. One reason for this is that calculations can be
done for large systems (hundreds or even thousands of atoms) at modest computa-
tional costs.

1The Nobel Prize in Chemistry 1998 was awarded to J. A. Pople and W. Kohn for their contribu-
tions to computational methods in quantum chemistry and density-functional theory, respectively.



2 Introduction

There is no doubt that DFT is exact in principle, however DFT relies on ap-
proximations to the exchange-correlation functional in practice. Although DFT has
proved to be very successful, the deficiencies of DFT are also well documented. One
prominent example in surface physics is that DFT with the local density approx-
imation (LDA) and generalised gradient approximation (GGA) predict the wrong
adsorption site for CO on Pt(111) and other close-packed metal surfaces [3, 4] be-
cause of the intrinsic error in these approximations. In addition adsorption energies
of atoms and molecules on surfaces can often differ by large amounts (50%) from
experiment depending on the choice of approximation for the exchange-correlation
functional [5, 6, 7]. Although there exists a useful scheme now for categorising
DFT exchange-correlation functionals (so-called Jacob’s ladder) [8], systematically
improving DFT exchange-correlation functionals is difficult. By contrast quantum
chemistry methods which begin with Hartree-Fock as a base and gradually add in in-
creasing accounts of electron correlation provide an alternative when high precision,
beyond that available with current exchange-correlation functionals, is required.
The difficulty with these wave function approaches is that they are not amenable
to very large or periodic systems. Thus applying “quantum chemistry to condensed
matter” is not straightforward, but it is something that is becoming increasingly
popular. This thesis reports one such story when water adsorption on NaCl is ex-
amined (chapter 6). At the other hand, the quantum Monte Carlo method is also
readily applied to condensed matter simulations and attracts more and more atten-
tion [9]. However it also has its own unfavorable shortcomings such as difficulties
with the fermion sign problem and huge computational expense.

The focus of this thesis is sodium chloride, mostly the surface properties of NaCl
without and with adsorbed water molecules. NaCl, or simply common salt, has an
obvious importance in our daily life. It will occupy a central position in the kitchen
forever! In 2002, the worldwide total amount of common salt was 210 million met-
ric tonnes and the main method to get common salt is to evaporate seawater [10].
Aside from its importance in daily life, NaCl has a prominent status in biophysics,
environmental science, and catalysis, etc. In addition, NaCl, and more generally al-
kali halides, are often considered as prototype insulators with large band gaps, with
the structure and physical properties of alkali halides having been well tabulated in
textbooks [11, 12]. Despite our familiarity with these materials, there remain many
unanswered questions about the basic properties of NaCl. In particular many fun-
damental questions of the properties of NaCl surfaces remain unanswered. Indeed,
given the recent interest in utilizing ultra-thin NaCl films as a means to electroni-
cally decouple adsorbates from metal surfaces, it has become increasingly important
to understand the properties of NaCl surfaces [13, 14, 15, 16].

In this thesis, both “dry” and “wet” NaCl surfaces have been examined. For dry
NaCl(001), a detailed DFT study has been performed aimed at understanding the
precise details of the surface structure. Because of issues such as surface charging
and electron stimulated desorption, traditional electron based surface science probes
encounter difficulties in working with alkali halide surfaces. Therefore, theory can
make useful contributions. Here, important information about how the atoms relax
at the NaCl interface is obtained. One additional aspect of these calculations is
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the surface energy. The surface energy, one of the basic thermodynamic proper-
ties of any material, remains a challenge to both the current DFT methods and
experimental measurements. In particular for the surface energy of NaCl(001)2, the
experimental measurements are old (from the 1960’s) and do not agree with each
other. By performing a range of well-converged DFT studies with several exchange-
correlation functionals, it is hoped that we have moved closer to a reliable estimate
of the surface energy of NaCl.

Defects are universally present on solid surfaces. Adatoms, steps, and vacan-
cies are very common types of defects on solid surfaces. They are also known to
be chemically reactive sites playing important roles in many surface reactions and
specifically for NaCl in the dissolution of the crystal [17]. Thus it is very useful to
obtain an accurate description of the energetics of defects on surfaces. However,
for defects on NaCl(001), like adatoms and steps, current understanding is in its
infancy. Two key contributions concerning defects are made in this thesis. First,
for NaCl(001), the formation energy of steps on NaCl is obtained for the first time.
Second, the initially surprising suggestion is made that halogen atom adsorbates on
alkali halide surfaces prefer to adsorb on halide sites. This unexpected adsorption
is attributed to the formation of a classic two-center three-electron chemical bond
which was first introduced by Pauling in the 1930’s [18].

Although many studies have been performed for water on NaCl [19, 20, 21, 22,
23, 24, 25, 26], one basic and important question about this system is still un-
clear. That is how large the adsorption energy of a water molecule on NaCl(001) is.
Even though reliable adsorption energy measurements of adsorbates on surfaces are
somewhat rare, it is quite remarkable that for such an important system as water
on NaCl, there is only one measurement of the adsorption energy of isolated water
molecules on NaCl(001) [19]. The value, obtained in this helium atom scattering
(HAS) study, is 650 meV and it is not clear if it corresponds to adsorption on flat ter-
races of NaCl(001) but defective sites instead. From DFT values for the adsorption
energy of 0.3 to 0.6 eV/H2O have been obtained. Thus there is no agreement here
and it is unclear if this is because of some problem with the exchange-correlation
functionals tested or with the experimental measurement. Here, quantum chem-
istry methods (MP2 and CCSD(T)) are used to address this issue. This is done
by following a procedure which involves the use of embedded clusters and basis set
extrapolation schemes in order to ensure that a careful understanding of the precise
accuracy of the calculations can be obtained. The adsorption energy obtained is
likely one of the most reliable theoretical estimates for a molecule on any surface
and the “roadmap” developed and followed could hopefully be generalized to the
other adsorption calculations on ionic crystal surfaces.

The remainder of this thesis is organized as follows. Chapter 2 will introduce the
theoretical background of the electronic structure calculations used. In chapter 3,
the properties of bulk NaCl and NaCl(001) will be discussed, focusing in particular
on the surface energy of NaCl(001). Chapter 4, will study the properties of stepped
NaCl(001). The adsorption of halogen adatoms on alkali halide surfaces is examined

2Details are in chapter 3



4 Introduction

in chapter 5. Chapter 6 deals with the adsorption of water on NaCl(001). The main
focus of this chapter is the sensitivity of the results to the DFT exchange-correlation
functionals employed and an attempt to use explicitly correlated methods to obtain
a highly accurate value of the adsorption energy. In chapter 7, several other DFT
exchange-correlation functionals, including hybrid functionals, are tested for water
adsorption and the nature of the adsorption is examined. Finally, a short summary
of the whole thesis and the outlook for the future research direction is presented.
The convergence tests, the derivation of the ledge energy of non-stoichiometric steps
on NaCl(001), and a few other supporting materials are included in the appendices.



Chapter 2

Theoretical Background

This chapter will focus on the theoretical background of methodologies for approxi-
mately solving the many electron problem such as the Hartree-Fock, Møller-Plesset
perturbation theory, coupled cluster, and density-functional theory methods. Also
some of the practicalities necessary to consider in performing such calculations such
as basis sets and pseudopotentials will be discussed.

2.1 The Electronic Structure Problem

A major goal of electronic structure calculations is to solve the non-relativistic time-
independent Schrödinger equation,

ĤΨ = EΨ (2.1)

where Ĥ is the Hamiltonian for a system consisting of M nuclei and N electrons which
are described by position vector RA and ri, respectively. The distance between the
i-th electron and A-th nucleus is riA = |ri − RA|; the distance between i-th and
j-th electron is rij = |ri − rj|, and the distance between the A-th nucleus and B-th
nucleus is RAB = |RA − RB|. In atomic units (energy in Hartree and length in
Bohr), Ĥ can be expanded as:

Ĥ = −
N∑
i=1

1

2
∇2
i −

M∑
A=1

1

2MA

∇2
A −

N∑
i=1

M∑
A=1

ZA
riA

+
N∑
i=1

N∑
j>i

1

rij
+

M∑
A=1

M∑
B>A

ZAZB
RAB

. (2.2)

In the above equation, MA is the ratio of the mass of nucleus A to the mass of
an electron and ZA is the atomic number of nucleus A. The ∇2

i and ∇2
A are the

Laplacian operators. The first two terms in Eq. (2.2) are for the kinetic energy
of the electrons and nuclei, respectively. The third term represents the Coulomb
attraction between electrons and nuclei. The fourth and fifth terms represent the
repulsion between electrons and between nuclei, respectively.

The compact form of Eq. (2.2) is as a result of using atomic units and the
conversions between atomic units and SI units are listed in Table 2.1. A quantity
Q in SI units is related to its value in atomic units Q

′
by

Q = XQ
′
. (2.3)
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Throughout this chapter, atomic units will be employed.

Table 2.1: Conversion of atomic units to SI units.

Physical quantity Symbol Value of X (SI)
Length a0 (Bohr) 5.2919×10−11m
Mass me 9.1095×10−31kg

Charge e 1.6022×10−19C
Energy Eh (Hartree) 4.3598×10−18J

Angular Momentum ~ 1.0546×10−34Js

2.1.1 The Born-Oppenheimer Approximation

The Born-Oppenheimer approximation [27] plays a vital role in electronic structure
calculations. The underling rationalization of this approximation is that the mass
of nuclei are much heavier than electrons. Even for the lightest nucleus, a proton,
its mass is approximately 3000 times larger than the electron. Thus in most cases
the nuclei move much more slowly than electrons. Hence, in many cases, one can
consider the electrons are moving in a field produced by the fixed nuclei. This is the
qualitative rationalization to separate the movement of electrons and nuclei. Under
the Born-Oppenheimer approximation the second term in Eq. (2.2) is neglected,
and the final term, the repulsion between nuclei, can be treated as a constant for
a fixed configuration of the nuclei. The remaining terms in Eq. (2.2) are called the
electronic Hamiltonian (Ĥelec),

Ĥelec = −
N∑
i=1

1

2
∇2
i −

N∑
i=1

M∑
A=1

ZA
riA

+
N∑
i=1

N∑
j>i

1

rij
. (2.4)

The solution to a Schrödinger equation involving the electronic Hamiltonian,

ĤelecΨelec = EelecΨelec (2.5)

is the electronic wave function,

Ψelec = Ψelec(ri, RA) , (2.6)

which describes the motion of the electrons and explicitly depends on the electronic
coordinates (ri) but parametrically on the nuclear coordinates (RA). Furthermore,
to completely specify an electron, it is necessary to assign the corresponding spin
(ω), so together with the spatial coordinates, we denote these four coordinates
collectively by x,

x = {r, ω} , (2.7)

and the wave function for an N-electron system is written as Ψ(x1,x2, · · · ,xN ).
The total energy of fixed nuclei will also include the constant nuclear repulsion

term leading to,

Etot = Eelec +
M∑
A=1

M∑
B>A

ZAZB
RAB

. (2.8)



The Electronic Structure Problem 7

Solving versions of Eq. (2.5) and (2.8) is the main focus of the research reported in
this thesis and, indeed electronic structure calculations in general. In the following,
the subscript “elec” will be dropped.

However, one should bear in mind that although we will solve versions of Eq. (2.5)
and Eq. (2.8) in which the Born-Oppenheimer approximation is made, the Born-
Oppenheimer approximation is certainly not universality valid. It is well known
that the Born-Oppenheimer approximation will break down when there are multi-
ple potential energy surfaces close to each other in energy or crossing each other.
Dissociative adsorption of molecules on metal surfaces is a famous contemporary
example. Similarly, reactions involving hydrogen and proton transfer may be sus-
ceptible to breakdowns in the Born-Oppenheimer approximation. More caution
must be exerted when dealing with systems such as those [28, 29, 30, 31].

Despite the deceptively simple form of the Eq. (2.5), its exact solution for any-
thing but the simplest of systems remains to the present day a major challenge.
And, indeed, the all too often quoted words of Paul Dirac from 1929 [32] remain
valid to the present day:

The underlying physical laws necessary for the mathematical theory of
a large part of physics and the whole of chemistry are thus completely
known, and the difficulty is only that the exact application of these laws
leads to equations much too complicated to be soluble.

The difficulties in solving Eq. (2.5) lies in the electron-electron interaction, 1
ri,j

,

which includes all the quantum effects of the electrons. Despite the intractable
nature of these interactions, many approximate methods have been developed to
solve Schrödinger-like equations. Some of these approximate solutions, the ones
made use of in this thesis, will be introduced in the following. However, the Slater
determinant will be introduced first due to its fundamental role in many aspects of
electronic structure theory.

2.1.2 Slater Determinants

Electrons are fermions and obey the Pauli exclusion principle. This requires that the
wave function of electrons should be antisymmetric with respect to the interchange
of the coordinates x of any two electrons,

Φ(x1, · · · ,xi, · · · ,xj, · · · ,xN ) = −Φ(x1, · · · ,xj, · · · ,xi, · · · ,xN ) . (2.9)

Slater determinants nicely satisfy this antisymmetric condition through an appropri-
ate linear combination of Hartree products, which are the non-interacting electron
wave functions1. For example, a two electron case which we occupy the spin orbitals
χi and χj. If we put electron one in χi and electron two in χj, we will have,

Φ12(x1,x2) = χi(x1)χj(x2) . (2.10)

1It is necessary to caution that a single Slater determinant will not be enough when a mul-
tireference system is under consideration which requires a linear combination of several Slater
determinants.
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On the other hand, if we put the electron one in χj and electron two in χi, we will
have

Φ21(x1,x2) = χi(x2)χj(x1) (2.11)

by taking a linear combination of these two products,

Φ(x1,x2) = 2−1/2(χi(x1)χj(x2)− χi(x2)χj(x1)) , (2.12)

where the factor 2−1/2 is a normalization factor. It can seen the antisymmetry is
guaranteed during interchange of the coordinates of electron one and electron two:

Φ(x1,x2) = −Φ(x2,x1) . (2.13)

The antisymmetric wave function of Eq. (2.12) can rewritten as a determinant,

Φ(x1,x2) = 2−1/2

∣∣∣∣χi(x1) χj(x1)
χi(x2) χj(x2)

∣∣∣∣ (2.14)

and this is called a Slater determinant. For an N-electron system, the Slater deter-
minant becomes,

Φ(x1,x2, · · · ,xN ) = (N !)−1/2

∣∣∣∣∣∣∣∣∣
χi(x1) χj(x1) · · · χk(x1)
χi(x2) χj(x2) · · · χk(x2)

...
...

...
χi(xN) χj(xN) · · · χk(xN)

∣∣∣∣∣∣∣∣∣ (2.15)

Note that the rows of the N-electron Slater determinant are labeled by electrons:
first row (x1), second row (x2),· · · , final row (xN). The columns are labeled by
spin orbitals: first column (χi), second (χj),· · · , final column (χk). Interchanging
the coordinates of two electrons equals to the interchange of two rows of the Slater
determinant which will change its sign. Thus the Slater determinant meets the
requirement of antisymmetry. Furthermore having two electrons occupying the same
spin orbital corresponds to having two columns of the determinant identical which
leads to the determinant being zero. It is convenient to use a short-hand notation
for a Slater determinant which only shows the diagonal elements:

Φ(x1,x2, · · · ,xN ) = |χi(x1)χj(x2) · · ·χk(xN)〉 . (2.16)

Furthermore, if the order of electrons is always to be x1,x2, · · · ,xN , then

Φ(x1,x2, · · · ,xN ) = |χiχj · · ·χk〉 . (2.17)

2.2 The Hartree-Fock Approximation

Among the approximate ways to solve Eq. (2.5), the Hartree-Fock (HF) method
has a prominent status as it often paves the way toward more accurate calculations
in modern quantum chemistry. At the same time, the HF method is also used
extensively by itself to study various materials science problems, such as adsorption
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[33], defects in solids [34], and electronic structure of insulators [35]. In this section,
we give a brief account of the HF method.

The Hartree-Fock method starts from using the single Slater determinant as an
approximation the to wave function of the ground state of the N-electron system:

|Φ〉 = |χ1, χ2, · · · , χa, χb, · · · , χN〉 . (2.18)

Thus this choice of the approximation of wave function guarantees a proper de-
scription of the electron which obey the Pauli exclusion principle as shown in the
previous section. Then we need to determine the “best” approximate wave function.
According to the variational principle, the “best” spin orbitals are those that make
energy stationary,

E =

∫
〈Φ(x)|Ĥ|Φ(x)〉 dx∫
〈Φ(x)|Φ(x)〉 dx

(2.19)

then we can systematically vary the spin orbitals {χa}, while constraining that they
are orthonormal, 〈χa|χb〉 = δab, until the electronic minimum E0 is reached. This
leads to the HF energy expression,

EHF = 〈Ψ0|Ĥ|Ψ0〉 =
∑
a

∫
χ∗a(1)(−1

2
∇2 − ZA

riA
)χa(1) dx1

+
1

2

∑
ab

∫
χ∗a(1)χa(1)r−1

12 χ
∗
b(2)χb(2) dx1dx2

−1

2

∑
ab

∫
χ∗a(1)χb(1)r−1

12 χ
∗
b(2)χa(2) dx1dx2 .

(2.20)

Each term at the right hand side in Eq. (2.20) will be explained in the following.
The first term, ∫

χ∗a(1)(−1

2
∇2 − ZA

riA
)χa(1) dx1 =〈χa(1)|h|χa(1)〉

h =− 1

2
∇2 − ZA

riA
,

(2.21)

is the kinetic energy and potential energy for the attraction to the nuclei of a single
electron. The last two terms in Eq. (2.20) are involving two electrons, and the first
one is the Coulomb term and the other one is the exchange term which arises from
the antisymmetric nature of the Slater determinant. For the Coulomb term, it has
the classical interpretation that it represents the Coulomb interactions between two
electrons, It is convenient to define a Coulomb operator,

Jb(1) =

∫
|χb(2)|2r−1

12 dx2 . (2.22)

Then the Coulomb term can be written as,∫
χ∗a(1)χa(1)r−1

12 χ
∗
b(2)χb(2) dx1dx2 = 〈χa(1)|Jb(1)|χa(1)〉 . (2.23)
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The exchange term, has no simple classical interpretation like the Coulomb term,
but we can define an exchange operator by its effects when operating on χa(1):

Kb(1)χa(1) =

[∫
χ∗b(2)r−1

12 χa(2) dx2

]
χb(1) . (2.24)

As evident from the above equation, Kb(1) leads to an exchange of the variable
in the two spin orbitals. Furthermore, the exchange operator, Kb(1) is said to be
a nonlocal operator, as the results of Kb(1) operating on the spin orbital χa will
depend on the value of χa throughout all space. Then the exchange term can be
written as,∫

χ∗a(1)χb(1)r−1
12 χ

∗
b(2)χa(2) dx1dx2 = 〈χa(1)|Kb(1)|χa(1)〉 . (2.25)

Up to this, we can write the Hartree-Fock equation as an eigenvalue equation:[
h(1) +

∑
b 6=a

Jb(1)−
∑
b6=a

Kb(1)

]
χa(1) = Eaχa(1) . (2.26)

Furthermore, to eliminate the restriction on the summation (b 6= a), we define a
new operator, the Fock operator, by

f(1) = h(1) +
∑
b

Jb(1)−Kb(1) . (2.27)

The Fock operator is the sum of the operator h(1) and an effective one-electron
potential operator called the Hartree-Fock potential vHF

(1) =
∑

b Jb(1)−Kb(1). From

Eq. (2.27), Hartree-Fock theory is a single particle method. So that the Hartree-Fock
equation becomes:

f |χa〉 = Ea|χa〉 . (2.28)

This is the usual form of the Hartree-Fock equation. Although, Eq. (2.28) is written
as a linear eigenvalue problem, it will need to be solved by iterative procedures as
the Fock operator has a functional dependence on |χa〉 through the Coulomb and
exchange operator.

2.3 Post-Hartree-Fock Methods

The major problem in the Hartree-Fock method is that it completely neglects cor-
relations between electrons with same spin (beyond exchange). Following Löwdin
[36], in quantum chemistry it is common to define the energy associated with the
missing electron correlation energy as:

Ecorr = Eexact − EHF , (2.29)

where Eexact is the exact energy of the system and Ecorr is thus the missing energy
associated with correlations in the exact many body ground state wave function.
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Ecorr is negative because EHF is always the upper bound of the Eexact. The missing
correlation energy is typically a very small fraction of the total energy. However
it can be a very important contribution to many systems of physical and chemical
interest. For example, the restricted Hartree-Fock method cannot describe the dis-
sociation of H2 into two open-shell H atoms. Or, at least one quarter of the strength
of hydrogen bonds between water molecules comes from correlations beyond HF
[37].

Post-Hartree-Fock methods in quantum chemistry aim to improve on Hartree-
Fock by taking account of electron correlation. These methods include configuration
interaction (CI), Møller-Plesset perturbation theory, and coupled cluster. For CI
methods, a linear combination of Slater determinants rather than one single Slater
determinant in Hartree-Fock is used to approximate the wave function. However, CI
was not been used in this thesis 2, so it will not be further discussed. Møller-Plesset
perturbation theory, as the name suggests, treats electron correlation in perturba-
tive way. And in the coupled cluster method, the electron correlation is handled
through use of a so-called cluster operator. Both Møller-Plesset perturbation theory
and coupled cluster will be now briefly introduced.

2.3.1 Møller-Plesset Perturbation Theory

The principle of perturbation theory in general is to start from a simple model which
has been solved exactly or approximately and gradually add the small “perturba-
tion” to this simple model. If the disturbance is not so large, the various physical
quantities of interest can be obtained from the starting model.

Suppose we wish to solve the eigenvalue problem,

Ĥ|Ψi〉 = (Ĥ0 + Ĥ
′
)|Ψi〉 = ξi|Ψi〉 , (2.30)

where Ĥ0 is the reference Hamiltonian which we know the eigenfunctions and eigen-
values of Ĥ0,

Ĥ0|Φi〉 = E0
i |Φi〉 . (2.31)

We want to systematically improve the eigenfunctions and eigenvalues of Ĥ0 so that
they become closer and closer to the eigenfunctions and eigenvalues of the total
Hamiltonian Ĥ. To do that, we introduce a perturbation parameter λ, and write

Ĥ = Ĥ0 + λĤ
′

(2.32)

and expand the exact eigenfunctions and eigenvalues in a Taylor series in λ,

|Ψi〉 = |Φi〉+ λ|Φ(1)
i 〉+ λ2|Φ(1)

i 〉+ · · · (2.33a)

ξi = E
(0)
i + λE

(1)
i + λ2E

(2)
i + · · · (2.33b)

2It is well-known that truncated CI like CISD (truncated at double excitation level) is not size-
extensive and the full CI calculations which is prohibitively expensive, are limited to the smallest
system like H2. In contrast CCSD or CCSD(T) do have this important property. Although
there is also proposed the correction to the truncated CI for this missing size-extensive (J. Chem.
Phys. 101, 8908 (1994)), in this thesis we will use coupled cluster method for the high accuracy
calculations.
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then we take the eigenfunction of Ĥ0 to be normalized (〈Φi|Φi〉 = 1). Further, we
choose the normalization of Ψi to be 〈Φi|Ψi〉 = 1. This choice is called interme-
diate normalization and can always be made unless |Φi〉 and |Ψi〉 are orthogonal.
Therefore, by multiplying Eq. (2.33a) by 〈Φi|, we have

〈Φi|Ψi〉 = 〈Φi|Φi〉+ λ〈Φi|Φ(1)
i 〉+ λ2〈Φi|Φ(1)

i 〉+ · · · = 1 (2.34)

The above equation holds for all values of λ and the coefficients of λ on both sides
must be equal, and hence

〈Φi|Φ(n)
i 〉 = 0 n = 1, 2, 3, · · · (2.35)

Substituting Eq. (2.33a) and Eq. (2.33b) into Eq. (2.30), and equating coefficients
of λn, we find

Ĥ0|Φi〉 = E
(0)
i |Φi〉 n = 0 (2.36a)

Ĥ0|Φ(1)
i 〉+ Ĥ

′|Φi〉 = E
(0)
i |Φ

(1)
i 〉+ E

(1)
i |Φi〉 n = 1 (2.36b)

Ĥ0|Φ(2)
i 〉+ Ĥ

′ |Φ(1)
i 〉 = E

(0)
i |Φ

(2)
i 〉+ E

(1)
i |Φ

(1)
i + E

(2)
i |Φi〉 n = 2 (2.36c)

Ĥ0|Φ(3)
i 〉+ Ĥ

′ |Φ(2)
i 〉 = E

(0)
i |Φ

(3)
i 〉+ E

(1)
i |Φ

(2)
i + E

(2)
i |Φ

(1)
i 〉+ E

(3)
i |Φi〉 n = 3

(2.36d)

and so on. Multiplying each of these equations by 〈Φi| and using the orthogonality
relation of Eq. (2.35), we obtain the following expressions for the nth-order energies

E
(0)
i = 〈Φi|Ĥ0|Φi〉 (2.37a)

E
(1)
i = 〈Φi|Ĥ

′|Φi〉 (2.37b)

E
(2)
i = 〈Φi|Ĥ

′|Φ(1)
i 〉 (2.37c)

E
(3)
i = 〈Φi|Ĥ

′|Φ(2)
i 〉 (2.37d)

The set of equations in Eq. (2.36) and Eq. (2.37) outline the basic task of the
many body perturbation theory that solve Eq. (2.36) to get the wave function and
Eq. (2.37) to determine the different order energy.

First consider Eq. (2.36b), which determines the first-order wave function |Φ(1)
i 〉.

This can be rewritten as

(E
(0)
i − Ĥ0)|Φ(1)

i 〉 = (Ĥ
′ − E(1)

i )|Φi〉 = (Ĥ
′ − 〈Φi|Ĥ

′ |Φi〉)|Φi〉 (2.38)

with E
(1)
i substituted by using Eq. (2.37b). Furthermore, the first order perturbation

wave function can be expanded as,

|Φ(1)
i 〉 =

∑
n6=i

|Φn〉〈Φn|Φ(1)
i 〉 (2.39)

where it does not include the term n = i. Multiplying Eq. (2.38) by 〈Φn|, we will
have

(E
(0)
i − E(0)

n )〈Φn|Φ(1)
i 〉 = 〈Φn|Ĥ

′|Φi〉 . (2.40)
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Using the expansion Eq. (2.39) and inserting into Eq. (2.37c) for the second-order
energy, we obtain,

E
(2)
i = 〈Φi|Ĥ

′ |Φ(1)
i 〉 =

∑
n6=i

〈Φi|Ĥ
′ |Φn〉〈Φn|Φ(1)

i 〉 , (2.41)

and hence, using Eq. (2.40), we finally have

E
(2)
i =

∑
n6=i

〈Φi|Ĥ
′ |Φn〉〈Φn|Ĥ

′ |Φi〉
E

(0)
i − E

(0)
n

, (2.42)

which is the desired expression for the second-order energy. Higher order energy
terms can be obtained in a similar, although increasingly more complex manner.

So far the theory has been completely general. To apply perturbation theory
to electron correlation calculations, the unperturbed Hamiltonian (Ĥ0) must be
selected. The most common choice is to take this as a sum over Fock operators
which is defined in Eq. (2.27), leading to the Møller-Plesset (MP) perturbative
theory [38]:

Ĥ0 =
N∑
i=1

Fi =
N∑
i=1

(
hi + vHF

(i) )

)
, (2.43)

and the perturbative Hamiltonian is,

Ĥ
′
= Ĥ − Ĥ0 =

∑
i<j

r−1
ij −

∑
i

vHF
(i) . (2.44)

Now we start to derive the electron correlation energy by using MP theory, especially,
we focus on the second-order energy which is the MP2 method. First, the Hartree-
Fock wave function |Φ0〉 is an eigenfunction of Ĥ0,

Ĥ0|Φ0〉 = E
(0)
0 |Φ0〉 (2.45)

with the eigenvalue E
(0)
0 . The general result for the second-order energy has been

shown in Eq. (2.42). That involves the matrix elements of the perturbation op-
erator between the Hartree-Fock reference wave function and all possible excited
states. However, the perturbation operator is a two-electron operator which means
all matrix elements involving triple, quadruple, etc., excitations are zero. This leaves
only single and double excitations. Furthermore single excitation states bring no
contributions as they are also zero as shown below,

〈Φ0|Ĥ
′ |Φa

i 〉 = 〈Φ0|Ĥ −
N∑
j=1

Fj|Φa
i 〉

= 〈Φ0|Ĥ|Φa
i 〉 − 〈Φ0|

N∑
j=1

Fj|Φa
i 〉

= 〈Φ0|Ĥ|Φa
i 〉 − Ea〈Φ0|Φa

i 〉 .

(2.46)
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The first bracket on the final line of above equation is zero due to the Brillouin
theorem [39], and the second one is also zero because of the orthogonality of wave
functions. Therefore, the only excitations left are double excitations. Here the
occupied states are labeled as (i, j, k, · · · ) and the unoccupied states are labeled as
(a, b, c, · · · ),

E
(2)
i =

occ∑
i<j

vir∑
a<b

〈Φ0|Ĥ
′|Φab

ij 〉〈Φ0|Ĥ
′|Φab

ij 〉
E

(0)
0 − Eab

ij

. (2.47)

The matrix elements between the Hartree-Fock and the doubly excited state are
given by two-electron integrals over molecular orbitals. The difference in total energy
between two Slater determinants becomes a difference in molecular orbital energies.
Thus the explicit expression for MP2 becomes,

E
(2)
i =

occ∑
i<j

vir∑
a<b

[〈φiφj|φaφb〉 − 〈φiφj|φbφa〉]2

εi + εj − εa − εb
. (2.48)

In the above equation, the φi, φj are the occupied orbitals and φa, φb are the virtual
(unoccupied) orbitals. The εi, εj, εa, and εb are the corresponding orbital energies.

MP2 shows improvements over Hartree-Fock in many respects in electronic struc-
ture calculations [40, 41]. For example, MP2 can capture the weak non-covalent
interactions like dispersion for which Hartree-Fock completely fails. Also the geom-
etry (G3 test set) predicted from MP2 show much improvement over Hartree-Fock
compared with experimental measurements [42]. It is worth cautioning, however,
that Møller-Plesset perturbation theory is far from a panacea. For example, it is not
appropriate for truly metallic systems and for some molecular properties like spec-
troscopic constants which are not necessarily converged when going to high orders,
or the convergence is slow or oscillatory [43]. Thus MP5 or MP25 will not definitely
bring better results than MP2! Despite this, MP2 is a very powerful and useful post-
Hartree-Fock method considering its accuracy and scaling (N5) and widely used in
molecular system electronic structure calculations.

2.3.2 Coupled Cluster Methods

The coupled cluster method was introduced into quantum chemistry by Č́ıžek and
Paldus [44, 45] in the 1960’s and emerged as perhaps the most reliable, yet computa-
tionally affordable method for the approximate solution of the electronic Schrödinger
and the prediction of molecular properties [46, 47, 48]. A short account of this
method is given now.

The coupled cluster wave function is written as,

Ψcc = eTΦ0 . (2.49)

Here Φ0 is a Slater determinant, and the exponential operator eT can be expanded
as a Taylor series,

eT = 1 + T +
1

2
T 2 +

1

6
T 3 + · · · =

∞∑
k=0

1

k!
T k , (2.50)
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where the cluster operator T is given by

T = T1 + T2 + T3 + · · ·+ TN . (2.51)

The Tith operator acting on a HF reference wave function will generate all ith
excited Slater determinants,

T1Φ0 =
occ∑
i

vir∑
a

taiΦ
a
i ,

T2Φ0 =
occ∑
i

vir∑
a

tabij Φab
ij .

(2.52)

From Eq. (2.50) and Eq. (2.51), the exponential operator may be written as

eT =1 + T1 +

(
T2 +

1

2
T 2

1

)
+

(
T3 + T1T2 +

1

6
T 3

1

)
+

(
T4 + T3T1 +

1

2
T 2

2 +
1

2
T2T

2
1 +

1

24
T 4

1

)
+ · · ·

(2.53)

The first term generates the reference Hartree-Fock states and the second are all
singly excited states. The terms in first parenthesis generate all doubly excited
states, and so on.

With the coupled cluster wave function in Eq. (2.49), the Schrödinger equation
becomes

ĤeTΦ0 = EeTΦ0 . (2.54)

Multiplying from the left by Φ∗0 and integrating gives

E = 〈Φ0|ĤeT |Φ0〉 . (2.55)

Expanding out the exponential in Eq. (2.50), we get

E = 〈Φ0|Ĥ(1 + T +
1

2
T 2 +

1

6
T 3 + · · · )|Φ0〉 . (2.56)

Note that Ĥ is at most a two-particle operator and then T is at least a one-particle
excitation operator. We can simplify the above equation,

E = 〈Φ0|Ĥ(1 + T +
1

2
T 2)|Φ0〉 . (2.57)

This is the natural truncation of the coupled cluster energy equation and it only
depends on the form of Ĥ not on that of T or on the number of electrons.

Till now, everything is exact. Expansion of the cluster operator T up to TN
would mean all possible excited determinants are included, then coupled cluster
results are equal to those obtained from full CI calculations. However, in practice a
truncation of T must be performed. Only including T1 does not improve anything
upon Hartree-Fock because of the Brillouin theorem. So the lowest approximation
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starts from T2. If T is expanded as T1 + T2, this will be referred to as CCSD, which
is the coupled cluster method with single and double excitations. Now we focus on
CCSD to get E in Eq. (2.57). If T = T1 + T2, then Eq. (2.57) becomes,

E = 〈Φ0|Ĥ|Φ0〉+ 〈Φ0|ĤT1|Φ0〉+ 〈Φ0|ĤT2|φ0〉+
1

2
〈Φ0|ĤT 2

1 |Φ0〉

E = E0 +
occ∑
i

vir∑
a

tai 〈Φ0|Ĥ|Φa
i 〉+

occ∑
i<j

vir∑
a<b

(tii
ab + tai t

b
j − tbitaj )〈Φ0|Ĥ|Φab

ij 〉
(2.58)

and the first matrix elements are zero and the second matrix elements are two-
electron integrals over molecular orbitals. The energy can be written down as,

E = E0 +
occ∑
i<j

vir∑
a<b

(tabii + tai t
b
j − tbktaj )(〈φiφj|φaφb〉 − 〈φiφj|φbφa〉) . (2.59)

The above equation is the expression of the energy obtained from CCSD, with the
coefficients of single and double excitation generally obtained iteratively. Once these
coefficients are known, the energy and wave functions can be calculated.

CCSD calculations are already very expensive, scaling as N6 where N is the
number of basis functions in the calculation, and to go beyond CCSD makes the
calculations extremely demanding. For example, CCSDT which iteratively treats
the third-order excitations, scales as N8 which makes it practically unfeasible for
anything but the smallest of systems. To avoid this demanding scaling, the triple
excitations can be obtained in a perturbative manner, with an approach widely
known as CCSD(T) [49]. Starting from the energy at the CCSD level and following
the procedure outlined in Eq. (2.36) and Eq. (2.37), the triple excitation energy can
be expressed as [50],

E
(T )
CCSD =

vir∑
a<b<c

occ∑
i<j<k

〈Φ0|(1 + Λ1 + Λ2)H̄CCSD|Φabc
ijk〉〈Φabc

ijk |H̄CCSD|Φ0〉
εi + εj + εk − εa − εb − εc

(2.60)

where H̄CCSD = e(−T1−T2)Ĥe(T1+T2) and Λ is the deexcitation operator and expressed
in second quantization as,

Λ1 =
∑
i,a

λiai
+a

Λ2 =
1

4

∑
i,j
a,b

λijabi
+aj+b .

(2.61)

CCSD(T) is often considered as the “gold standard” method of quantum chemistry
due to its very high accuracy. For example, CCSD(T) predicts the binding energy
of the water dimer to be 217.6 meV [51] which is in a good agreement with the
experimental value of 216.8 meV [52]. In general, the results from CCSD(T) calcu-
lations are often used to benchmark other theoretical methods like MP2 and DFT
[53, 54].
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2.4 Gaussian Functions

In the preceding sections, the basic ingredients of the quantum chemistry methods
(HF, MP2, and CCSD(T)) have been introduced. In this section, the concept of the
basis set will be introduced which is almost always necessary to practically solve the
electronic Schrödinger equation.

Essentially, almost all electronic structure methods today rely on an expansion
on the unknown wave function in terms of a set of basis functions. Any type of
basis functions may in principle to be used like exponential, Gaussian, polynomial,
plane-wave, spline, Slater type orbitals, and numeric atomic orbitals, etc. However,
some issues are useful to consider when selecting basis functions:

• The basis functions should allow for the wave function/density to be accurately
described with as low a computational cost as possible.

• The behavior of the basis functions will ideally capture some of the physics of
the problem. For example, for bound atomic or molecular systems this means
functions should go to zero when the distance between the nucleus and the
electron becomes large. Or in a condensed matter system basis functions with
a periodicity matching the crystal lattice can be useful.

In part for these reasons the use of Gaussian functions has become very popular in
the calculations of chemical problems. We will now discuss in more detail the specific
Gaussian orbital basis sets employed in this thesis. When we discuss electronic
structure calculations on condensed matter systems, plane-wave basis sets, which
are very popular for such simulations, will be introduced.

2.4.1 Gaussian Functions as Basis Sets

Eearly in quantum chemistry, Slater type orbitals (STO) were used as basis functions
because of their similarity with the solutions of the hydrogen atom. The Slater type
orbitals have the form in spherical coordinates,

φi(ζ, n, l,m, r, θ, ψ) = Nrn−1e−ζrYlm(θφ) , (2.62)

where N is the normalization constant, and Y are the spherical harmonic functions.
n, l, and m are the quantum numbers: principal, angular momentum, magnetic,
respectively. ζ is called the “exponent”. The exponential dependence on distance
reflects the exact form of the hydrogenie orbitals. However, the calculation of the
three- and four-center two-electron integrals with Slater orbitals is extremely slow
and has no analytical form. Thus in modern quantum chemistry calculations, the
Slater orbitals are generally restricted to atomic and diatomic systems.

In contrast, it is much faster to work with Gaussian functions in the evaluation
of the two-electron integrals than STO functions. Thus for this pragmatic rea-
son, Gaussian functions have become the most popular basis functions in quantum
chemistry. Numerous quantum chemistry codes employ Gaussian functions as basis
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sets. The Gaussian function type orbital (GTO) has the following form in Cartesian
coordinates:

g(ζ, lx, ly, lz, x, y, z) = Ne−ζr
2

xlxylyzlz . (2.63)

Note that the lx, ly, lz in Cartesian coordinate are not the quantum numbers but
instead parameters. However, the sum of them, L = lx + ly + lz is analogous to the
angular momentum for atoms, to mark function as s-type (L = 0), p-type (L = 1),
d -type (L = 2), and f -type (L = 3), etc.

The Gaussian function described in Eq. (2.63) is generally known as a primitive
Gaussian function. It is very common to group several primitive Gaussian functions
into one Gaussian function and this new Gaussian function is known as a contracted
Gaussian function,

g(c) =
k∑
i

aig(p) , (2.64)

where c and p designate contracted and primitive, respectively. By contracting, sev-
eral primitive Gaussians into one, the computational effort can be reduced through
the optimization of several coefficients in one go.

When using Gaussian function basis sets it is far from trivial to decide what
set of (contracted) Gaussian functions are appropriate for the system under inves-
tigation. Generally some experience is required. However, the minimum basis set
which must be used corresponds to the number of atomic orbitals in the system.
For example, the minimum basis set for hydrogen is just a single s-function. For the
first row elements in the periodic table, this means two s-functions and one set of
p-functions (2px, 2py, 2pz). For almost all practical problems the minimum basis set
description is inadequate. The next improvement is to double all the basis functions
which produce the double zeta (DZ) type basis. For hydrogen, a DZ basis set will
use two s-functions (1s , 1s

′
). For the first row elements in the periodic table, this

means four s-function (1s , 1s
′
, 2s , 2s

′
) and two sets p-functions (2p, 2p ′). When

the basis set has three sets of basis functions for each orbital, you will get the tripe
zeta (TZ) basis and so on. As we will see below, it is common to make a distinction
between core and valence electrons, with more sets of basis functions (larger zeta)
allocated to the valence electrons compared to the core electrons.

Further improvements can be achieved by adding so-called polarization or diffuse
functions. Although a free isolated atom will have spherical symmetry, the atoms
in a molecule or some other chemical environment will exhibit some distortions in
their electron density. To take account of this effect through the basis set, we need
to augment basis sets with additional functions with the larger angular momentum.
For example, hydrogen will be augmented by adding a p orbital into its minimum
basis set. In Pople style basis sets, which will be introduced later, an asterisk rep-
resents the polarization function in the basis set like 6-31G*. In a similar spirit,
so-called diffuse functions are sometimes also included in the basis set. The purpose
of adding diffuse functions is to improve the description at large distances from
the nuclei. This is especially important for anions as the additional electrons are
loosely bound to nuclei. In general, diffuse functions have a very small exponent, ζ,
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typically from 0.01 to 0.1, so it will extend far from the nucleus.

2.4.2 Pople and Dunning Basis Sets

Many and various Gaussian basis sets exist. Here we focus on the two different
classes of Gaussian basis sets used in this thesis: Pople style basis sets and the
correlation consistent basis sets of Dunning and co-workers [55, 56, 57]. For the
Pople style basis sets, it is better to take an example to explain the meaning of
the notation. For example, a 6-31G basis set is a double split valence basis set.
This notation means that the core orbitals are described by one contracted Gaus-
sian function comprised of six primitive Gaussians. The valence orbital has been
split into two contracted Gaussians, one comprised of three primitive Gaussians and
the other just one primitive Gaussian. As another example a 6-311G basis set is a
triple split valence basis set. The core orbital is still a contraction of six primitive
Gaussians. However the valence is now split into three parts which are contractions
of three, one, and one primitive Gaussians, respectively.

The correlation consistent basis sets, from Dunning’s group, are designed to
systematically recover the correlation energy with the increasing size of the basis
sets. Normally, the basis sets are obtained from the HF atomic calculations [58].
When coming to molecular calculations, the basis functions are augmented with
polarization functions accounting for the distortion from the atomic state in the
molecular environment. However, there is not a clear way to achieve the continuous
improvements with increasing the basis functions. Thus the convergence is not easy
to guarantee and the choice of the basis set is sometimes drawn from the researcher’s
own experience. In contrast, the correlation consistent basis set choose the basis
functions depend on the similar contributions to the correlation energy from each
function independent of the function type. For example, the contributions from 2d
and 1f function are similar, so they belong to the same group and will be added
together. By this way, Dunning proposed a series of correlation consistent basis sets
which can approach the complete basis set (CBS) limit in a systematic manner (see
Figure 2.1). In the current thesis, the following correlation consistent basis set are
employed, cc-pVDZ (3s2p1d), cc-pVTZ (4s3p2d1f ), cc-pVQZ (5s4p3d2f 1g), and
cc-pV5Z (6s5p4d3f 2g1h) where the number of contracted Gaussian functions are
indicated in brackets.

As with the Pople style basis sets, the correlation consistent basis sets can be
augmented by the addition of diffuse functions. The augmentation consists of adding
one extra function with a smaller exponent to every angular momentum channel.
This is denoted by the new prefix of aug: aug-cc-pVXZ (X=D, T, Q, and 5). Fur-
thermore, if the correlation between core-core and core-valence electrons needs to be
recovered, the correlation consistent basis sets can be augmented with basis func-
tions with large exponents. Based on the cc-pVXZ (X=D, T, Q) basis sets, (1s1p)
functions are added to cc-pVDZ, (2s2p1d) to cc-pVTZ, (3s3p2d1f ) to cc-pVQZ,
etc. This produce a new series of basis sets: cc-pCVXZ (X=D,T, and Q).

As the key feature of the correlation consistent basis set is to systematically im-
prove with basis set size, there are several different ways to extrapolate the results



20 Theoretical Background

to the CBS limit, which will be discussed below.

2.4.3 Basis Set Superposition Error

Localised basis functions, such as Gaussian functions, are prone to a problem known
as basis set superposition error (BSSE) [59]. When two fragments A and B approach
each other to form the new species, fragment A feels the basis functions of fragment
B and fragment B also feels the basis functions of fragment A. Effectively each
fragment feels a larger basis set than what it has as an isolated fragment and in so
doing artificially stabilising the cluster.

One widely used method to assess the BSSE is the Counterpoise correction
scheme of Boys and Bernardi [60]. To illustrate how this method works, consider
the binding energy of the dimer (AB). The binding energy (Ebind) can be expressed
as,

Ebind = E(AB)ab − E(A)a − E(B)b (2.65)

where E(AB)ab, E(A)a, and E(B)b are the energy of AB, monomer A, and monomer
B, respectively. The subscript indicates the corresponding basis set for AB, A, and
B. Because of the incompleteness of the basis set for A and B, there exists a BSSE
in Ebind. When using the Counterpoise method, the BSSE can be evaluated with,

∆EBSSE = E(A,AB)ab + E(B,AB)ab − E(A,AB)a − E(B,AB)b (2.66)

where E(A,AB)ab represents the energy of monomer A in the structure it adopts in
the dimer and with the full basis set of the dimer available. Likewise E(B,AB)ab
represents the energy of the monomer B in the structure it adopts in the dimer
and with the full basis set of the dimer available. E(A,AB)a and E(B,AB)b are
then the energies of A and B, respectively, with only their own basis functions but
again in the structure they adopt in the dimer. Thus Eq. (2.66) gives the difference
between the energies of each fragment with the corresponding monomer and the
full dimer basis sets. By this way, the artificial enhancements each monomer gains
in the dimer can be established and eliminated if desired by obtaining a corrected
binding energy: Ebind −∆EBSSE.

If high accuracy is desired, BSSE should be removed. However, removal of BSSE
is not sufficient to guarantee high accuracy in, e.g., binding energies because of the
incompleteness of the basis sets. Fortunately, there are well established extrap-
olation schemes that can alleviate basis set incompleteness errors, which will be
introduced in the following section.

2.4.4 Extrapolation to the Complete Basis Set Limit

As we have emphasized, one particular feature of Dunning’s correlation consistent
basis sets is that they systematically allow the correlation energy to be improved
with increasing basis set size. This systematic convergence provides opportunities
to extrapolate to the CBS, which could remove the errors from the incompleteness
of the basis set. In general, the first step of the extrapolation is to separate the
extrapolation of the Hartree-Fock energy and the electron correlation energy [61].
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Many extrapolation schemes have been developed for obtaining CBS estimate
with Dunning’s basis sets [56, 61, 62, 63, 64]. For the extrapolation of the Hartree-
Fock energy, the extrapolation is mostly done with expressions like,

EHF
X = EHF

CBS + AX(−B) , (2.67)

and

EHF
X = EHF

CBS + Ae(−BX) , (2.68)

where X is the cardinal number corresponding to the basis set (X=2, 3, and 4 for
double zeta, triple zeta, and quadruple zeta). EHF

X is the corresponding HF energy
and EHF

CBS is the HF energy at the CBS. A and B are fitting parameters.
For electron correlation extrapolation, there are yet more options. For example,

one of the popular three-parameter extrapolations schemes is,

Ecorr
X = Ecorr

CBS + CX−3 +DX−5 , (2.69)

where Ecorr
X is the corresponding electron correlation energy for a given cardinal

number (X) and Ecorr
CBS is the electron correlation energy at the CBS. C and D are

again the fitting parameters.
We will make use of extrapolation methods in chapter 6. To illustrate how the

extrapolation schemes work the variation of the Hartree-Fock energy and electron
correlation energy of a water molecule is shown in Figure 2.1. The energy of a single
molecule has been calculated with cc-pVTZ, cc-pVQZ, and cc-pV5Z basis sets and
the extrapolations were done for the Hartree-Fock energy and correlation energy by
using Eq. 2.68 and Eq. 2.69, respectively. Two features of Figure 2.1 are apparent
and worth very briefly commenting upon. First, EHF and Ecorr exhibit uniform
convergence to the CBS limit upon increasing basis set size. Second, the variation
in EHF with basis set size in considerably (about 4 times) smaller than Ecorr and
EHF is much faster in approaching the CBS limit than Ecorr.
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Figure 2.1: Extrapolation of the Hartree-Fock energy (EHF) and electron correlation energy
(Ecorr) of a water molecule using Eq. (2.68) and Eq. (2.69), respectively. The electron correlation
calculations are done at the MP2 level. The energy zero in both plots is the extrapolated CBS
limit.
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2.5 Density-Functional Theory

In the preceding section, we introduced several different ways to approximately solve
the electronic Schrödinger equation such as the Hartree-Fock method, Møller-Plesset
perturbation theory, and coupled cluster methods. These different methods share
one common feature that they all rely on the many body wave function as a central
quantity. Once the wave function is known, the energy of the system and all related
properties will be determined. But the wave function itself is already a complicated
quantity as it depends on 3N spatial variables together with the spin variable, where
N is the number of electrons in the system. This severely limits the system sizes that
can be treated with wave function based methods. Certainly systems with hundreds
of atoms and large basis sets are beyond reach for most practical studies with wave
function based methods.

DFT differs from the wave function based methods by using the electron density
(ρ(r)) as the central quantity. The advantage of using the electron density over
the wave function is the much reduced dimensionality. Regardless of how many
electrons one has in the system, the density is always 3 dimensional. This enables
DFT to be applied to much larger systems, hundreds or even thousands of atoms
become possible. Partly for this reason, DFT has become the most widely used
electronic structure approach today, particularly in the condensed matter physics
community. In this section, a basic introduction to DFT will be given. Authoritative
and comprehensive discussions of DFT can be found in a range of excellent review
articles [65, 66, 67, 68] and textbooks [69, 70].

2.5.1 Thomas-Fermi Theory

The history of using the electron density rather than the wave function begins with
the early work of Thomas and Fermi [71, 72]. First, let us define the electron density,

ρ(r) = N

∫
· · ·
∫
|Ψ(x1,x2, · · · ,xN)|2 ds1x2 · · ·xN . (2.70)

ρ(r) determines the probability of finding any of the N electrons within the volume
r but with arbitrary spin while the other N − 1 electrons have arbitrary positions
and spin in the state represented by Ψ. This is a nonnegative simple function of
three variables, x, y, and z, integrating to the total number of electrons,∫

ρ(r) dr = N . (2.71)

In Thomas-Fermi theory, the kinetic energy of electrons are derived from the quan-
tum statistical theory based on the uniform electron gas, but the interaction between
electron-nucleus and electron-electron are treated classically. Within this model, the
kinetic energy of the electrons is defined as,

T [ρ] = CF

∫
ρ5/3(r) dr , (2.72)



Density-Functional Theory 23

with

CF =
3

10
(3π2)2/3 = 2.871 . (2.73)

From the above equation, the approximation is made that the kinetic energy only of
the electron depends exclusively on the electron density. By adding the interaction
between electron-nucleus and electron-electron into Eq. (2.72), a total energy in
terms of electron density is obtained,

E[ρ] = CF

∫
ρ5/3(r) dr− Z

∫
ρ(r)

r
dr +

1

2

∫∫
ρ(r1)ρ(r2)

|r1 − r2|
dr1dr2. (2.74)

The second and third terms are the electron-nucleus and electron-electron interac-
tions, respectively.

The importance of this simple Thomas-Fermi model is not how well it performs
in computing the ground state energy and density but more as an illustration that
the energy can be determined purely using the electron density.

2.5.2 Hohenberg-Kohn Theorem

Modern density-functional theory was born in 1964 with the paper of Hohenberg
and Kohn [73]. The two key results of this paper are: (i) a one to one mapping
between external potential and electron density was established; (ii) it was shown
that the ground state density can be found by using a variational principle.

The first part was proved in a simple and extremely elegant manner using the
principle of reductio ad absurdum, and this is derived for a non-degenerate system3.
Suppose there is a collection of electrons enclosed into a box influenced by an exter-
nal potential v(r). We assume we know the electron density of this system and it
also determines v(r) and thus all properties. If there is another external potential
v
′
(r) which differs from v(r) by more than a constant that can also give the same

electron density ρ(r) for the ground state, then we will have two different Hamilto-
nians Ĥ and Ĥ

′
whose ground state electron density is the same but the normalized

wave function Φ and Φ
′

would be different. Then we will have

E0 < 〈Φ
′|Ĥ|Φ′〉 = 〈Φ′ |Ĥ ′ |Φ′〉+ 〈Φ′|Ĥ − Ĥ ′|Φ′〉

= E
′

0 +

∫
ρ(r)[v(r)− v(r)

′
] dr ,

(2.75)

where E0 and E
′
0 are the ground-state energies for Ĥ and Ĥ

′
, respectively. Similarly,

we can get

E
′

0 < 〈Φ|Ĥ|Φ〉 = 〈Φ|Ĥ|Φ〉+ 〈Φ|Ĥ ′ − Ĥ|Φ〉

= E0 −
∫
ρ(r)[v(r)− v(r)

′
] dr .

(2.76)

Adding Eq. (2.75) and Eq. (2.76), we will obtain

E0 + E
′

0 < E
′

0 + E0 . (2.77)

3For degenerate system, see the article from M. Levy, Phys. Rev. A 26, 1200 (1982).
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This is an obvious contradiction. So there are no two different external potentials
that can give the same ρ(r). Thus ρ(r) uniquely determines v(r) and all ground-
state properties.

Now we can write the energy E explicitly as a function of the electron density
ρ(r):

E[ρ] = T [ρ] + Tne[ρ] + Vee[ρ]

=

∫
ρ(r)v(r) dr + FHK[ρ] ,

(2.78)

where
FHK[ρ] = T [ρ] + Vee[ρ] . (2.79)

Here note that FHK[ρ] is only dependent on ρ and independent from any external
potential v(r). Thus FHK[ρ] is a universal functional of ρ.

The second Hohenberg-Kohn theorem demonstrates that that the ground state
energy can be obtained variationally, with the density that minimizes the total
energy being the exact ground state density. This is expressed as:

E0[ρ0] ≤ Ev[ρ] (2.80)

where Ev[ρ] is the energy functional of Eq. (2.78). Following from the first part of
the theorem, suppose the ground state wave function is Φ and its related electron
density is ρ. Thus the ρ uniquely defined the external potential v(r). If there is
another wave function Φ

′
with a arbitrary variation from Φ and its electron density

is ρ
′
, then we can obtain,

〈Φ′|Ĥ|Φ′〉 =

∫
ρ
′
(r)v(r) + FHK[ρ

′
] = E[ρ

′
] ≥ E[ρ] . (2.81)

So the energy will reach the minimum only when the electron density is the ground-
state electron density.

2.5.3 The Kohn-Sham Equations

From the Hohenberg-Kohn theorem, we can get the ground-state energy by mini-
mizing the energy functional,

E[ρ] =

∫
ρ(r)v(r) dr + FHK(ρ(r)) . (2.82)

Although the Hohenberg-Kohn theorem provided a proof in principle that the total
energy could be obtained from the ground state density it was not yet known how
to obtain the ρ(r) or FHK(ρ(r)). In 1965, Kohn and Sham [74] published a paper
which transformed density-functional theory into a practical electronic structure
theory. Kohn and Sham recognized that the failure of Thomas-Fermi theory mainly
resulted from the bad description of the kinetic energy. To address this problem they
decided to re-introduce the idea of one electron orbitals and approximate the kinetic



Density-Functional Theory 25

energy of the system by the kinetic energy of non-interacting electrons. This lead to
the central equation in Kohn-Sham DFT which is the one-electron Schrödinger-like
equation expressed as:

(−1

2
∇2 + v(r) +

∫
ρ(r

′
)

|r− r′|
dr
′
+ vxc(r))φi = εφi . (2.83)

Here φ are the Kohn-Sham orbitals and the electron density is expressed by,

ρ(r) =
N∑
i

|φi|2 . (2.84)

The terms on the left side of Eq. (2.83) are the kinetic energy of the non-interacting
reference system, the external potential, the Hartree potential, and exchange-correlation
potential, respectively. The ε is the energy of the Kohn-Sham orbital. In addition,
the exchange-correlation potential is given by,

vxc(r) =
δExc[ρ]

δρ(r)
(2.85)

and Exc[ρ] is the exchange-correlation functional which will be discussed in sec-
tion 2.5.4. Furthermore, we can define an effective potential (veff ) which is,

veff = v(r) +

∫
ρ(r

′
)

|r− r′ |
dr
′
+ vxc(r) . (2.86)

This allows Eq. (2.83) to be rewritten in a more compact form,

(−1

2
∇2 + veff )φi = εφi . (2.87)

Clearly this is a Hartree-Fock like single particle equation which needs to be solved
iteratively. Finally, the total energy can be determined from the resulting density
through

E =
N∑
i

εi −
1

2

∫∫
ρ(r)ρ(r

′
)

|r− r′ |
drdr

′
+ Exc[ρ]−

∫
vxc(r)ρ(r) dr . (2.88)

Equations (2.87), (2.84), and (2.85) are the celebrated Kohn-Sham equations. Note
that the veff depends on ρ(r) through Eq. (2.86). So the Kohn-Sham equation must
be solved self-consistently. The general procedure is to begin with an initial guess
of the electron density, construct the veff from Eq. (2.86), and then get the Kohn-
Sham orbitals. Based on these orbitals, a new density is obtained from Eq. (2.84)
and the process repeated until convergence is achieved. Finally, the total energy
will be calculated from Eq. (2.88) with the final electron density. If each term
in the Kohn-Sham energy functional was known, we would be able to obtain the
exact ground state density and total energy. Unfortunately, there is one unknown
term, the exchange-correlation (xc) functional (Exc). Exc includes the non-classical
aspects of the electron-electron interaction along with the component of the kinetic
energy of the real system different from the fictitious non-interacting system. Since
Exc is not known exactly, it is necessary to approximate it, which is the focus of the
next section.
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2.5.4 Exchange-Correlation Functionals

“Density functional theory is in principle exact! But, in practice approx-
imations have to be made.”

W. Kohn
Oct. 14, 1997

Laboratoire de Chimie Theorique
Universite Pierre et Marie Curie

Paris, France

To use the Kohn-Sham equations we must know what the form of the exchange-
correlation energy functional is. However, the exact form of Exc is not known and
may never be known (in some simple closed form). Thus since the birth of DFT
some sort of approximations for Exc have been used. By now there is an almost
endless list of approximations with varying levels of complexity. Rather recently a
useful way for categorizing the many and varied Exc functionals that exist has been
proposed by Perdew and is known as “Jacob’s ladder” [8]. In this scheme functionals
are grouped according to their complexity on rungs of a ladder which lead from the
Hartree approximation on “earth” to the exact exchange-correlation functional in
“heaven”. We now very briefly discuss the first few rungs of this ladder as a means
to introduce some of the most common types of exchange-correlation functionals in
widespread use:

(a) The local-density approximation (LDA): This is simplest approximation, and
can be written as

Exc−LDA[ρ(r)] =

∫
ρ(r)εxc−unif(ρ(r)) d(r) , (2.89)

where εxc−unif is the exchange-correlation energy per particle of the homogeneous
electron gas of density (ρ(r)), i.e. the exchange-correlation energy density is taken
to be that of a uniform electron gas of the same density. The exchange energy
is known exactly and the correlation energy is obtained by fitting to the many-
body studies of Gell-Mann and Brueckner and Ceperly and Alder [75, 76]. Modern
LDA functional tend to be exceedingly similar, differing only in how their correla-
tion contributions have been fitted to the many-body free electron gas data. The
Perdew-Zunger (PZ) [77], Perdew-Wang (PW) [78], and Vosko-Wilk-Nusair (VWN)
[79] functionals are all common LDA functionals. Strictly, the LDA is valid only
for slowly varying densities. Experience with calculations of atoms, molecules, and
solids shows that Eq. (2.89) can in general also be applied to these systems. Indeed
LDA works surprisingly well and much current understanding of metal or semicon-
ductor (Si or GaAs) surfaces comes from LDA simulations. A partial rationalization
of the success of LDA is provided by the observation that it satisfies a number of
so-called sum rules [80, 81, 82, 83].
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(b) The generalised gradient approximation (GGA): These are the second gener-
ation functionals (sitting on the second rung of Jacob’s ladder) in which the gradient
of the density, ∇ρ(r), at each coordinate is taken into account as well as the density
itself:

Exc−GGA[ρ(r)] =

∫
ρ(r)εxc−unif(ρ(r))∇ρ(r) d(r) . (2.90)

Thus GGAs are “semi-local” functionals, comprising corrections to the LDA while
(again) ensuring consistency with known sum rules. For many properties, for exam-
ple geometries and ground state energies of molecules, GGAs can yield better results
than the LDAs. Although for the properties of metals and their surfaces, GGA re-
sults are not necessarily superior to LDA results. The most widely used GGAs in
surface physics are the PW91 [84] functional, and its close relative PBE [85]. PBE
actually has several off-spring4; revPBE [86], RPBE [5], PBE-WC [87], and PBEsol
[88]. RPBE is the most popular of the off-spring, although the latest addition to
the PBE family, PBE-WC and PBEsol, offers promise for the simulation of solids
and their surfaces. Also the special designed functional, AM05 [89], dedicated to
include the surface effect which has been shown a much improved performance for
bulk properties, such as lattice constant and bulk modulous, and jellium surface
energy than PBE and PW91 [90].

(c) The meta-GGAs: These are the third generation functionals (third rung of
Jacob’s ladder) and use the second derivative of the density, ∇2ρ(r), and or kinetic
energy densities, τσ(ρ(r)) = 1/2

∑
i|∇φi|2, as additional degree of freedom. In gas

phase studies of molecular properties meta-GGAs such as the TPSS [91] functional
have been shown to offer improved performance over LDAs and GGAs. However,
aside from some benchmark studies of bulk materials and jellium surfaces, these
functionals have not yet been exploited to any great extend in the solid state.

(d) The hybrid functionals: These fourth generation functionals add “exact ex-
change” from Hartree-Fock theory to some conventional treatment of DFT exchange
and correlation5. The most widely used, particularly in the quantum chemistry
community, is the B3LYP [92, 93] functional which employs three parameters, a1−3

4PBE and its off-spring differ only in how they treat electron exchange. The exchange compo-
nent of GGA-PBE is

EPBE
x [ρ(r)] =

∫
ρ(r)εxc−unif(ρ(r))FPBE

x (ρ(r),∇ρ(r)) d(r) ,

where FPBE
x is an exchange enhancement factor given by

FPBE
x [ρ(r),∇ρ(r)] = 1 + κ− κ

1 + µs2/κ

with the dimensionless reduced gradient, s = |∇ρ(r)|/2n(3π2ρ(r))1/3. In the original PBE κ =
0.804. In revPBE κ = 1.245. In RPBE Fx[ρ(r),∇ρ(r)] = 1 + κ− κexp(−µs2/κ), and in PBE-WC
µs2 takes a more complex form.

5The philosophy behind the hybrid functional is simple and rooted in the adiabatic connection
formula, which is a rigorous ab initio formula for the exchange-correlation energy of DFT. One
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(determined through fitting to experiment) to control the mixing of the HF exchange
and density functional exchange and correlation. It takes the following form:

Exc = Ex−LDA + a1(E
x−HF − Ex−LDA) + a2∆E

x−GGA + a3∆E
c−GGA . (2.91)

Reformulating this to eliminate two parameters leads to an equation of the form

Exc = Exc−GGA + a(Ex−HF − Ex−GGA) , (2.92)

and setting a = 1
4

(based on the grounds of perturbation theory [94]) leads to a class
of functionals with only as many parameters as their underlying GGAs. If PBE is
the GGA used in Eq. (2.92) we arrive at the hybrid PBE0 functional [95]. Another
popular hybrid functional worth mentioning here is BH&HLYP [96], which has 50%
Hartree-Fock exchange. Such functionals have been shown to offer noticeably im-
proved performance over LDA and GGA functionals for the calculation of gas phase
properties of molecules and band gaps in solids.

Beyond these few rungs of Jacob’s ladder, there are other Exc functionals of
increasing complexity. However, adding complexity by climbing higher on Jacob’s
ladder or by obeying more and more constraints [97] does not necessarily bring
improved performance in total energies.

2.6 Plane-Waves and Pseudopotentials

As with the wave function based methods, when it comes to the practical application
of DFT issues such as basis sets need to be considered. In calculations of solids or
condensed matter, which will be the main types of systems that DFT is applied to in
this thesis, plane-wave basis set is a very common choice. In many cases, combined
with plane-wave is the pseudopotential approach for treating the strong interactions
between core electron and nuclei. We will now briefly discuss plane-waves and then
pseudopotentials.

2.6.1 Plane-Wave Basis Sets

When dealing with a crystal which has atoms periodically arranged, the electrons
are in a periodic potential U(r) where U(r+R) = U(r) and R is the Bravais lattice

conventional expression of this formula is:

Exc =
∫ 1

0

Uλxc d(λ) ,

where λ is an interelectronic coupling strength parameter that switches on the (1/rij) Coulomb
repulsion between electrons and Uλxc is the potential energy of exchange and correlation at λ. This
formula connects the non-interacting reference system with the fully interacting one all at density
ρ(r). Recognizing that the non-interacting λ = 0 limit is nothing more than HF exchange, it is
expected that exact exchange must play a role in “better” exchange-correlation functionals and
thus DFT exchange and correlation functionals are mixed with a fractional of HF exchange.
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vectors. Starting from Bloch’s theorem [11], the eigenstates φ of the one-electron
Hamiltonian H = −1

2
∇2 + U(r) can be written as

φnk(r) = exp(ik · r)µnk(r) , (2.93)

where µnk is a function with the same periodicity as the potential (U(r)) that
µnk(r + R) = µnk(r). Furthermore, µ can be expanded as,

µik =
1

Ωcell

∑
m

ci,mexp(iGm · r) , (2.94)

where G is the reciprocal lattice vector and Ω = NcellΩcell. Here Ω is the whole
volume.

We aim to solve the following Schrödinger-like equation and each electron moves
in an effective potential Veff (r),

Ĥeffφi(r) =

[
−1

2
∇2 + Veff (r)

]
φi(r) = εiφi(r) . (2.95)

By the Bloch theorem in Eq. (2.93), the eigenfunctions can be written as

φi(r) =
∑
q

ci,q
1

Ω
exp(iq · r) =

∑
q

ci,q × |q〉 . (2.96)

Here ci,q are the expansion coefficients and q = k+G, in the basis of the orthonormal
plane-wave |q〉 satisfying

〈q′|q〉 =
1

Ω

∫
exp(iq

′ · r)exp(iq · r) = δq′ ·q . (2.97)

Inserting Eq. (2.96) into Eq. (2.95) with the orthogonality of Eq. (2.97) and multi-
plying from the left by 〈q′ |, leads to the Schrödinger-like equation in Fourier space,

〈q′ |

[
−1

2
∇2 + Veff (r)

]
|q〉 = εi〈q

′ |q〉ci,q = εici,q . (2.98)

Considering each term in the Hamiltonian. The first term, kinetic energy operator
can be written as,

〈q′|−1

2
∇2|q〉 = |q|2δq·q′ . (2.99)

Second, for a crystal, the periodic potential Veff (r) can be expressed as a sum of
Fourier components,

Veff (r) =
∑
m

Veff (Gm)exp(iGm · r) . (2.100)

Together with Eq. (2.99) and Eq. (2.100), Eq. (2.95) can be rewritten as

Hm,m′ (k)ci,m′ (k) = εi(k)ci,m′ (k), (2.101)

where

Hm,m′ = 〈k +Gm|Ĥeff |k +G
′

m〉 = |k +Gm|2 + Veff (Gm −G
′

m). (2.102)

Here q has been expanded as k + G. Eq. (2.101) and Eq. (2.102) are the basic
Schrödinger-like equations of a periodic crystal with a plane-wave basis set.
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Figure 2.2: Schematic illustration of all-electron (dashed lines) and pseudopotential (solid lines)
and their corresponding wave functions. The radius at which the all-electron and pseudo-electron
values match is designated as rc.

2.6.2 Pseudopotentials

It is well established that most physically interesting properties of solids are de-
termined by the valence electrons rather than the core electrons. Meanwhile, the
deeply bound core electrons within plane-wave basis sets, require a huge amount
of basis functions for their description. Thus this leads to a contradiction that the
less important core electrons will consume a lot of computational cost. To alleviate
this problem, the pseudopotential approximation replaces the strong ionic potential
with a weaker pseudopotential.

In general, there are two main purposes of the pseudopotential formalism. First,
to use a much weaker pseudopotential to replace core electrons which due to their
deep potential need to be described by many plane-wave basis functions. Second,
to eliminate the rapid oscillations of the valence electron wave function in the core
region. These issues are shown in Figure 2.2. From Figure 2.2, we can see the
pseudopoential is much weaker than the all-electron one and pseudo wave function
has no radial node inside the core region. It is essential within the pseudopoten-
tial scheme that outside the core region, the pseudo potential and wave function
becomes the same with the corresponding all electron ones (Figure 2.2).

The most common general form of a pseudopotential is,

Vps =
∑
lm

|Ylm〉Vl(r)〈Ylm| (2.103)

where Ylm are the spherical harmonics. One important class of pseudopotentials
are so called norm-conserving pseudopotential. Norm conserving pseudopotentials
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Figure 2.3: Oxygen 2p radial wave function (solid line) and corresponding pseudo wave function by
using the norm-conserving HSC [98] (dotted line) and Vanderbilt ultrasoft methods [99] (dashed
line). The figure was taken from [99].

require that the all-electron and pseudo wave function agree beyond a chosen ra-
dius (rc) and the integrated density inside rc for the all electron wave function and
pseudo wave function are the same (“norm conservation”). There are many types
of norm-conserving pseudopotentials from different authors such as Troullier and
Martins [100], Kerker [101], Hamann, Schlüter, and Chiang [98], and Vanderbilt
[102].

One issue with the norm-conserving pseudopotentials is that they can not gen-
erate smoother pseudo wave function than the all electron one when coming to the
first row elements like O and the localized transition metals like Ni due to the “norm
conservation” rule.

This situation can be seen in Figure 2.3 for the oxygen 2p orbital. There
is hardly any improvement for the norm-conserving pseudopotential over the all-
electron counterpart. To circumvent this difficulty, Vanderbilt [99] made a radical
modification to break the norm conservation rule and relax the condition that the
psudo wave function inside the core region must have the same density as the all-
electron wave function. By this way, the pseudo wave function can be made much
softer than the all-electron wave function (Figure 2.3). The full density will be added
back before the normalization of the wave function. This kind of pseudopotential is
called an ultrasoft pseudopotential, which enables much lower plane-wave cut-offs
to be used in the calculations.

The combination of DFT, plane-wave basis set, and pseudopotentials has became
a well-established methodology in electronic structure calculations of condensed
matter [103, 104]. Usually such simulations are performed in periodic supercells
to represent the physical system under consideration. Applying this methodology
to the calculation of nonperiodic systems such as a defect in a crystal or a crystal
surface is also possible but requires particular attention. To compute such systems
a suitable periodic representation must be artificially constructed. An example of



32 Theoretical Background

Figure 2.4: Schematic illustration of a supercell model of NaCl(001): the surface is represented
by a 3 layers slab separated by vacuum. The supercell is repeated in all 3 dimensions, only 2
individual supercells are shown here.

a unit cell appropriate for the calculation of solid surface is shown in Figure 2.4 in
which the surface is modelled as a slab of material separated by a region of vacuum.



Chapter 3

Bulk NaCl and NaCl(001)

3.1 Introduction

Common salt, NaCl, plays a key role in environmental chemistry, biology, and sev-
eral other scientific disciplines, as well as being a material of obvious importance to
many aspects of daily life. Since all bodies interact with their surroundings through
their surfaces, it is necessary to explore the structure and properties of NaCl surfaces
if an understanding of the role salt and salt particles play in the above disciplines
is to be arrived at. On the basis that one must first understand the properties of
bulk and clean surfaces before one can understand their interaction with atoms and
molecules, the current chapter focuses exclusively on bulk NaCl and NaCl surfaces.

It is known, for example, from the cubic equilibrium shape of NaCl crystals, that
the low energy surface of NaCl is the electrically neutral and stoichiometric (001)
surface. It is understood that the Na and Cl atoms at such surfaces will undergo
only small relaxations from their bulk truncated positions which has been observed
in the experiments [105, 106]. However, quantitative insight into the properties of
NaCl surfaces is to a large extent lacking. This is mainly because many of the
popular surface science probes, which have been so successfully exploited to probe
the surfaces of metals, such as scanning tunneling microscopy (STM), LEED, and
photoelectron spectroscopies, can not easily be applied in a non-destructive manner
to the surfaces of wide band-gap ionic materials, such as NaCl. The conventional
application of these electron-based probes to insulators can lead to surface charging,
electron-stimulated dissociation of the alkali halides, and alkali enrichment of the
selvedge, all of which hampers characterization of the surface [107].

From experiment there are two main approaches to remedy or at least mitigate
the destructive nature of the electron-based probes at insulating surfaces. One is to
use a probe with a low electron current. With LEED, for example, this means the
deployment of systems operating with very low primary currents in the pA or low
nA range. The second approach is to investigate the properties of thin (nanome-
ter) films of insulators supported on metallic substrates, rather than attempting to
investigate pure single crystals of the ionic materials themselves. For NaCl(001)
both techniques have been applied, leading to two independent LEED I-V structure
determinations [105, 106] that provides valuable data with which to benchmark the
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accuracy of our computational approach. Nonetheless our general understanding of
salt surfaces falls far behind that of metal and semiconductor surfaces, with impor-
tant issues such as the surface energy of NaCl(001) remaining unclear. Indeed this
absence of insight into clean NaCl(001) persists despite several recent theoretical
studies of atomic and molecular adsorption on NaCl(001) [22, 23, 108].

In this chapter, the computational details are elaborated in section 3.2. In sec-
tion 3.3, bulk NaCl is discussed and in section 3.4 our calculations of flat NaCl(001)
are presented. In section 3.5, the information from the electronic structure will be
analyzed. Finally, we sum up all results and reach a conclusion.

3.2 Computational Details

All calculations in this chapter have been performed with DFT within the plane-
wave pseudopotential approach [103, 104] as implemented in the CASTEP code
[109]. Most properties reported here have been computed with the LDA [77] and
the GGA PBE [85] exchange-correlation functionals. In addition, the modified PBE
functional of Wu and Cohen (WC) [87] has been used for a number of bulk and sur-
face calculations. This functional differs from PBE only in the functional form of
the so-called exchange enhancement factor, in the same spirit as the revPBE [86]
and RPBE [5] functionals. PBE-WC, as we refer to it here, has been designed to
give the exchange hole a more diffuse radial cut-off than the original PBE has, which
is believed to be more appropriate for the calculation of solids and their surfaces
[87, 97]. Indeed PBE-WC lives up to this design feature by showing better perfor-
mance for various properties of solids such as lattice constants, bulk moduli, and
the surface energy of jellium [87].

In the current work the electron-ion interactions are described with Vander-
bilt ultra-soft pseudopotentials [99] expanded up to a plane-wave cut-off energy of
400 eV. LDA pseudopotentials have been used for all LDA calculations and likewise
GGA (PBE) pseudopotentials have been used for all GGA (PBE and PBE-WC) cal-
culations. Further, we note that the well-known problem of nonlinear core-valence
electron exchange and correlation for Na [110] has been eliminated in the present
study by treating the Na 2s and 2p electrons as valence electrons.

The thicknesses of the NaCl slabs examined ranged from 2—12 layers and a
variety of periodic supercells were used to model the different surface systems con-
sidered. For the flat NaCl(001) surface a 1×1 unit cell was employed as is observed
in experiment [106]. In each case a Monkhorst-Pack [111] k point mesh with the
equivalent of at least a 4×4 sampling within the 1×1 surface unit cell was used, and
the vacuum region between slabs in adjacent cells was in excess of 11 Å. We note that
in addition to the tests of the computational set-up discussed in the next section for
bulk NaCl, careful tests on the dependence of our computed surface energies with
regard to plane-wave cut-off and k sampling were performed. These tests, which
are reported in Appendix A, reveal that our chosen cut-off energy (400 eV) and k
point mesh (4×4 sampling within the 1×1 surface unit cell) yield surface energies
and ledge energies converged to within 0.2 meV/Å2 and 0.5 meV/Å, respectively,
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of those obtained with a much higher cut-off (1200 eV) and much denser k point
mesh (16×16 sampling within the 1×1 surface unit cell).

3.3 Bulk NaCl

The properties of bulk NaCl were examined, in particular the equilibrium lattice con-
stant, bulk modulus, and various expressions for the energy of bulk NaCl were com-
puted and compared to experiment and previous theory[112, 113, 114, 115, 116, 117].
This data, which we now discuss, is given in Table 3.1.

Our computed lattice constants with the LDA, PBE, and PBE-WC functionals
are 5.46, 5.70, and 5.62 Å, respectively, and the computed bulk moduli are 32, 23,
and 25 GPa. Compared to experiment, PBE overestimates the lattice constant and
bulk modulus, whereas LDA underestimates the lattice constant and bulk modulus.
This is consistent with what is generally known about the performance of these func-
tionals for solids and, for the specific case of NaCl, consistent with previous LDA
and PBE calculations. In particular, our values agree well with recent full-potential
linearized-augmented plane-wave (FP-LAPW) [113] and projector augmented wave
plus plane-wave (PAW-PW) [114] studies, as can be seen from Table 3.1. As ex-
pected, the PBE-WC functional shows improvements over both LDA and PBE,
yielding a lattice constant (5.62 Å) and a bulk modulus (25 GPa) which are closer
to experimental results than the two other functionals, also in agreement with the
original PBE-WC paper [87].

The energetic stability of ionic crystals is typically reported in a variety of dif-
ferent manners, such as the formation energy, the cohesive energy, and the lattice
energy. We have computed each of these quantities with the LDA, PBE and PBE-
WC functionals and now discuss each in turn. The formation energy (Ef ) of bulk
NaCl at zero Kelvin (neglecting contributions from zero point vibrations) is defined
as

Ef = ENaCl(s) − ENa(s) −
1

2
ECl2(g) (3.1)

where ENaCl(s), ENa(s), and ECl2(g) refer to the total energies of bulk NaCl, bulk
Na, and gas phase Cl2 molecules, respectively. Our computed formation energies
with the LDA, PBE, and PBE-WC functionals are -3.89, -3.63, and -3.65 eV, re-
spectively. The corresponding experimental value is -4.26 eV. Thus all functionals
employed here predict too small a value of the formation energy. This underestima-
tion is consistent with the only other GGA-PBE report of the formation energy of
NaCl which gave -3.67 eV [114]. We have tried to identify the source of the error in
the DFT formation energies. It does not appear to come from the Na bulk reference
state since the cohesive energy of bulk Na is rather accurately computed with all
three functionals: 1.25, 1.08, and 1.10 eV within the current computational set-up
for the LDA, PBE, and PBE-WC functionals compared to the experimental value
of 1.11 eV. A more likely source for the too low Ef is an error in the Cl2 molecule,
the bond strength of which is overestimated by all three functionals: 3.69, 2.91, and
3.13 eV for the LDA, PBE, and PBE-WC functionals compared to an experimental
value of 2.52 eV. However, we caution that this is only part of the story and that
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errors most certainly exist in the NaCl bulk total energies too, since the Cl2 bond
strengths alone do not provide a quantitative account of the computed Ef for all
three functionals.

Table 3.1: Calculated and measured values for the equilibrium lattice constant (a0),
the bulk modulus (B0), the formation energy (Ef ), the cohesive energy (Ecoh), and
the lattice energy (LE) of NaCl. The computed values reported here that come
closest to the experimental values for each of the above quantities are indicated in
bold.

Note Functional a0 (Å) B0 (GPa) Ef (eV) Ecoh (eV) LE (eV)
This work LDA 5.48 32.0 -3.89 6.96 8.39

PBE 5.70 23.2 -3.63 6.16 7.59
PBE-WC 5.62 24.7 -3.65 6.28 7.91

Previous DFT calculations
AE-GTOa LDA 5.48 35.2 8.52
AE-GTOa PW91 5.75 22.9 7.65

FP-LAPWb LDA 5.46 32.2
FP-LAPWb PBE 5.69 25.1
PAW-PWc PBE 5.70 23.4 -3.68 6.17
PP-PWd PBE-WC 5.62 25.4

Experiment
5.63e 26.6f -4.26g 6.62g 8.20e

a All electron, full potential, Gaussian-type orbital (Ref. [112]).
b All electron, full potential, LAPW (Ref. [113]).
c All electron, frozen core PAW, plane wave (Ref. [114]).
d Pseudopotential, plane wave (Ref. [87]).
e Ref. [116].
f Ref. [115].
g Ref. [117].

The cohesive energy (Ecoh ) and lattice energy (LE) of NaCl at zero Kelvin
(without corrections for zero point motion) are defined as follows:

Ecoh = ENa(atom) + ECl(atom) − ENaCl(s) (3.2a)

LE = ENaCl(s) − ENa+(ion) − ECl−(ion) (3.2b)

where ENa(atom), ECl(atom), ENa+(ion), and ECl−(ion) refer to the total energy of isolated
Na and Cl atoms and ions, respectively. The two quantities differ in how the isolated
Na and Cl species are defined: for Ecoh it is one comprised of Na and Cl atoms,
whereas for LE it is one comprised of charged ions. From Table 3.1 it can be
seen that all functionals do a reasonable job at predicting Ecoh, coming within 0.5
eV (7%) of the experimental value (6.62 eV). Specifically the computed values are
6.96, 6.16, and 6.28 eV for LDA, PBE, and PBE-WC, respectively. Again, where
comparison with previous DFT calculations is possible, our computed (PBE) value
is very close (0.01 eV away) to the previous PAW-PW report [114].

For the calculation of the lattice energy similar quality results are obtained with
the computed values of LE being 8.39, 7.59, and 7.91 eV with the LDA, PBE, and
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PBE-WC functionals, respectively, compared to the experimental value of 8.20 eV.
We note, however, that for the calculation of the charged (Na+ and Cl−) ions in
our periodic supercell it was necessary to apply the correction of Makov and Payne
[118] to obtain reliable ionization energies and electron affinities for Na and Cl. Our
computed values for LE with the LDA (8.39 eV) and PBE (7.59 eV) functionals
are close to the values of 8.52 and 7.65 eV reported before for the LDA and PW91
[119] functionals in a periodic DFT study of alkali halides with basis sets comprised
of Gaussian-type orbitals [112].

In conclusion, we have established the accuracy of the current computational
set-up, and made comparisons to experiment and previous theory when possible.
As reported before, PBE-WC improves over PBE (and LDA) for the calculation
of the lattice constant and bulk modulus of NaCl. However, when it comes to the
calculation of the energetics of bulk NaCl it is difficult to see too much improvement
with PBE-WC.

3.4 NaCl(001)

3.4.1 Structure of NaCl(001)

The NaCl(001) surface was examined with the LDA, PBE, and PBE-WC function-
als. In Table 3.2, our computed DFT values for some key structural parameters of
NaCl(001), obtained from calculations with 12 layer thick slabs, are reported. In
particular the interlayer spacing and interlayer buckling of the Na and Cl atoms
of the top three layers are given along with the experimental values determined
from the two LEED I-V studies [105, 106]. It is encouraging that all three DFT
functionals agree well with each other. Specifically a contraction of the interlayer
distance between the first and second layer (∆12) of about 0.5% is predicted by all
three functionals and a small buckling in the height of the Na and Cl atoms in the
top layer of 0.07 to 0.11 Å is obtained.

Table 3.2: The relaxation of the interlayer distance (∆) as a percentage of the lattice
constant and interlayer buckling (∆i(Cl−Na)) in Angstrom as obtained from DFT calcu-
lations with 12 layer NaCl slabs and from LEED I-V analyses. The subscripts designate
the various NaCl layers with 1, 2, and 3 being the top layer, the first subsurface, and
second subsurface layers, respectively.

∆12(%) ∆23(%) ∆1(Cl−Na) (Å) ∆2(Cl−Na) (Å) ∆3(Cl−Na) (Å)
LDA -0.55 0.07 0.072 -0.009 0.000
PBE -0.60 0.02 0.110 -0.030 0.000

PBE-WC -0.46 0.01 0.107 -0.035 0.000
NaCl(001)a -1.43 0.10 0.14±0.003 -0.02±0.004 0.00±0.003

NaCl/Pd(100)b -3.19 0.35 0.12±0.03 0.003±0.03
NaCl/Pt(111)b -2.84 0.35 0.12±0.04 0.01±0.04
a Ref. [106].
b Ref. [105].
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We note that a positive value for the buckling implies that the Cl atoms have
relaxed outwards (towards the vacuum) relative to the Na atoms. The trends in the
buckling and relaxations predicted here agree with the LEED analysis, although our
predicted first to second layer relaxation at 0.5% is smaller than that obtained from
LEED (1.4% from the single crystal study [106] and ∼3% from the experiments on
the thin metal-supported NaCl films [105]). Aside from the relaxation and buckling
of the top layer atoms, the atoms in other layers remain almost exactly at their bulk
truncated positions.

Specifically, the interlayer spacing between the 2nd and 3rd layers (∆23) differs
from the bulk value by ≤0.06% in our calculations and 0.11% in experiment [106],
and the buckling of the Na and Cl atoms in the second layer (∆2(Cl-Na)) is reduced
to -0.01 to -0.04 Å in our calculations and -0.02 Å in experiment [106]. By the time
the third layer is reached both DFT and LEED agree that the bulk, non-buckled,
limit has been reached.

3.4.2 Surface Energy of NaCl(001)

The surface energy is a basic thermodynamic quantity of a surface, of crucial im-
portance to the equilibrium shape of crystals. However, it is an incredibly difficult
quantity to determine experimentally [128, 129], and, indeed, most experimental
surface energy measurements of NaCl (and other materials) go back to the 1960’s
and 1970’s [120, 121, 122, 123, 124, 125, 126, 127]. For NaCl this has led to a large
range of 11 to 24 meV/Å2 for the surface energy of NaCl(001). We illustrate this
with the plot in Figure 3.1 and aim here to make a contribution from first principles
theory towards narrowing this range somewhat. The surface energy is defined as,

γ = (Eslab −NEbulk)/A (3.3)

where Eslab is the total energy of the NaCl slab and Ebulk is the total energy of a
NaCl formula unit in bulk NaCl. The number of NaCl formula units in the slab is N
and A is the surface area of the slab. For all three exchange-correlation functionals,
slabs of 2 to 12 layers thickness were examined, leading to the computed values
of γ displayed in Figure 3.1. Two features of Figure 3.1 are apparent. First, γ is
extremely insensitive to the number of layers used in the calculation. The computed
values of γ with the 2 layer slabs differ from those computed with the 12 layer slabs,
by <0.5 meV/Å2 for all three functionals. Second, the choice of exchange-correlation
functional has a noticeable and significant impact upon γ; with γ being ∼14.6, ∼9.0,
and ∼9.4 meV/Å2 with the LDA, PBE, and PBE-WC functionals, respectively.

In the absence of reliable experimental measurements of the surface energy of
NaCl(001) it is difficult to say which functional yields the most reliable value of γ.
However, we can make a qualitative judgement by drawing upon experience from
other materials. When comparison to experiment is possible, as it most often is for
metals, it is typically found that the PBE values are smaller than the experimental
ones, with LDA being the closer of the two 1 [130, 131]. In addition the recent
DFT and diffusion quantum Monte Carlo (DMC) [132] study for the surface energy

1This apparently superior performance of LDA compared to that of PBE for the surface energy
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Figure 3.1: (a) Measured and computed values of the surface energy of NaCl(001) since 1917,
along with the LDA, PBE, and PBE-WC values determined here. The references corresponding
to the previously reported values are given in Ref.s [120, 121, 122, 123, 124, 125, 126, 127]. (b)
The dependence of the computed surface energy of NaCl(001) on the number of NaCl layers and
exchange-correlation functional used.
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of MgO(001) finds that the LDA value is again about 30% larger than the PBE
value and, moreover, that the LDA value is considerably closer to the, in principle,
more reliable DMC result. Finally, we note that the surface energy of NaCl(001)
predicted from the PBE-WC functional is about 4 meV/Å2 larger than the one
obtained with PBE. Thus for the surface energy of NaCl(001), PBE-WC does not
appear to offer any significantly improved performance over PBE. Overall in the
absence of a well-defined experimental value or calculation results superior to those
provided by DFT here it seems reasonable to suggest that the best estimate of the
surface energy of NaCl(001) is the one proposed here of 9.0–15.0 meV/Å2.

3.5 Electronic Structure Analysis

Before ending we briefly address some aspects of the electronic structure of the NaCl
surfaces examined here. In particular, we discuss how the electronic structures of
the atoms at the clean and stepped surfaces differ from the atoms in bulk NaCl.

-2

0

2

4

6

8

E
ne

rg
y 

(e
V

)

0 1 2 3 4 5

-2

0

2

4

6

8

0 1 2 3 4 55
(P) DOS  (electrons/eV)

0 1 2 3 4W L Γ X W K Γ

Total Cl Na

Figure 3.2: (a) Band structure of bulk NaCl, as obtained from a DFT-PBE calculation. (b) Total
density of states (DOS) and partial densities of states (PDOS), partial onto Cl and Na atoms
in bulk NaCl. Only the energy interval around the top of the valence band and bottom of the
conduction band is shown. A smearing of 0.2 eV has been applied to all DOS and PDOS. The
energy zero is the top of the valence band.

The band structure, density of states (DOS), and partial density of states (PDOS)
for bulk NaCl, as obtained with the PBE functional, are plotted in Figure 3.2. NaCl
is an insulator with a wide band gap. The computed PBE (direct) Kohn-Sham band
gap within the current computational set-up is 5.0 eV. As expected with such a semi-
local GGA functional this is significantly smaller than the experimental optical value
of 8.5 eV [133]. The computed width of the valence band is, however, at 1.6 eV in
better agreement with the experimental value of 1.8 eV [134]. The NaCl valence

of metals has been rationalized by recalling that due to a favorable cancellation of errors LDA
outperforms PBE for the calculation of the surface energy of jellium too [97]. Of course, jellium is
not a good model for NaCl, but nonetheless the relative magnitude of the LDA and PBE surface
energies computed here is similar to what is seen for jellium.
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band is essentially comprised of Cl 3p states, as can be seen from the PDOS plot in
Figure 3.2(b). From the PDOS plot it can further be seen that the bottom of the
conduction band is predicted to be of Na (3s) character. This is the conventional
interpretation of the NaCl conduction band. However, there has been some discus-
sion, which is indeed born out by closer inspection of the individual Kohn-Sham
orbitals of the bulk NaCl electronic structure, that the Cl 4s contribution to the
bottom of the valence band is not insignificant [135, 136, 137].

Moving to the surface, we plot the surface band structure and layer resolved
PDOS in Figure 3.3, both of which were obtained from a 12 layer NaCl slab cal-
culation. The computed valence band width (1.6 eV) and band gap (5.0 eV) are
essentially identical to the values computed for bulk NaCl. Further, as predicted
long ago by Levine and Mark [138], we find that the NaCl surface does not exhibit
any surface states. Indeed, as could be partly anticipated from the small relaxation
and buckling at the surface, we do not see any major changes in the electronic struc-
ture upon moving from the bulk of NaCl to the (001) surface.

By looking closely at the layer resolved PDOS (Figure 3.3(b)), a pronounced
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Figure 3.3: (a) Band structure of a 12 layer NaCl(001) slab, as obtained from a DFT-PBE
calculation. (b) The layer resolved density of states of the first three layers and the sixth layer of
a 12 layer NaCl(001) slab. The horizontal (green) line indicates the center of the valence band in
each case. The energy zero is the top of the valence band.

but still small effect is visible. Specifically we see that as we move from the interior
of the slab to the surface, the valence band narrows and its centre of gravity moves
closer to the valence band maximum: compare the PDOS for layers six, three, two,
and one in Figure 3.3(b). It is clear from Figure 3.3(b) however that, as with the
structural relaxations at the NaCl(001) surface, the bulk properties are recovered
almost immediately with the second layer DOS already very close to that of the
bulk. A similar effect is also seen through the Cl PDOS plots displayed in Fig-
ure 3.4. Here the PDOS associated with a Cl atom in bulk NaCl, at the surface of
NaCl(001), and at a step on NaCl(001) are displayed. Again one can see that the Cl
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3p valence band center moves closer to the valence band maximum as one goes from
a Cl atom in bulk to one at a step. Correlated with these changes in the PDOS is
an increase in the computed Mulliken charge of the Na and Cl atoms upon moving
from the bulk to the surface, to the steps, as can be seen from Table 3.3
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Figure 3.4: Partial density of states (PDOS) of a single Cl atom (solid line) and a single Na atom
(dashed line) positioned at the step, the surface, and the interior (bulk) of a stepped NaCl(001)
slab, as obtained from a DFT-PBE calculation. Only the top of the valence band (Cl 3p) and
the bottom of the conduction band are displayed. The horizontal (green) line indicates the po-
sition of the center of the valence band in each case. The energy zero is the top of the valence band.

3.6 Summary

To recap, bulk NaCl and flat NaCl(001) have been examined with density-functional
theory. The properties of bulk NaCl have been computed with the LDA, PBE, and
PBE-WC exchange-correlation functionals. Our results agree with previous theo-
retical studies and the new PBE-WC functional offers improved performance over
both LDA and PBE in the description of key bulk properties such as the equilibrium
lattice constant and bulk modulus. However, when it comes to the calculation of
energetic properties of bulk NaCl such as the formation energy, cohesive energy, and
lattice energy, it is difficult to see too much improvement with PBE-WC compared
to PBE.

For the structure of NaCl(001) we find only a small inward relaxation of ∼0.6%
for the top layer and a considerably smaller relaxation for the second to third in-
terlayer distances (∼0.06%). A small buckling between Cl and Na atoms in the top
layer, ∼0.1 Å, is also predicted. All three exchange-correlation functionals agree on
this behavior, which is largely in agreement with the LEED I-V analyses, although
the absolute magnitude of the top layer relaxation is somewhat smaller than the
values of 1.4% and ∼3% that come from LEED.
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Table 3.3: The computed DFT-PBE Mulliken charges on Cl and Na atoms in bulk NaCl, at the
(001) surface of NaCl, and at the stoichiometric (100)-like step

Charge (e) Na Cl
Bulk 0.54 -0.54

Surface 0.61 -0.59
Step 0.67 -0.62

The surface energy of NaCl(001) is estimated to be in the range 9 to 15 meV/Å2,
as obtained from the three exchange-correlation functionals. In light of the absence
of reliable experimental surface energy measurements of NaCl(001) it is difficult to
identify one functional as being clearly superior to the others. However, we have
discussed how the surface energies obtained from the LDA and PBE functionals often
straddle the true value with LDA likely to be the closer of the two. An improved
estimate of the surface energy of NaCl(001) must await either new experiments or
more potent calculations than those provided in the current work, both of which
are now clearly needed.

Finally, the electronic structure of bulk NaCl and flat NaCl(001) has been briefly
discussed. As with the atomic structure, the electron density in the surface region
is not perturbed to any great extent by the presence of the surface. The main effect
is a small narrowing and up-shift of the valence band DOS as one moves from the
bulk, to the sub-surface region, to the flat surface.



Chapter 4

Monoatomic Steps on NaCl(001)

4.1 Introduction

The role played steps and kinks is fundamental for understanding the morphology
of crystal surfaces as well as equilibrium surface structure (ECS) [139]. There is
a long history of employing Wulff construction to study the ECS and the thermal
evolution of ECS. [140]. Although there are plenty of work have been done for
metal surfaces (Pb, Cu) [141, 142, 143, 144, 145, 146] or semiconductor surfaces (Si)
[147, 148], quantitative information from either experiment or first principles theory
for steps on NaCl is absent, and in particular the energetic cost to create steps on
NaCl is not known. Also the interaction between neighboring steps, whether this is
repulsive or attractive, remains unclear. Here we aim to make a start at remedying
this situation by determining the formation energies of steps and relative stabilities
between stoichiometric (100)-like and non-stoichiometric (111)-like steps.

The remainder of this chapter is structured as follows. The computation details
are listed in section 4.2. The non-polar (100)-like and polar (111)-like steps are
discussed in section 4.3 and section 4.4, respectively. Finally, we draw conclusions
in section 4.5.

4.2 Computational Details

For the calculations in this chapter of monoatomic steps on NaCl(001) a single layer
stripe of NaCl(001) was placed on top of a 4 layer NaCl(001) slab. The stoichiometric
“(100)-like” steps were constructed from 3 atom wide overlayer stripes of NaCl(001)
separated by 1–5 atom wide lower terraces of NaCl(001) (Figure 4.1). Likewise the
polar “(111)-like” steps were constructed from NaCl(001) overlayer stripes whose
“edges” were cut in such a manner to yield either purely Cl terminated or purely
Na terminated steps (Figure 4.1). The other details of the computational setup are
the same as those reported in chapter 3.
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Figure 4.1: (a) Partial sketch of the model used in the calculation of neutral (100)-like steps on
NaCl(001), comprising a “stripe” of NaCl atoms on top of the flat NaCl(001) surface. d is the
lower terrace distance between adjacent steps, which is varied in separate calculations to extract
the isolated step formation energies of (100)-like steps on NaCl(001). The dashed rectangular box
represents the top half of one specific unit cell used in calculations of the value of d shown. On
the right the direction of the computed displacements of the surface atoms in the vicinity of a step
are indicated by the arrows. (b) A partial sketch of the model used in the calculation of the polar
(111)-like steps on NaCl(001). The overlayer stripes are cut to yield either purely Cl terminated
or purely Na terminated steps. Note that although only one layer of NaCl(001) is shown, four
layer thick NaCl slabs were used in all step calculations. Dark (blue) cubes or circles represent Na
atoms, whereas light (gray) cubes or circles represent Cl atoms.

4.3 Nonpolar (100)-like Steps

To begin we introduce a quantity, the ledge energy, which is defined as

Eledge = (Eslab −NEbulk − γA)/2L (4.1)

where Eslab is the total energy of the relaxed stepped surface, which contain N
formula units of NaCl. As before, Ebulk is the bulk energy of a NaCl formula unit
and γ is the computed NaCl(001) surface energy. The surface area of the slab is A,
and L is the length of the step in the unit cell. One of the main goals of the cur-
rent calculations on steps is to extract the formation energy of monoatomic height
steps on NaCl(001). This quantity can be accessed once the step-step interaction
is known and subtracted from the ledge energy. Steps can interact in several ways.
The most studied interaction is the so-called elastic interaction which assume 1/d2

behavior where d is the distance between neighboring steps. The elastic interaction
is due to the deformation fields around each steps. In addition , there are also en-
tropic interaction, force dipole-dipole interaction, etc. between steps. Whether the
combination of all these interactions leads to an attractive or repulsive interaction
between steps depends very much on the system under consideration [149, 150].
Here we adopted this simplified 1/d2 relation to calculate the step formation energy,
however our data fit well with this simple relation which will be discussed in the
following. Thus by examining the dependence of the ledge energy on the width
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of the terrace that separates neighboring steps, the isolated step formation energy
(Estep) can be extracted with the aid of the following relation [139, 151, 152]:

Eledge = Estep +B/d2 (4.2)

where B/d2 represents the step-step interaction between neighboring steps and d is
the lower terrace length, as shown in Figure 4.1.

To obtain the step energy of (100)-like steps, DFT PBE calculations with three
different values of the lower terrace width d were performed. Specifically, calcula-
tions with d equal to 1, 2, and 3 Na-Cl-Na nearest neighbor distances were per-
formed. With the DFT PBE Na-Cl-Na distance of 5.70 Å the width of the lower
terrace thus ranges from 5.70 Å to 17.10 Å. The ledge energies obtained from these
calculations are plotted in Figure 4.2 as a function of 1/d2, and from this a PBE
step formation energy of ∼42 meV/Å for monoatomic (100)-like steps on NaCl(001)
is determined.

An additional feature of the data displayed in Figure 4.2 is that the interaction
between adjacent steps is quite weak since the slope of the fitted line is rather shal-
low. Indeed even for the system with the shortest intervening terrace between the
steps, i.e., d = 5.70 Å, the ledge energy is within 5 meV/Å of the extrapolated value.
For the systems with the two larger intervening terraces the step-step interaction
across the lower terrace is essentially zero 1. An implication of this is that for this
system, although certainly not in general, Eledge is an excellent approximation for
Estep

The data fitted to Eq. (4.2) and used to extract Estep in Figure 4.2 were all
obtained with a fixed upper terrace width of 1 Na-Cl-Na distance. A calculation of
the ledge energy with a wider upper terrace, equal to 2 Na-Cl-Na distances, yields a
value of Eledge that differs from that obtained with the regular upper terrace by only
4 meV/Å. Such a small change demonstrates that Eledge is also rather insensitive
to the upper terrace width and indicates that our computed PBE step formation
energy of 42 meV/Å is reasonably robust to changes in the surface model employed.
For the exchange-correlation functional, however, it is a different story and as we
saw with the surface energy the choice of exchange-correlation functional has a sig-
nificant impact on the computed value. Specifically, the LDA ledge energy for a
stepped surface with a lower terrace width of one Na-Cl-Na distance is 58 meV/Å,
compared to the equivalent PBE result of 47 meV/Å. Thus, as with the surface
energy, the LDA value exceeds the PBE one by 25% 2. Again, in the absence of
experimental measurements for the step formation energy on NaCl(001), we specu-
late that the real value of Estep is within the range provided by the PBE and LDA
functionals (40–60 meV/Å).

Before moving to the (111)-like steps we briefly discuss the optimized structure

1The weak interaction between adjacent steps is further born out by analysis of the atomic
and electronic structures of the relaxed (i.e., optimized) steps obtained from our calculations with
the different sized terraces. Specifically, the relaxation of the atoms at the steps separated by the
smallest intervening terrace (5.70 Å) differs from those with the largest terrace (17.10 Å) by 0.01
Å at most. Likewise the Mulliken charges and partial density of states of the atoms at the steps
are essentially identical in the systems with the longer and shorter intervening terraces.

2The step formation energy calculated from LDA is ∼54 meV/Å.
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Figure 4.2: DFT-PBE ledge energy, as defined in Eq. (4.1), associated with a (100)-like step on
NaCl(001) as a function of the inverse distance between neighboring steps. d is varied from 1 to 3
Na-Cl-Na distances, as indicated by the schematic structures. A linear fit (Eq. (4.2), solid line) to
the three points yields a PBE based estimate of the isolated step formation energy 42 meV/Å. A
single point (triangle) obtained with a wider upper terrace (2 Na-Cl-Na distances wide) indicates
that the computed ledge energy is not very sensitive to the width of the upper terrace.

of the (100)-like steps computed here. How the atoms displace in the vicinity of the
(100)-like step from their bulk truncated positions is indicated by the arrows on the
right of Figure 4.1.

Overall we find that, as with the flat NaCl(001) surface, the atoms near the
steps only undergo moderate displacements; displacements larger than 0.20 Å from
their bulk truncated positions are not observed for any of the atoms in the step
simulations. In particular, we find that the atoms not directly located at the step
behave essentially as they do on the flat NaCl(001) surface, i.e., the surface layer
Cl atoms are displaced towards the vacuum, whereas the surface layer Na atoms
move towards the bulk. The Na and Cl atoms directly located at the top of the
step undergo similar upward and downward movements, but now also undergo dis-
placements inwards toward the step. The net result is a 0.13 Å displacement of
the upper step Cl atoms along a plane tilted by 45◦ from the surface plane and a
0.18 Å displacement for the upper step Na atoms along a plane tilted by 27◦ from
the surface plane. The atoms directly beneath the upper step atoms are naturally
affected by the movement of their upper neighbors and both types of atom undergo
an upward relaxation of 0.15 Å.

4.4 Polar (111)-like Steps

Coming to the polar-termination (111) steps, we focus on the relative stabilities
between different termination steps which include (100), (111)-Cl, and (111)-Na
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Figure 4.3: DFT-PBE ledge energy of (100)-like and (111)-like steps as a function of Cl2 chemical
potential. The zero of the Cl2 chemical potential axis corresponds to the total energy of gas phase
Cl2 molecules, as defined in Eq. (B.2). Two temperature scales at 1 atm and 10−10 atm are also
given as well as partial illustrations of the models used for each type of step calculation. Note
that although only two layers of NaCl(001) are shown, four layer thick NaCl slabs were used in
all step calculations.

terminations. The relative stabilities of (100) and (111) terminations of step are not
known nor is it known under what conditions, if any, other types of step will be-
come favorable. To explore this issue we have compared the stabilities of (100)-like
steps with two alternative polar steps; specifically a purely Cl terminated (111)-like
step and a purely Na terminated (111)-like step; illustrations of which are given in
Figure 4.3.

Since the (111)-like terminations are non-stoichiometric, i.e., they contain a
different number of Na and Cl atoms in the simulation cell, we are unable to di-
rectly determine the ledge energy from Eq. (4.1), as we did for the (100)-like step.
However, it is reasonably straightforward to reformulate the ledge energy as defined
in Eq. (4.2) into a thermodynamic expression based on chemical potentials. This
has been done in Appendix B and leads to the following expression for the ledge
energy [142, 153]:

Eledge =

{
Eslab −NNa

[
ENa(s) +

(
Ef −

1

2
µCl2

)]

−1

2
NCl(ECl2(g) + µCl2)− γA

}
/2L

(4.3)
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where NNa and NCl are the numbers of Na and Cl atoms in the simulation cell.
The only other new quantity introduced in Eq. (4.3) is µCl2 , the chemical poten-
tial of Cl2 molecules in the gas phase. Thus we have an expression for the ledge
energy, dependent solely on the chemical potential of Cl2 molecules, which allows
us to compare the relative stability of stoichiometric and non-stoichiometric steps.
Further, as shown in Appendix B, an estimate of the temperature and pressure
dependence of the relative stabilities of differently terminated steps can be obtained
by expressing µCl2 in terms of temperature and pressure of the Cl2 gas phase.

The change of ledge energy of the purely Cl or purely Na terminated (111)-like
steps as well as the stoichiometric (100)-like steps are plotted as a function of µCl2

in Figure 4.3. In addition, the temperature dependence of the ledge energy at two
specific pressures (1 atm and UHV pressure (10−10 atm)) are also given. The two
key conclusions we draw from Figure 4.3 are: (i) the (100)-like step is significantly
more stable than either termination of (111)-like step at all allowed values of the
Cl2 chemical potential. Typically, the ledge energy for the (100)-like step is at least
0.1 eV/Å lower than either of the non-stoichiometric steps; and (ii) the (111)-like Cl
terminated step is more stable than the Na terminated step at all values of the Cl2
chemical potential down to -1.7 eV. From the temperature and pressure scales given
one can thus see that the Cl terminated step is more stable than its Na counterpart
at all experimentally accessible temperatures and pressures.

4.5 Summary

The energetics of steps on NaCl(001) have been examined. The formation energy
of isolated (100)-like steps on NaCl(100) is ∼42 meV/Å as obtained from PBE,
with the LDA value about 20% larger. Placing our computed step energy in a
broader context, we note that it is a rather small step formation energy, close to the
calculated noble metals silver and copper, for example [154]. Further, the interaction
between neighboring steps is small, never more than 5 meV/Å for the systems
examined here. The ledge energy of polar (111)-like steps has also been evaluated,
allowing us to compare the relative stabilities of purely Cl or purely Na terminated
steps with each other and with the neutral (100)-like steps. It is found that the
(100)-like terminated steps are significantly more stable than either of the (111)-like
terminated steps at all allowed values of the chlorine chemical potential. Further,
it is found that the Cl terminated steps are more stable than the Na terminated
steps down to values of µCl= -1.7 eV, which effectively means that Cl terminated
steps are more stable than Na terminated steps at all accessible temperatures and
pressures.
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Halogen Adatoms on Alkali Halide
Surfaces

5.1 Introduction

Alkali halides are classical wide band gap insulating materials. They have long
been studied as model systems to better understand basic notions in solid state
physics [11] and because of their important optical properties [155]. In recent years
there has been increased interest in the surface properties of alkali halides due to
their potential role in emerging nanoscale technologies [13, 156] and because of their
importance to environmental chemistry such as ozone depletion and precipitation
[157, 158].

Nonetheless, our basic understanding of such surfaces remained shallow; cer-
tainly when compared to that for metal or even metal-oxide substrates. Thus, one
of the simplest questions one could ask concerning adsorption at such surfaces re-
mains unanswered: How do (additional) halogen adatoms adsorb? This question is
important to answer for the materials science technologies mentioned above and for
understanding alkali halide crystal growth and dissolution as well as understanding
basic principles of adsorption and bonding. Conventional wisdom would lead one to
conclude that the halogen adatoms should bond to alkali substrate atoms since this
is the correct location for continued crystal growth. However, we show here for a
series of sodium halide surfaces—NaF(001), NaCl(001), and NaBr(001)—that first
principles calculations predict halogen adatom adsorption and bonding to halide
substrate atoms instead. The explanation for this “non-textbook” adsorption is
that covalent bonds are formed. Specifically, a two-center three-electron bond [18]
is created in each system. Effectively the bonding in these systems resembles that
of an “embedded molecular ion”; an analogy that proves to be helpful also in ex-
plaining the subtle differences observed between each adsorption system as well as
the dynamical properties of the NaCl adsorption system. The above conclusions are
reached based on a series of DFT and MP2 calculations for halogen adsorption on
sodium halide slabs and sodium halide clusters.

In this chapter, the computational details are shown in section 5.2. The novel
adsorption site preference for halogen adatom is discussed in section 5.3. The two-
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center three-electron classical chemical bond behind this adsorption site preference is
analyzed in section 5.4. Finally, the short summary of the results are in section 5.5.

Figure 5.1: The Na9Cl9 cluster model used. Cl atom adsorption was considered above the central
Cl (bottom) or central Na (top). The Na atoms are the purple (darker) spheres.

5.2 Computational Details

All periodic slab calculation in this chapter have been performed with the CASTEP
code [109] with a plane-wave basis set and Vanderbilt ultrasoft pseudopotentials [99].
Six layer thick slab are used to examine F on NaF(001), Cl on NaCl(001), and Br on
NaBr(001) within a square unit cell comprised of 8 sodium and 8 halide atoms per
layer. During structure optimizations the two central layers of each sodium halide
slab were kept fixed, whilst the remaining four layers plus two halogen adatoms (one
on either side of the slab) were allowed to relax. The experimental lattice constants
for NaF, NaCl, and NaBr were used throughout. A 2×2×1 Monkhorst-Pack k
point mesh [111] has been used and spin-polarised calculations were performed when
necessary. The all-electron B3LYP, BH&HLYP, and MP2 calculations on the frozen
Na9Cl9 cluster have been carried out with the Gaussian 03 code [159].

5.3 Adsorption Sites

Table 5.1 lists the adsorption energies and adsorbate-substrate distances for each
system at the high-symmetry atop sites. It is clear from Table 5.1 that the halogen
adatoms bind most strongly at the halide sites, rather than at the Na sites. In
every case there is a preference of 0.2–0.4 eV for adsorption at the halide site.
Two interesting trends are also apparent from Table 5.1, which we discuss again



52 Halogen Adatoms on Alkali Halide Surfaces

below: the halide atom adsorption energies decrease and the adsorbate-substrate
bond lengths increase as one moves down the halogen group from F to Cl to Br.

Table 5.1: Adsorption energies, Eads (eV/atom) and optimized adatom—substrate distances, d
(Å), for F/NaF(001), Cl/NaCl(001), Br/NaBr(001) and Cl on the Na9Cl9 cluster all with the PBE
functional and the plane-wave pseudopotential method. The bond strengths and bond lengths of
the corresponding gas phase molecular ions, i.e., F−2 , Cl−2 , and Br−2 , calculated within the same
computational framework, are given in parentheses.

Binding site NaF(001) NaCl(001) NaBr(001) Na9Cl9
Halide Eads 1.07(2.07) 0.72(1.73) 0.58(1.58) 0.77

d 1.97(2.07) 2.61(2.66) 2.87(2.91) 2.61
Na Eads 0.70 0.41 0.31 0.47

d 2.25 2.72 2.87 2.75
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Figure 5.2: The adsorption energy difference (Eads(Cl)−Eads(Na)) of Cl adatom between Cl site
and Na site obtained by using B3LYP and MP2 methods with the Na9Cl9 cluster for a series
different basis sets.

Noting that the energy difference between the two high symmetry adsorption
sites on each surface is on the order of 0.2–0.4 eV it is not inconceivable that the
theoretical approach employed here may simply be incorrectly predicting the halide
site as the preferred one for adsorption. We make this seemingly over-cautious
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statement because, as we will show below, the adsorption bonds above the halide
sites (but not above the Na sites) are comprised of two-center three-electron bonds.
Almost all density functionals on the market, including the PBE functional used here
and the popular B3LYP hybrid functional, significantly overestimate the strength
of such bonds [160]. MP2, on the other hand, and the hybrid BH&HLYP functional
[96] generally yield accurate predictions for two-center three-electron bond strengths
when compared to high-level quantum chemical methods such as coupled cluster
[160, 161].

We now employ these alternative quantum chemical methods to test the trends
identified here. Specifically a series of all-electron DFT B3LYP, BH&HLYP, and
MP2 calculations for Cl adsorption on NaCl clusters were performed. The NaCl
system was selected because it is the one most likely to be representative of the
three systems under consideration and, of course, is the most generally interesting
of the three.

Table 5.2: Adsorption energies, Eads (eV/atom), and optimized adatom—substrate distances, d
(Å), at the all-electron B3LYP, BH&HLYP, and MP2 levels for Cl above the central Na or central
Cl site of the Na9Cl9 cluster shown in Figure 5.1.

Binding site B3LYP BH&HLYP MP2
Cl site Eads 0.51 0.35 0.39

d 2.59 2.69 2.50
Na site Eads 0.17 0.10 0.16

d 2.80 2.98 2.97

First we used the plane-wave pseudopotential method to identify a suitable clus-
ter model that would faithfully mimic Cl adsorption on NaCl(001), and then used
the same cluster to compute Cl adsorption at the BH&HLYP and MP2 together
with B3LYP. The plane-wave pseudopotential calculations reveal that the frozen
two layer Na9Cl9 cluster shown in Figure 5.1 is a good model since the adsorp-
tion energies and adsorption structures obtained with it for Cl adsorption at both
types of adsorption site are close to those obtained with the periodic slab model
(see Table 5.1). All-electron calculations were then performed for Cl adsorption on
the Na9Cl9 cluster with a 6-311+G(2df) Gaussian function basis set. As is clear
from Table 5.2 the BH&HLYP and MP2 calculations fully support the binding site
preference predicted by the GGA-PBE pseudopotential approach; with BH&HLYP
the site preference is 0.25 eV and with MP2 it is 0.23 eV.

Exhaustive tests on the dependence of the results presented here to basis set
size and cluster size were performed, some of which are shown in Figure 5.2. With
regard to basis set it was found that a 6-311G(2d) basis set was already sufficient to
capture the binding energy difference between the two sites since, even at the MP2
level, the binding energy difference with this smaller basis set was within 20 meV
of the binding energy difference obtained with the 6-311+G(2df) basis set reported
here. With regard to cluster size, DFT and MP2 calculations were performed for Cl
adsorption on Na5Cl5, Na13Cl13, and Na25Cl25 clusters as well as the Na9Cl9 cluster.
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In every case the Cl site remained the preferred one for adsorption.

5.4 Electronic Structure Analysis

More confident in the validity of the binding site assignment made here, we now ask:
Why do halogen adatoms bond preferentially to halide substrate atoms? This result
is unexpected for the reasons outlined above and, furthermore, from a simple com-
parison of the relative bond strengths of alkali halide dimers versus halogen dimers
in the gas phase which reveals that for the systems examined here the strength of the
alkali halide dimer (i.e., NaF, NaCl or NaBr) always exceeds that of the respective
halogen dimer (i.e., F2, Cl2, or Br2) [116]. An analysis of the electronic structures
obtained from our DFT-PBE slab calculations reveals the answer for the predicted
binding site preference.

In all three adsorption systems a covalent bond forms when the halogen atoms
bond to the halide substrate atoms. The difference of the total densities of states
(∆DOS) and partial densities of states (∆PDOS) between the adsorbate and clean
surfaces plots displayed in Figure 5.3 reveal this. For each system the energy range
in the vicinity of the alkali halide valence band is shown. Prior to adsorption the
valence band is comprised of a single (large) peak of p orbital character. After
adsorption new peaks are visible at the top and bottom edges of the valence band.
Inspection of the individual Kohn-Sham eigenstates in each system reveals that
a series of adsorbate-substrate bonding and antibonding states of p(adatom) and
p(substrate) character are created within this energy interval.

Specifically, a set of σ-type bonding (pz + pz) and anti-bonding (pz − pz) states
and a set of π-type bonding (px/y + px/y) and anti-bonding (px/y − px/y) states are
formed. In each case the bonding and antibonding states of π character are fully
occupied and reside within the valence band (or in the case of NaF also below the
valence band).

Hence the fully occupied π-type states do not contribute to the overall net bond-
ing. The σ-type states, on the other hand, straddle the valence band and are the
key states responsible for bonding because one of the anti-bonding σ-type states
remains unoccupied. Or, more precisely, within the spin-polarized ∆PDOS picture
of Figure 5.3(b),(c) there is a single unoccupied one-electron state of σ-type anti-
bonding character above the valence band maximum. Examples of the eigenstates
of σ-type bonding and antibonding character from each system are shown in Fig-
ure 5.3(a) and a schematic diagram of the bonding picture that has emerged is
shown in Figure 5.4 The σ-type covalent bond formed between the adatom and the
substrate is also clear from the electron density difference plot for Cl on NaCl(001)
(Figure 5.5(a)). Furthermore, the electron density difference plot for Cl adsorbed
at the unfavorable Na site of NaCl(001) (Figure 5.5(b)) illustrates the clear differ-
ence between the adsorption bond at each site. The covalent bonding character is
absent when Cl is at the Na site1. Instead there is an indication of an electrostatic

1This is also clear from inspection of the density of states and Kohn-Sham eigenstates when Cl
is adsorbed at the Na site.
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Figure 5.3: (a) the difference of density of states (∆DOS) between the adsorbate and clean
covered alkali halide (001) surfaces. ∆DOS = DOS(adsorbate) −DOS(clean), where DOSadsorbate and
DOSclean is the total density of states of adsorbate and clean alkali halide surfaces, respectively.
The insets display isosurfaces of constant electron density for individual Kohn-Sham eigenstates
and the labels indicate the character of certain key adsorbate-substrate states. The difference of
the spin resolved partial density of states (∆PDOS) with same definition of ∆DOS for the three
adsorption systems. (b) spin down; (c) spin up. The red is positive and the green is negative.
All results in (a), (b), and (c) have been obtained with the PBE functional and the plane-wave
pseudopotential method. The energy zero has been set to the highest occupied Kohn-Sham
eigenstate in each system.
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interaction, illustrated by the (small) charge transfer from the substrate toward the
adsorbate (Figure 5.5(b)). One might then expect that if the halogen adatom gains
an electron to become a halide anion, X−, the covalent bond at the halide site will
be weakened and conversely the electrostatic attraction at the alkali (Na) site will
be strengthened. It is plausible that this will result in a switch in adsorption site
with the alkali site becoming the preferred one for anion adsorption. Indeed, a site
switch is precisely what we see when we model the adsorption of a Cl− by either
adding an extra electron to our simulation cell or by replacing the Cl atom on the
underside of the NaCl(001) slab with a neutral Na atom.

In the latter case, for example, the Na site is favored over the Cl site by 0.49

Figure 5.4: Schematic illustration of the bonding model proposed here for halogen adatom adsorp-
tion at the halide sites of alkali halide (001) surfaces. The gray rectangle designates the substrate
valence band. A solitary σ-type orbital resides above the valence band maximum (EVBM) and is
not occupied.

eV/Cl adatom. Further, the bond length of the adsorbed Cl− to the underlying Na
is >0.10 Å shorter than it is for neutral Cl atom adsorption, and 0.80 Å shorter than
the bond length for Cl− adsorption at the (now unfavorable) Cl site. Thus we see
that when the system has enough charge to have all the atoms assume their formal
(integer) charges it behaves as anticipated. When this is not the case the system
forms the most appropriate charged ion, by way of a textbook covalent bond.

The basic physical picture that has developed for the bonding at the preferred
sites in these systems is thus that of a textbook two-center three-electron covalent
bond. Essentially each adsorption system is equivalent to an X−2 (X = F, Cl, or
Br) species adsorbed upright at a halide vacancy on the surface. Indeed this anal-
ogy of an “embedded molecular ion” proves to be illuminating in two key respects.
First, the trend of both the adsorption energies and adatom-substrate bond lengths
correlate with the computed gas phase X−2 bond strengths. Specifically, for the gas
phase X−2 and the respective adsorption systems the computed PBE bond strength
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decreases and the bond length increases upon going from F to Cl to Br (Table 5.1).
The correspondence is particularly striking between the bond lengths since each ad-
sorption bond is within 0.2 Å of its respective molecular ion bond length (Table 5.1).
Second, the short-time dynamics, as determined from a 12.5 ps ab initio molecular
dynamics simulation (see Appendix C) for the Cl/NaCl(001) system, resembles
that of an adsorbed chlorine molecule in a vacancy rather than an adsorbed atom
on a flat surface. The motion of the two chlorine atoms is strongly correlated: they
rotate and vibrate in concert in the “Cl vacancy”. The dynamics also reveals that
the potential energy surface for tilting the embedded Cl−2 is rather flat. Indeed as
confirmed by subsequent structure optimization 75 meV can be gained by tilting
the Cl−2 by ∼30 degrees from the surface normal.

Figure 5.5: Electron density difference (∆ρ) for Cl adatom adsorption at the Cl substrate site
(a) and the Na substrate site (b) of NaCl(001). ∆ρ is defined as ∆ρ = ρCl/NaCl − ρNaCl − ρCl,
where ρCl/NaCl, ρNaCl, and ρCl are the electron densities of the total system, the isolated
NaCl(001) surface, and the Cl atom in the gas phase, respectively. The plane of the cut is
along the (001) direction, perpendicular to the surface and the units of both legends are 10−4eÅ−3.

5.5 Summary

In summary, DFT slab calculations predict textbook covalent bond formation at
the non-textbook halide adsorption sites on some prototype ionic materials. For the
case of Cl on NaCl(001), this binding site preference is supported by BH&HLYP
and MP2 cluster calculations. Aside from the clear esoteric interest, the present
results are significant because they dictate the initial binding site for epitaxial alkali
halide crystal growth and possible intermediate states in alkali halide dissolution.



Chapter 6

Towards a High Precision
Estimate of the Adsorption
Energy of Water on Salt

6.1 Introduction

The adsorption of atoms and molecules at solid surfaces is of great importance to
many scientific disciplines such as catalysis, corrosion, and environmental science
[162]. An accurate description of the energetics of the adsorption bond is often the
first step toward deeper understanding in each of the above areas. Indeed, countless
experimental and theoretical studies have been dedicated to the determination of
high accuracy estimates of adsorption energies [163, 164, 165]. However, the reliable
determination of the strength of the bond between an atom or molecule and a solid
surface remains a major challenge for both experiment and theory, especially when
the adsorption energy is small such as for physisorbed adsorbates.

Focusing specifically on theory, in recent years DFT [73, 74] has become the
most popular electronic structure approach for treating adsorption and its success
is substantial. If combined with the supercell approach, one can ensure that the
treatment of the xc functional remains the only relevant approximation, enabling
full geometry optimization of systems with hundreds of atoms with fully converged
basis sets. However the adoption of an approximate xc functional leads practical
DFT calculations to suffer from various well-known deficiencies, such as the miss-
ing dispersion interactions which may be relevant to some adsorption systems (like
the one under consideration here) or the self interaction error which plagues oth-
ers [166, 167, 168, 169]. Quite often in adsorption at solid surfaces DFT exhibits
a strong sensitivity to the xc functional employed and in the absence of reliable
experimental estimates, it is not known which functional is suitable for a particular
problem [170, 171]. Indeed it is unclear what level of accuracy can be obtained
from DFT with existing xc functionals. It is unlikely, for example, that current xc
functionals popular in treating surfaces such as PBE [85] (PW91 [84]), RPBE [5],
and LDA [77] can deliver so-called “chemical accuracy” an accuracy of 1 kcal/mol
(∼43 meV) in adsorption energies. Such a precision is desirable since it is the level
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of accuracy necessary in order to reliably predict rates of process at surfaces such
as desorption.

There are, of course, remedies to account for certain deficiencies within the
density-functional theory framework. Van der Waals correction schemes [172, 173,
174] would be appropriate for the missing dispersion interactions and “hybrid” func-
tionals for the self-interaction error [167]. Such techniques offer great promise.
However, given their partly ad hoc nature and the frequent absence of definitive ex-
perimental values, accurate theoretical reference data against which their reliability
can at first be benchmarked is highly desirable. Obvious alternatives to DFT are
quantum Monte Carlo [9] or quantum chemistry approaches such as Møller-Plesset
perturbation theory [38], coupled cluster theory [46] or configuration interaction.
Again these approaches have had some success for adsorption at surfaces and offer
further promise for the future [168, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184].
However, at this stage none enables a full geometry optimization of a molecule
above a periodic substrate at the complete basis set limit, which is now routine for
DFT. So if one chooses to adopt one of these alternative methodologies to DFT new
“headaches” are encountered such as the use of cluster models of the substrate or
concerns about basis set incompleteness, which must be overcome.

In the current chapter, we apply MP2 and coupled cluster to obtain an esti-
mate of the adsorption energy of an individual water monomer on salt. The focus
here is exclusively on adsorption of an individual “isolated” water molecule and
the many interesting questions relating to water clustering or the liquid water—salt
interface are not considered here. Our interest in water on salt stems from its rel-
evance mainly to environmental science and biology and also as an example of an
important molecular physisorption system [19, 20, 21, 22, 23, 24, 25, 26]. Here, an
attempt is made to push the quantum chemistry methods as far as we possibly can
and ensure that the sensitivity of the results obtained to cluster size, basis set, and
level of correlation treatment are understood and controlled. The specific procedure
we follow to achieve a high accuracy estimate of the adsorption energy of water
on salt involves a division of the total adsorption energy into contributions from
Hartree-Fock and electron correlation, the use of embedded cluster models of the
substrate, and extrapolations to CBS. For the treatment of electron correlation we
employ MP2 and CCSD(T). These quantum chemistry calculations are also accom-
panied by a detailed discussion on the possible errors introduced at each stage of
the “roadmap” followed as well as a careful series of DFT studies and comparison
with experimental results.

In the following, section 6.2 provides details of the computational setup for both
the periodic DFT and explicitly correlated quantum chemistry cluster calculations.
Then in section 6.3, water adsorption on flat NaCl(001) with three different xc
functionals and at various (low) coverages is discussed. The explicitly correlated
quantum chemistry cluster calculations are then reported in section 6.4. This is
followed with an analysis of the possible sources of error associated with our em-
bedded cluster calculations in section 6.5. In section 6.6 some links between the
current theoretical estimate and experimental results are made and we close with a
brief discussion and conclusions in section 6.7.
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6.2 Computational Details

Here the computational details for both the periodic DFT and quantum chemistry
cluster calculations are briefly described. All periodic DFT calculations have been
performed within the plane-wave pseudopotential approach as implemented in the
CASTEP code [109]. The DFT calculations were carried out with three different
exchange-correlation functionals: LDA [77], PBE [85], and RPBE [5]. The electron-
ion interactions are described with Vanderbilt ultrasoft pseudopotentials [99] ex-
panded up to a plane-wave cut-off energy of 400 eV. LDA pseudopotentials have
been used for all LDA calculations, and likewise, GGA (PBE) pseudopotentials have
been used for all GGA (PBE and RPBE) calculations. Further, we note that the
well-known problem of nonlinear core-valence electron exchange and correlation for
Na has been eliminated in the present study by treating the Na 2s and 2p electrons
as valence electrons [110]. Four layer thick NaCl slabs separated by 15 Å of vacuum
have been used. Most calculations were performed in a large p(2

√
2 × 2

√
2) unit

cell. Although for certain calculations on NaCl steps a p(3
√

2 ×
√

2) unit cell was
used which, following chapter 4, comprised of a single layer “stripe” of NaCl atoms
on top of the 4 layer NaCl slab. Brillouin zone sampling was performed at the Γ
point only. Unless stated otherwise, during geometry optimizations all atoms in the
unit cell were allowed to relax until a force convergence threshold of 0.01 eV/Å was
met. As detailed in Appendix A, all of the above choices in computational setup
were carefully checked for convergence, and capable of yielding adsorption energies
which are reasonably expected to be within 10 meV of “absolute” convergence.

The all-electron calculations have been carried out with the NWChem4.7 [185],
Gaussian03 [159], and Crystal06 [186] codes1. To model the substrate the following
series of 2-layer stoichiometric NaCl clusters were used: Na5Cl5, Na9Cl9, Na13Cl13,
and Na25Cl25. The clusters were embedded in large finite arrays of point charges
as well as a combination of point charges and effective core potentials. The details
of the embedding and the sensitivity of the results to the strategy employed will
be discussed in detail in Section 6.4. A variety of localized Gaussian function basis
sets were used, ranging from small Pople-style basis sets such as 6-311G*, 6-31G,
86-311G, and 8-511G to Dunning’s larger correlation consistent basis sets [55, 187].
In particular, for the extrapolations to the complete basis set limit cc-pVX Z, aug-
cc-pVX Z, and aug-cc-pCVX Z (X = 3, 4, 5) basis sets were used as described in
Section 6.4. Electron correlation was treated at the MP2 [38] and CCSD(T) [46]
levels. For most of the explicitly correlated calculations the optimized adsorption
geometry obtained from the periodic PBE calculations was employed. Again the
sensitivity of the results to this approximation will be discussed below.

Adsorption energies are defined as:

Eads = Ewater + ENaCl − Ewater/NaCl , (6.1)

1The quantum chemistry cluster calculations were mainly carried with the NWChem and Gaus-
sian codes. The adsorption energies obtained from these codes never differed by more than 1 meV
and so the two codes were used interchangeably; Gaussian for the smaller jobs and NWChem, in
parallel, for the larger jobs. The usage of Crystal06 is purely for the periodic HF calculations.
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Figure 6.1: Top and side views of various initial structures tested at 1
8 ML coverage for a water

molecule adsorbed on NaCl(001). The purple, green, red, and white spheres are Na, Cl, O, and
H, respectively.

where Ewater, ENaCl, and Ewater/NaCl are the total energies of the isolated water
molecule, the clean NaCl(001) slab or cluster, and the water/NaCl adsorption sys-
tem, respectively. With this definition, a positive adsorption energy corresponds to
an exothermic adsorption process. When adsorption on the NaCl clusters is exam-
ined with the explicitly correlated methods, we find that is proves useful to split
Eads into contributions from Hartree-Fock (EHF

ads) and electron correlation (Ecorr
ads ),

i.e.,

Eads = EHF
ads + Ecorr

ads . (6.2)

6.3 Periodic DFT Calculations for Water on Flat

NaCl(001)

In this section a series of periodic DFT calculations for water monomer adsorption
on NaCl(001) is reported. The focus is on the low coverage regime; from half a
monolayer (ML) to 1

8
ML, with the monolayer defined as one water molecule for

each pair of surface NaCl atoms. So as to minimize the effects of numerical noise,
the same large p(2

√
2 × 2

√
2) unit cell was used for all water coverages and only

the number of water molecules within the unit cell was altered. Three different xc
functionals (LDA, PBE, and RPBE) were employed. PBE was selected because it is
an extremely popular xc functional for water adsorption studies [188, 189, 190]. The
RPBE functional [5] was selected because it is also popular in adsorption studies
and was specifically designed to improve upon PBE for adsorption energies of CO
on metals [191, 192]. And LDA is considered because there are indications that it
outperforms PBE for certain surface properties such as the surface energy of metals
and oxides [131, 132].

First, at 1
8

ML we sought to determine the most stable structure for a water
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monomer. To this end, several different initial configurations of a water molecule
were considered. The initial structures tested are displayed in Figure 6.1. After
optimization with all three xc functionals, only the configurations labeled (a) and
(b) survived, as structures (c), (d), and (e) collapsed to (a). Of the two minimum
energy structures, (a) was the most stable with an adsorption energy of 640, 383,
and 286 meV/H2O with the LDA, PBE, and RPBE xc functionals, respectively.
The adsorption energy of structure (b) with these three functionals is 473, 297, and
251 meV/H2O, respectively. Both structure (a) and (b) have the water molecule
located approximately above a Na site with a small displacement (∆O—Na) toward
the neighboring Cl site(s). In the most stable configuration (a), the H atoms of
the water molecule are directed toward adjacent Cl atoms, indicating an additional
attractive Cl—H interaction. Thus, DFT with three xc functionals offers a clear in-
dication that the Na site is the most stable one for water adsorption, an assignment
that matches the experimentally determined adsorption site for water on NaCl(001)
at 1 ML coverage [19]. In addition, the conclusion that structure (a) is the most
stable one agrees with several previous DFT studies [20, 21, 22, 23].

Considering the structures obtained from each functional in more detail, we

Table 6.1: Selected structural parameters of water at the most stable adsorption site (configuration
(a) in Figure 6.1) at 1

8 ML, 1
4 ML, and 1

2 ML with the LDA, PBE, and RPBE functionals. The
units of length are in Å and angles are in degrees.

Functional dO—Na
a ⊥Ob dCl—H

c ∆O—Na
d dO—H

e ∠φf ∠HOHg

1
8 ML

LDA 2.32 2.17 2.23 0.89 0.99 29.1 103.7
PBE 2.44 2.34 2.50 0.87 0.98 19.4 104.1

RPBE 2.44 2.37 2.70 0.82 0.98 14.7 104.4
1
4 ML

LDA 2.34 2.15 2.28 0.91 0.99 27.3 103.6
PBE 2.43 2.32 2.50 0.88 0.98 19.8 104.2

RPBE 2.45 2.39 2.59 0.90 0.98 15.2 104.7
1
2 ML

LDA 2.33 2.16 2.38 0.82 0.99 18.6 104.0
PBE 2.42 2.31 2.61 0.85 0.98 12.8 104.1

RPBE 2.45 2.38 2.72 0.85 0.98 10.3 104.3
a Distance between O and Na.
b Height of the oxygen atom above NaCl(001).
c Average distance between H and Cl .
d Displacement of O away from the Na site.
e Average distance between O and H.
f Angle between water dipole moment and NaCl(001). A positive value

indicates that the H atoms are closer to the surface than O.
g H· · ·O· · ·H angle.

report in Table 6.1 a selection of key structural parameters characterizing adsorp-
tion structure (a). In particular, the water molecule, as indicated by the height of
O (⊥O), resides about 2.2 to 2.4 Å above the surface. This range reflects a sensitiv-
ity of the height of the molecule above the surface to the xc functional employed,
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with LDA predicting the shortest water-NaCl distance and RPBE the largest. Like-
wise, the related O—Na distance (dO—Na) ranges from ∼2.32 Å (LDA) to ∼2.45 Å
(RPBE). The tilt angle of the molecule (defined as the angle between the dipole
moment of the molecule and the surface) with respect to the surface is 29◦, 19◦, and
15◦ with the LDA, PBE, and RPBE functionals, respectively. The lateral displace-
ment of the water molecule from the precise atop site is ∼0.8–0.9 Å with all three
xc functionals. The internal structure of the molecule is not perturbed much from
its gas phase value with the ∠HOH angle within 1◦ of its equilibrium gas phase
value for all three functionals and also the OH bond length within 0.01 Å of their
gas phase values. On clean NaCl(001) there is a buckling between the Cl and Na
atoms, with the Cl atoms residing 0.1 Å higher than the Na atoms. However upon
water adsorption on top of Na, the Na is pulled out of the surface slightly and the
buckling in the immediate vicinity of the adsorption site is alleviated.

To further address the issue of substrate relaxation, we have specifically exam-
ined the effect of surface relaxation on the water adsorption energy with a set of
calculations on fixed NaCl slabs. For all three functionals it was found that the
adsorption energy on the frozen NaCl slab was about 30 meV less. Specifically,
the adsorption energy on the frozen (relaxed) surfaces was 611 (640), 355 (383),
and 252 (286) meV/H2O with the LDA, PBE, and RPBE functionals, respectively.
Thus, whether the substrate is frozen or relaxed does not have a major impact on
the adsorption of water on NaCl(001). Likewise, the structure and location of the
adsorbed water molecule is quite insensitive to whether the atoms in the NaCl slab
are fixed or relaxed. For example, the difference in the height of the molecule above
the fixed and fully relaxed surfaces does not vary by more than 0.03 Å with all three
xc functionals.

Next, the dependence of the adsorption energy and adsorption structure on wa-
ter coverage was examined. The purpose of these calculations is not to perform an
extensive examination of the coverage dependence of water adsorption, but rather
to simply establish how sensitive the adsorption energy is to variations in coverage
in this low regime and whether a 1

8
ML coverage is low enough to be representative

of an “isolated” monomer. To this end, we considered adsorption of the most stable
adsorption structure (a) at 1

4
and 1

2
ML. Selected structural parameters and the

adsorption energy at 1
4

and 1
2

ML are reported in Table 6.1 and Figure 6.2, respec-
tively. Overall we find that for all three functionals the structural and energetic
properties of the water molecule at 1

4
and 1

2
ML are rather similar to those obtained

at 1
8

ML. Throughout the entire coverage range (1
8

to 1
2

ML) the adsorption energy
changes less than 20 meV (Figure 6.2). Likewise, the structural parameters such
as the height of the molecule and its displacement from the precise Na site are not
particularly sensitive to coverage changes in this regime, varying by 0.03 Å at most.
Overall it can be seen that in this coverage regime the water adsorption structure
and energy is rather insensitive to water coverage and the 1

8
ML adsorption struc-

ture can reasonably be considered as being representative of an isolated water on
NaCl(001).
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Figure 6.2: Coverage dependence of the water molecule adsorption energy with the LDA, PBE,
and RPBE functionals, respectively.

6.4 Quantum Chemistry Cluster Calculations

The large dependence of the adsorption energy on the chosen xc functional observed
here (Figure 6.2), is not very satisfactory, with the “range” of 350 meV being almost
ten times larger than chemical accuracy. This prompted us to consider MP2 and
CCSD(T) as alternatives to DFT which should, in principle, be able to deliver
higher accuracy estimates of the adsorption energy. However, it is, of course, not
(yet) possible to use MP2 or CCSD(T) to perform a full geometry optimization with
a periodic slab model of the substrate at the complete basis set limit, as it is for
DFT. Thus the process of obtaining a converged adsorption energy is considerably
less straightforward than it is with DFT and involves the application of cluster
models for the substrate, a careful consideration of basis set convergence, as well as
several other issues which we now address.

Figure 6.3: Top views of the stoichiometric 2 layer clusters used (Na5Cl5, Na9Cl9, Na13Cl13, and
Na25Cl25) along with the adsorbed water molecule. The purple, green, red, and white spheres are
Na, Cl, O, and H, respectively.
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6.4.1 Cluster Size and Embedding

To enable methods like MP2 and CCSD(T) to wield their power to water/NaCl(001),
it is necessary at present to move from the periodic supercell representation of the
adsorption system to one based on finite cluster models. When examining adsorp-
tion on clusters, the first step is to establish the sensitivity of the results to cluster
size and, if applicable, embedding strategy. To this end we examined adsorption on
the series of stoichiometric two layer NaCl clusters shown in Figure 6.3, which range
from an Na5Cl5 to an Na25Cl25 cluster. Adsorption on bare as well as embedded
versions of these clusters was examined.

To begin, we focus on the Hartree-Fock contribution, EHF
ads, to the adsorption

energy and display in the top part of Figure 6.4 the variations in EHF
ads for non-

embedded “naked” clusters (a), clusters embedded in point charges (PCs) (b), and
clusters embedded in a shell of Na effective core potentials (ECPs) (at the Na+ sites
directly adjacent to the NaCl cluster) and PCs (c). Data for three rather small
basis sets are displayed. Several interesting pieces of information can be gleaned
from Figure 6.4, which we now discuss. First, without embedding, EHF

ads depends
sensitively on the chosen cluster size. A large change in adsorption energy of over
100 meV for the different clusters is observed. Moreover, there is no apparent “con-
vergence” with respect to cluster size and it is unclear if even the largest Na25Cl25

cluster is a suitable model for the true NaCl(001) surface. Second, after embed-
ding the clusters in point charges, the variations in EHF

ads with cluster size are much
smaller with the difference between the smallest Na5Cl5 and largest Na25Cl25 clus-
ters being only 20 meV. Given the highly ionic nature of NaCl (and associated
large band gap), along with the large body of literature on embedding of ionic
solids [168, 175, 176, 177, 178, 180, 182, 183, 184, 193], this improvement is to be
expected.

Table 6.2: Hartree-Fock contribution (EHF
ads), correlation energy contribution (Ecorr

ads ) and total
adsorption energy (Eads) calculated with different point charge arrays of dimension X×Y×Z.
Calculations were done at the MP2 level with a cc-pVTZ basis set. Units are in meV.

X×Y×Z EHF
ads Ecorr

ads Eads

11×11×6 230 273 503
21×21×6 230 273 503
31×31×6 230 274 504
41×41×6 229 274 503
21×21×2 228 273 501
21×21×4 230 274 504
21×21×8 230 274 504

The particular point charge set-up employed for the embedded cluster calcula-
tions displayed in Figure 6.4 (b) is a finite ±1.0 e array of dimension X×Y×Z =
21×21×6. A series of tests with alternative point charge arrays established that
this particular array was large enough to achieve convergence with respect to the
number of point charges of EHF

ads to within about 1 meV (Table 6.2). Third, after
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embedding with a combination of point charges and ECPs the variation with cluster
size is again small (Figure 6.4c). The specific recipe adopted for the ECP plus PC
embedding was to replace all the cation point charges directly adjacent to anions
of the cluster with Na LANL2DZ (Los Alamos National Laboratory 2-double-ζ)
[194] ECPs which will replace the inner core electrons. The rationale for this this
approach is the desire to minimize the artificial polarization of the anions caused
by the point charges directly adjacent to them. However, whilst a combination of
ECPs and point charges is known to be necessary for other ionic materials such
as MgO [178], no clear improvement over the simple point charge embedding (Fig-
ure 6.4c) is observed here. Given the smaller polarizability of Cl− compared to O2−

this observation is not entirely unexpected.
As a further assessment of the embedding strategy employed here, periodic

“Naked Cluster”

(a)

(d) (e)

(b)

(f)

(c)

Embedded (PCs) Embedded (PCs+ECPs)

Figure 6.4: Variation of the HF (EHF
ads, top) and electron correlation (Ecorr

ads , bottom) contribution
to the adsorption energy with respect to cluster size for three basis sets. Results for “naked”, non-
embedded clusters are shown (left column) together with clusters embedded with point charges
(PCs) (middle), and clusters embedded with a combination of PCs and effective core potentials
(ECPs) (right). PHF: periodic HF calculations. Basis set 1: O, H, Cl = 6-311G*, Na = 6-31G;
Basis set 2: all = cc-pVTZ; Basis set 3: O, H = 6-311G*, Cl = 86-311G, Na = 8-511G.

Hartree-Fock calculations were performed with one particular basis set at a low
coverage of 1

8
ML. The difference between EHF

ads with the largest embedded cluster
and with periodic Hartree-Fock is 12 meV, further demonstrating that a clear un-
derstanding of the sensitivity of EHF

ads to cluster size has been determined and that
the embedding scheme employed here allows for the missing long range electrostatic
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potential at the adsorption site to be recovered.
Now we move on to the electron correlation contribution, Ecorr

ads , to the adsorp-
tion energy, computed at this stage with MP2. The first thing that is clear from
Figure 6.4d-f is that Ecorr

ads is quite insensitive to the different clusters used. It can
be seen that even before embedding the variation of Ecorr

ads for the different clusters
is less than 36 meV. Nonetheless, embedding helps to reduce the dependence on
cluster size slightly to 22 and 28 meV for embedding with PCs and PCs plus ECPs,
respectively. The weak dependence of Ecorr

ads to cluster size likely reflects the local
nature of electron correlation in adsorption on a wide band gap material like NaCl
[195].

Overall, the results reported here reveal that through embedding it is possible
to obtain a clear understanding of both the Hartree-Fock and correlation (MP2)
contributions to the adsorption energy. Indeed, it is clear that the smallest Na5Cl5
cluster, when suitably embedded, already provides for water adsorption a rather
good model of NaCl(001). We now use this cluster to do better quality calculations.
Specifically we address three important and related issues, namely, basis set incom-
pleteness, the question of which electrons need to be correlated, and an improvement
upon the MP2 treatment of electron correlation.

6.4.2 Basis Set Extrapolations

So far we have mostly employed rather small basis sets which permitted the exami-
nation of rather large NaCl clusters. Now we focus on adsorption on the embedded
Na5Cl5 cluster and employ considerably larger basis sets which enable extrapola-
tion to CBS. To this end, we employ Dunning’s correlation consistent basis sets
(cc-pVX Z, aug-cc-pVX Z, and aug-cc-pCVX Z (X = 3, 4, 5)) along with standard
heuristic extrapolation schemes [196, 197]. Specifically, for extrapolation of the
Hartree-Fock part we use:

EX = EHF
CBS + Ae(−BX) , (6.3)

and for the correlation part:

Ecorr
CBS =

X3

X3 − (X − 1)3
E(X) −

(X − 1)3

X3 − (X − 1)3
E(X−1) , (6.4)

where EX is the energy computed with the corresponding basis set (X = 3, 4, 5),
ECBS is the energy at the CBS limit, and A and B are fitting parameters. As
input to the extrapolation we use BSSE corrected triple-, quadruple-, and pentuple-
ζ data for Hartree-Fock and BSSE corrected triple- and quadruple-ζ data for the
(MP2) electron correlation. All BSSE corrections have been carried out with the
Counterpoise method of Boys and Bernardi [60]. Using the above scheme we obtain
CBS HF and MP2 correlation contributions to the adsorption energy of 191 and 244
meV, respectively. This leads to a preliminary estimate of the adsorption energy of
435 meV. Later, when attempting to place error bars on our computed adsorption
energy, we will attempt to assess the quality of the CBS extrapolations provided by
Eq. (6.3) and Eq. (6.4).
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6.4.3 Sub-Valence Electron Correlation

Until now in the (MP2) correlation calculations only the valence electrons of each
element have been correlated. This is the so-called “frozen core” approach which
often provides a good compromise between accuracy and computational effort [198].
However, when high precision is required in, e.g., the calculation of binding energies,
sub-valence correlations can make non-negligible contributions, especially for alkali
group elements [199, 200, 201, 202]. To address the importance of sub-valence
electron correlation, several full electron correlation calculations were performed
along with a careful series of tests in which individual shells of electrons of the various
elements were either correlated or frozen. These tests revealed a large difference
between the valence only correlation and full electron correlated calculations of 62
meV (Table 6.3). Upon closer inspection, we find that the difference of 62 meV is
mainly caused by the Na 2s, 2p states. As can be seen from Table 6.3 activating Na
2s, 2p electrons while keeping the Cl and O cores frozen almost all of the missing
correlation contribution to the adsorption energy is recovered. Taking this 62 meV
contribution from core-valence electron correlation, we arrive at an updated value
of the adsorption energy of 497 meV.

Table 6.3: Variation of Ecorr
ads (at the MP2 level) on the electrons correlated and frozen in the

system for water adsorption on an embedded Na5Cl5 cluster.

elements frozen correlated Ecorr
ads (CBS)

O 1s 2s, 2p
Cl 1s, 2s, 2p 3s, 3p 244
Na 1s, 2s, 2p 3s
O 1s 2s, 2p
Cl 1s, 2s, 2p 3s, 3p 303
Na 1s 2s, 2p, 3s
O none 1s, 2s, 2p
Cl ” 1s, 2s, 2p, 3s, 3p 306
Na ” 1s, 2s, 2p, 3s

6.4.4 Beyond MP2 for Electron Correlation

To evaluate the effect of higher level correlations beyond the MP2 level, CCSD(T)
has been applied to this system. CCSD(T) calculations are obviously computa-
tionally very expensive, scaling as ∼N 7, where N is the number of basis functions.
Therefore, we limit the CCSD(T) calculations to the triple–ζ level and make use
of the so-called ∆CCSD(T) scheme [203] to obtain an indication of the CCSD(T)
adsorption energy at the CBS limit. This scheme simply relies on the fact that the
MP2 and CCSD(T) binding energies exhibit similar convergence with respect to
basis set size, and so by determining the difference of between MP2 and CCSD(T)
at one particular basis set one can obtain an indication of the CCSD(T) at complete
basis set limit. Upon doing this at the triple-ζ level a difference of 10 meV in Ecorr

ads

between CCSD(T) and MP2 was obtained. Specifically, Ecorr
ads is 10 meV less with
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CCSD(T), thus leading to a reduced adsorption energy at the ∆CCSD(T) CBS level
of 487 meV.

6.4.5 Bringing it All Together

Table 6.4 lists the various contributions to the adsorption energy. Summing all
the contributions leads to our best estimate of the adsorption energy on the em-
bedded Na5Cl5 cluster of 487 meV. This value represents adsorption without any
contributions from relaxation of the substrate. In section 6.3 we established that
DFT provides a consistent picture for the relaxation contribution to the adsorption
energy: ≈30 meV with the LDA, PBE, and RPBE xc functionals. Therefore, we
estimate that the adsorption energy of a water monomer on the relaxed NaCl slab
is ≈517 meV. Having arrived at these estimates through a series of necessary steps,
we now attempt to establish appropriate error bars for the results obtained.

Table 6.4: A breakdown of the various contributions to the water molecule adsorption energy on
an embedded Na5Cl5 cluster, as a model for NaCl(001).

Contribution Value (meV)
HF/CBS 191

Correlation/CBS (MP2) 244
Core-valence electron correlation 62

∆CCSD(T) -10
Best estimate (fixed slab) 487

Best estimate (relaxed slab) 517

6.5 Establishing “Error Bars” for the Adsorption

Energy

We now perform a detailed analysis of the various factors and assumptions made
that might influence our estimated adsorption energy. Based on this, error bars
are estimated for the adsorption energy and an indication of how close to chemical
accuracy we have come is given.

6.5.1 The Structure of the Adsorbed Water Molecule

The first possible factor which could lead to errors in the estimated adsorption energy
is likely to come from the structure of the water molecule adsorbed on NaCl(001). As
we have said, in the cluster calculations we have adopted the DFT-PBE structure.
This was a somewhat arbitrary choice, necessitated by the fact that full geometry
optimizations for this adsorption system with something beyond DFT and with
a suitably large basis set is exceptionally expensive computationally. To evaluate
the sensitivity of the adsorption energy obtained to the structure employed, single
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point calculations at MP2/cc-pVTZ level were performed on the optimized LDA
and RPBE structures structures as well as a full geometry optimization with MP2
(with fixed Na and Cl atoms). The adsorption obtained from the MP2 optimization
is very close to the one obtained from the PBE and RPBE optimized structures with
the differences are 12 and 9 meV while the value from MP2 is larger. However, we do
see a big difference between LDA optimized structure and the one from MP2, with
the adsorption energy on the LDA structure is 63 meV less that MP2. Therefore, we
see that for this system adopting the PBE structure proved not be an unreasonable
choice for the subsequent explicitly correlation calculations. Before moving on it is,
of course, appropriate to caution that the MP2 optimization was performed with
the frozen core option and with only a medium sized triple zeta basis set.

6.5.2 Basis Set Extrapolations

For the basis set extrapolations in section 6.4, the particular procedure embodied in
Eq. (6.3) and Eq. (6.4) was applied. However, there are a variety of popular extrap-
olation schemes, some of which which we test now in order to assess the sensitivity
of the CBS extrapolation to the methods employed [204, 205, 206]. Specifically, as
an alternative for the Hartree-Fock extrapolation procedure of Eq. (6.3), we use:

EX = EHF
CBS + AX−B . (6.5)

And as alternatives for the extrapolation of the correlation contribution of (2) we
use

Ecorr
X = Ecorr

CBS + AX−2.4 , (6.6)

and

Ecorr
CBS = Ecorr

X + A/(X + 1/2)3 , (6.7)

where each term in Eq. (6.5)-(6.7) has the same meaning as in Eq. (6.3) and Eq. (6.4).
For the Hartree-Fock extrapolation, Eq. (6.3) and Eq. (6.5) are very popular non-
linear three-parameter extrapolation schemes. For the electron correlation extrapo-
lation, we are limited to two-point schemes as our data set for the extrapolation is
limited to two points: Eq. (6.4) is a widely usedX−3 extrapolation, and Eq. (6.6) and
(6.7) are alternative two-point extrapolation schemes recently proposed [207, 208].
The results obtained from the various extrapolation schemes for EHF

CBS and Ecorr
CBS

are listed in Table 6.5. For the Hartree-Fock extrapolation, the two schemes tested
give binding energies which differ by only 5 meV. The difference among the three
extrapolation schemes for Ecorr

CBS is likewise small at 3 meV. Although these tests
do not represent an exhaustive analysis of all available extrapolation schemes, the
similar results obtained with the various CBS extrapolations indicates that the total
adsorption energy obtained here is unlikely to be subject to basis set errors in excess
of 10 meV.
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Table 6.5: EHF
CBS and Ecorr

CBS as obtained by various extrapolation schemes with cc-pVXZ (X = 3,
4, 5) and aug-cc-pVXZ (X = 3, 4) basis sets, respectively.

Method EHF
CBS (meV) Ecorr

CBS (meV)
Eq. (6.3) 191
Eq. (6.5) 196
Eq. (6.4) 244
Eq. (6.6) 247
Eq. (6.7) 245

6.5.3 Electron Correlation and the ∆CCSD(T) Approach

In section 6.4, we applied the so-called ∆CCSD(T) approach in order to move
beyond the MP2 treatment of electron correlation. This approach relies on a similar
convergence behavior of the MP2 and CCSD(T) binding energies with respect to
basis set size. Because similar convergence behavior is often observed ∆CCSD(T)
has proved useful for specific systems in which high accuracy binding energies are
required but CCSD(T) calculations with basis sets larger than double- or triple-ζ are
prohibitively expensive [203, 209]. However, the precise accuracy of the ∆CCSD(T)
approach is not known for water adsorption on NaCl(001). To investigate this we
performed a series of calculations on a model system comprising a Na cation and
a water molecule, i.e., (Na—H2O)+. Furthermore, the exact adsorption structure
identified from the water/NaCl calculations was adopted. This model system is
small enough to allow CCSD(T) calculations with large basis sets to be performed
while at the same time resembling, to some extent, the water/NaCl adsorption
system. For this system, two parallel sets of calculations were carried out with MP2
and CCSD(T) with cc-pCV(T,Q)Z basis sets for Na+, aug-cc-pCV(T,Q)Z basis sets
for O, and aug-cc-pV(T,Q)Z basis sets for H. As for water monomer adsorption
on NaCl(001), Eq. (6.4) has been used for extrapolation of the electron correlation
energy contribution to the binding energy (Ecorr

bind). Again all calculations have been
corrected for BSSE errors with the Counterpoise method.

The results are shown in Table 6.6. For this system the correlation contribution
to the binding energy is 39 and 41 meV with MP2 and CCSD(T), respectively at
the triple zeta level, i.e., the difference between MP2 and CCSD(T) is only 2 meV.
At the CBS limit this difference is similar, 3 meV. Thus for the model (Na—H2O)+

system the ∆CCSD(T) approach introduces a negligible error compared to a full
CCSD(T)/CBS calculation. This suggests that the ∆CCSD(T) correction is, at
least, not unsuitable for estimating the CCSD(T)/CBS value for water on NaCl as
we have done here.

As a final point we note that we have also performed a full CCSDT calculation
for the (Na—H2O)+ system and in so doing go beyond the perturbative treatment
of the connected triple excitations. For this comparison, a triple zeta basis set was
employed and the difference between CCSD(T) and CCSDT was only 1 meV. Thus
for this particular system going beyond CCSD(T) does not appear to be necessary.
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Table 6.6: Evaluation of the ∆CCSD(T) approach on (Na—H2O)+ with the (Na—H2O)+

structure taken from the H2O/NaCl adsorption system. cc-pCV(T,Q) basis sets were used for
Na, aug-cc-pCV(T,Q)Z basis sets for O, and aug-cc-pV(T,Q)Z basis sets for H. All electrons in
the system are correlated and results are corrected for BSSE errors. Extrapolation was done with
Eq. (6.4).

Method Basis Set Ecorr
bind (meV)

TZ 39
MP2 QZ 45

CBS 49
TZ 41

CCSD(T) QZ 47
CBS 52

∆CCSD(T) TZ 2
CCSD(T)-MP2 CBS 3

6.5.4 The Final Error Estimate

Now we sum up the individual errors and try to put a final error bar on the adsorp-
tion energy estimate of 517 meV. First, we have the issue of the cluster szie. For the
final adsorption energy estimate the embedded Na5Cl5 cluster was used. For this
embedded cluster it was estimated that finite size errors are on the order of 20 and
22 meV at the Hartree-Fock and MP2 levels, respectively. Second, we concluded in
section 6.5.1 that the error introduced by adopting the PBE adsorption structure
was likely to be around 12 meV. From the basis set extrapolation and ∆CCSD(T)
approach there is a further 10 meV. Thus we arrive at a final error bar of ±62 meV.
This is likely to be conservative estimate. Moreover, the largest errors come from
cluster size effects for which we know from Figure 6.4 how larger clusters perform.
Specifically we find that larger clusters predict larger adsorption energies and so it
is most likely that the true value for the adsorption energy will be on the larger
binding side of the 517±62 meV range.

6.6 Discussion

Having arrived at a value for the adsorption energy of 517±62 meV, which we be-
lieve improves considerably on the alternative initial range from DFT of 286 to 640
meV, it is, of course, interesting to compare this value to experiment. Unfortu-
nately, however the majority of the experimental measurements obtained for water
on NaCl(001) relate to higher coverage, specifically the 2D (1×1) and c(4×2) struc-
tures. In this regime heats of adsorption of 50–60 kJ/mol (518–612 meV/H2O) have
been obtained [26, 210]. The only available experimental estimate of the adsorption
energy for a low coverage of water monomers on NaCl(001) to have been reported
comes from the HAS study of Bruch et al. [19], where a value of 63 kJ/mol (653
meV/H2O) was reported for water monomers in the temperature range 140 to 150 K.
This is noticeably larger than the 517±62 meV obtained in the current work. When
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striving to bridge the gap between the computed adsorption energy and measured
adsorption enthalpy, it is necessary to take into account the zero point contribution
to the adsorption energy (∼80 meV)2 and finite temperature effects (∼50 meV).
Correcting for these effects, our estimated adsorption enthalpy at 145 K becomes
387 meV. This is about 263 meV less than the experimental value and well outside
our estimated error bar on the adsorption energy. We suggest, therefore, that the
value reported for water monomer adsorption does not correspond to water adsorp-
tion on perfect terrace but instead adsorption at defective sites. Indeed, Bruch et al.
were also somewhat suspicious of their large adsorption energy in the low coverage
regime stressing how “It is difficult to derive the adsorption energy of a very low
coverage layer from the isotherms because heterogeneities and defect site effects may
then be dominant in the data.” Indeed, it is known from AFM studies that water
molecules preferentially adsorb on defect sites such as steps or kinks on NaCl(001)
[211, 212].

To specifically investigate the influence of water adsorption at defect sites in the
low coverage regime a series of DFT-PBE studies have been performed for water
adsorption at monoatomic (100) steps. Several different adsorption structures were
considered with the water molecule at various locations and orientations. The most
stable adsorption structure is the one shown in Figure 6.5. In this structure the
oxygen of the water molecule is located between two Na atoms with its molecular
dipole plane directed away from the surface. The PBE adsorption energy obtained
for this structure is 540 meV, which is 157 meV larger than the PBE adsorption
energy on the perfect terrace. Taking this 157 meV as a rather crude correction
to our finite temperature adsorption enthalpy leads to an approximate adsorption
enthalpy at steps site on NaCl of 544 meV, which is somewhat closer to the exper-
imental estimate. However, it remains ∼100 meV smaller than the experimental
value, a difference that we cannot at present reconcile. A set of experiments specif-
ically aimed at determining the adsorption energy of water monomers on terraces
of NaCl with, for example, microcalorimetry [163] would be highly beneficial in re-
solving this discrepancy.

Finally, we close by comparing the adsorption energies obtained with the vari-
ous xc functionals to the benchmark value of 517 meV. Clearly at 286 and 383 meV
the RPBE and PBE functionals predict too weak an adsorption energy, where at
640 meV the LDA functional overbinds by 123 meV. This is largely consistent with
what is known about the performance of these xc functionals for weakly interacting
systems [213]. However, the finding that of the three xc functionals tested LDA
comes closet to the quantum chemistry result is quite unexpected. Certainly this is
accidental agreement, reminiscent of the superior performance of LDA over PBE in
certain van der Waals systems such as graphite or the inert gases [214, 215]. Given
the very bad performance of LDA for H bonded systems [216], future simulations

2The phonon frequency calculations have been carried out by using the harmonic approximation
at the Gamma point of the vibrational Brillouin zone with the finite displacement method for
LDA, PBE, and RPBE functionals at 1

8 ML coverage. The zero point vibration contribution to
the adsorption energy is 89, 69, and 71 meV for LDA, PBE, and RPBE, respectively. The average
value of these three is 80 meV.
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with LDA for, e.g., water clusters or liquid water on NaCl are not recommended.
It will be interesting to see how other functionals, in particular hybrid functionals
such as PBE0 or B3LYP, perform for this adsorption system. Indeed, this will be
discussed in the next chapter.

Figure 6.5: The most stable structure of the water molecule adsorbed at a monoatomic (100) step
on NaCl(001), obtained from DFT-PBE calculations. The purple, green, red, and white spheres
are Na, Cl, O, and H atoms respectively.

6.7 Summary

In summary, through an extensive set of DFT and explicitly correlated quantum
chemistry calculations for water adsorption on NaCl, we have obtained an estimate
of the adsorption energy of a water monomer on salt of 517 meV. A detailed analysis
of the possible errors associated with this estimate gives an error bar of ±62 meV,
with the true value most likely to be on the larger binding side of this error bar.
The value reported falls between those predicted by LDA and PBE.

In the future, it will be interesting to see how other functionals, in particular
hybrid functionals perform for this adsorption system. It will also be interesting and
important to reduce the error bars on the adsorption energy obtained here below
the current value of 62 meV and reconcile the discrepancy between experiment and
theory.



Chapter 7

Hybrid xc Functionals for Water
Adsorption on NaCl(001) and
Electronic Structure Analysis

7.1 Introduction

In chapter 6, quantum chemistry methods were used to obtain a high precision
estimate of adsorption energy of a water molecule on NaCl(001) together with com-
parisons with DFT GGA (PBE, RPBE) and LDA results. To further explore the
influence from different exchange-correlation functionals, hybrid functionals are em-
ployed. Hybrid functionals, such as B3LYP [92, 93] and PBE0 [95], are of inter-
est because of the considerably improved performance these functionals offer over
regular GGAs for the energetics of atoms and small molecules in the gas phase
[217, 218, 219, 220]. For this reason hybrid functionals, especially B3LYP, have
been widely used for the calculations of atomic and molecular systems by the quan-
tum chemistry community for many years.

Recently, the application of hybrid functionals to extended periodic systems with
plane-wave basis sets has been introduced [221, 222, 223]. The comparisons between
hybrid functionals and regular GGAs show improved performance in some aspects
such as lattice constants, bulk moduli, and atomization energies [221] of insulators
and semiconductors. In addition, improved performance in adsorption has been
observed [3, 168]. It is thus interesting to evaluate the performance of certain hy-
brid functionals for water adsorption on NaCl surfaces and see if they can yield
adsorption energies in better agreement with the reference values obtained in chap-
ter 6. Here we use B3LYP and PBE0 to calculate the adsorption energy of water on
NaCl(001) at low coverage. The main conclusion from these calculations is that the
hybrid functionals do not offer any clear improvement over the functionals tested in
chapter 6. Indeed, the results obtained from B3LYP and PBE0 are within 30 meV
of their regular GGA counterparts, BLYP and PBE.

A second aspect of this chapter is that we analyze the nature of electronic struc-
ture that lies behind this adsorption system. Although extensive DFT and quantum
chemistry studies have been performed for water/NaCl(001), we still have not ad-
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dressed what the nature of the interaction between water and NaCl(001) is. Electro-
statics are believed to dominate this adsorption bond [20, 224], but whether there is
any covalent interaction or H bonding interaction between H2O and the Cls remains
unclear. To answer these questions, information from electron density differences,
density of states (DOS), partial density of states (PDOS), Mulliken charges, and
electron localization functions (ELF) [225] are collected to give an understanding of
the interaction between water and NaCl(001).

7.2 Computational Details

DFT calculations reported in this chapter are very similar to those reported in
chapter 6 except that they have been performed with the CPMD code [226]. Periodic
B3LYP, PBE0, BLYP, and PBE calculations have been performed. The electron-ion
interactions are described with norm-conversing pseudopotentials and expanded up
to a 180 Rydberg plane-wave cut-off energy. PBE pseudopotentials have been used
for the PBE and PBE0 calculations, and likewise BLYP pseudopotentials have been
used for BLYP and B3LYP calculations. A four layer thick NaCl slab separated
by 15 Å of vacuum space in a 2×2 unit cell (1

4
ML) has been used. Brillouin zone

sampling was performed at the Γ point only. During the structure optimization, the
four layer NaCl slab was fixed and only the water molecule was allowed to relax.
The experimental lattice constant was adopted.

7.3 Hybrid Functional Calculations

Table 7.1 lists the adsorption energies and selected structural parameters obtained
with the B3LYP and PBE0 xc functionals. For the purpose of comparison the results
obtained with BLYP and PBE are also reported. From Table 7.1, it is clear that the

Table 7.1: The adsorption energy, Eads, computed from B3LYP and PBE0 together with BLYP
and PBE with a fixed slab at 1

4 ML. Three key structure parameters (in Å) of water on NaCl(001)
which have been defined in Table 6.1 are also included.

Functional Eads (meV) dO—Na ⊥o dCl—H

PBE 326 2.45 2.33 2.55
PBE0 317 2.42 2.31 2.58
BLYP 230 2.48 2.39 2.66
B3LYP 259 2.44 2.34 2.66

adsorption energies obtained from PBE0 and B3LYP are similar to those obtained
from PBE and BLYP with the difference between them being 9 and 29 meV, re-
spectively. Therefore, the adsorption energies of B3LYP (259 meV) and PBE0 (317
meV) are still far away from the benchmark results obtained in the previous chapter
(487 meV on a frozen NaCl slab). Considering the much larger computational cost
for the hybrid functional calculations over LDA or GGA calculations, the results
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are somewhat discouraging and the use of the hybrid functionals for this system is
clearly not worth the effort.

Likewise, the predicted structural parameters from the hybrid functionals are
also very close to the values obtained from the corresponding GGA functionals. In
detail, the difference between B3LYP and BLYP distances are within 0.05 Å of each
other and PBE0 and PBE values within 0.03 Å of each other. So there is no obvious
improvement from the hybrid functionals over the GGAs for both energetics and
structures for the adsorption of water on NaCl(001). Indeed, of all the functionals
tested in this chapter and the preceding one LDA predicts the adsorption energy in
best agreement with the quantum chemistry result.

7.4 Electronic Structure Analysis

The basic ingredients of water adsorption on NaCl(001), such as the structure and
energetics have now been discussed in detail. The focus of this section is to start to
elucidate the nature of the interaction between the water molecule and NaCl(001).
To this end we analyze the electronic structures that lie behind the DFT calculations
with a variety of analysis tools such as electron density differences, total and partial
density of states, Mulliken population analysis, and electron localization functions.
This analysis has been performed with both the LDA and PBE xc functionals.

To begin, electron density differences (∆ρ) plots are displayed in Figure 7.1 for
both PBE and LDA xc functionals. ∆ρ is defined as:

∆ρ = ρwater/slab − ρslab − ρwater , (7.1)

where ρwater/slab is the density of the adsorption system, ρslab is the density of the
clean surface, and ρwater is the density of the water molecule. The electron density
difference plots provide a general overview for how the total density of the water
molecule and the NaCl surface rearrange upon formation of the adsorption bond.
The first thing that is clear from Figure 7.1 is that the electron density differences
are similar for LDA and PBE, with only marginally larger charge rearrangement in
the case of LDA. Considering the nature of the electron density rearrangement two
planes (P1 and P2 in Figure 7.1) in ∆ρ are displayed. Both planes are perpendicular
to the surface with P1 bisecting an O–Na plane and P2 an O–H–Cl plane. The ∆ρ
plots reveal a polarization of charge on the O and Na atoms with a build up in
electron density just beneath the O and a depletion in electron density just above
the Na (P1). Overall it appears that electron density is transferred from Na to
water. This interpretation is consistent with the Mulliken charge analysis shown
in Table 7.2 which indicates that the adsorbed water molecule has acquired 0.1 e
from the Na atom of the substrate. The Mulliken charge transfer with the LDA
and PBE xc functionals are essentially the same. A second feature of the adsorption
bond that is clear from ∆ρ along P2 is the presence of an O–H· · ·Cl interaction.
Specifically, there is a region of charge depletion on the H with a build up in density
just above the Cl. Charge rearrangement such as this is reminiscent of hydrogen
bond formation. For example, DFT electron density difference plots for the hydrogen
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Figure 7.1: Electron density difference (∆ρ) contours for water/NaCl(001) computed with the LDA
and PBE functionals at 1

8 ML coverage. Here ∆ρ = ρwater/slab − ρslab − ρwater, where ρwater/slab

is the density of the adsorption system, ρslab is the density of the clean surface, and ρwater is the
density of the water molecule, each is in the precise positions they adopt in the adsorption system.
Two 2D cuts are shown (P1 and P2) as indicated by the cartoon on the top. The units are in
10−4eÅ3. The purple, green, red, and white spheres are Na, Cl, O, and H atoms respectively.
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Figure 7.2: Density of states (DOS) and partial density of states (PDOS) for the valence electrons
of water/NaCl(001) obtained from LDA and PBE. Units are electrons/eV. (a) Density of states of
the top layer of NaCl(001) and adsorbed water molecule. (b) Partial density of states of the Cls
which are interacting with Hs in water molecule. (c) Partial density of states of the surface Cls
not directly interacting with water. (d) Partial density of states of H. (d) Partial density of states
of O. The energy zero is the valence band maximum.
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Table 7.2: Mulliken charges (e) for water/NaCl(001), bare NaCl(001) (top layer), and the water
molecule in the gas phase.

Functional O H Cl(H) Cl Na
water/NaCl(001)

LDA -0.90 0.39 -0.53 -0.53 0.67
PBE -0.91 0.40 -0.58 -0.59 0.71

NaCl(001)
Cl Na

LDA -0.53 0.56
PBE -0.58 0.60

water molecule in gas phase
LDA -1.08 0.54
PBE -1.05 0.53

bond in the water dimer exhibit a similar decrease in density on the H atom involved
in the hydrogen bond with an associated build up in density in the intermolecular
region between the O and H atoms [227]. This leads to the suggestion that part
of the water/NaCl interaction is mediated by a weak hydrogen bond between the
hydrogen atoms and the chlorines. This interpretation is also consistent with the
finding in chapter 6 that adsorption structure (a)—with the Hs directed at the Cls—
is more stable than (b)—with the Hs directed at the neighboring Nas—as shown in
Figure 6.1.

So far a picture based on electrostatics and charge transfer (including hydrogen
bonding) appears to explain the adsorption bond. To determine whether there
is any covalent nature to the adsorption bond a careful analysis of the total and
partial densities of states has been performed as well as an analysis of the electron
localization function in this system. First the DOS and PDOS analysis, which is
reported in Figure 7.2, is discussed. Again the DOS and PDOS obtained with LDA
and PBE are similar, each exhibiting a large conduction band peak 2–3 eV wide and
a second large peak ∼13 eV below the valence band maximum, with two smaller
peaks in between. Upon inspection of the PDOS for each type of atom in the
adsorption system, it is found that the valence band is comprised of Cl 3p states
and the large peak at ∼13 eV below the valence band maximum is comprised of
Cl 3s states. The O and H PDOS plots (Figure 7.2(d)-(e)) reveal that there are
essentially three water related states in the energy interval depicted. Examination of
the individual Kohn-Sham eigenstates associated with each of the water resonances
reveals that these are, in order of increasing energy, the 1b2, 3a1, and 1b1 states.
These are the three highest occupied orbitals of water and essentially no mixing of
these states with the substrate is observed. The only small mixing present is, in the
case of LDA, at about -3 eV between the Cl involved in the hydrogen bond and the
bottom of the 3a1 resonance. Thus, from the DOS and PDOS analysis no significant
covalent interaction of the water with the substrate is observed.

The ELF [225, 228] provides a powerful approach to distinguish electrostatic and
covalent interactions. The range of values for the ELF is between 0 and 1, with the
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Figure 7.3: The ELF of a 4-layer clean NaCl(001) as obtained with DFT-PBE. The 2D cut is
through (010) direction and perpendicular to the surface. The unit cell was turned around by a
small angle to facilitate the view.

high values of ELF indicating well localized electrons which could be part of a chem-
ical bond, atomic shell, or lone pair1. An example of an ELF plot computed with
PBE for the clean 4-layer NaCl slab is shown in Figure 7.3. The shell structure for
each Na and Cl, which is 2s , 2p for Na and 3s , 3p for Cl (given the pseudopotentials
employed), is clearly observed. In the interatomic regions the ELF quickly goes to
zero characteristic of an ionically bonded solid. Returning now to the water adsorp-
tion system, the ELFs from LDA and PBE are plotted in Figure 7.4. The same two
planes used for the ∆ρ analysis are again shown and, as before, the features ob-
served are similar for LDA and PBE. From the ELF plots of the adsorption system
the Na and Cl atomic shell structure is again clear as is the lone pair character of
the 3a1 orbital. Further, consistent with the PDOS analysis there is no indication
of covalent bond formation with the ELF going to zero in the internuclear O–Na
and H–Cl regions. Thus we conclude that in this adsorption system the interaction
is mediated through electrostatics and not covalency.

7.5 Summary

In this chapter, the hybrid functionals, B3LYP and PBE0, have been employed to
study water adsorption on NaCl(001) and further complement the performance com-
parisons of different xc functionals in the previous chapter. The main conclusion,
however, is that we did not find any big difference between the hybrid functionals

1Specifically, high ELF values show that at the examined position the electron is more localized
than in a uniform electron gas of the same density.
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Figure 7.4: ELFs of water on NaCl(001) obtained with the LDA and PBE functionals. The 2D
cuts are shown (P1 and P2) as indicated by the cartoon on the top.
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and the corresponding GGA functionals (BLYP and PBE). The adsorption energies
obtained from the hybrid functionals are still away from the quantum chemistry
calculations by ∼228 and ∼170 meV for B3LYP and PBE0, respectively. Thus for
this specific system, the hybrid functionals do not offer any clear improvements in
performance of the energetics despite their increased computational cost. Similarly,
the difference in the optimized structures obtained with the hybrid functionals and
their GGA counterparts is small, within 0.05 Å.

To further understand the interaction between the adsorbed water molecule and
NaCl(001), electron density differences, Mulliken population analysis, DOS and
PDOS, and ELFs have been examined. The main conclusion is that the adsorption
bond is dominated by electrostatics and a small charge transfer from Na to water,
along with a weak hydrogen bonding interaction with the substrate Cl atoms. For
each of these analysis tools the differences between LDA and PBE were small and
so the analysis performed to date has not provided any clear specific reason why the
LDA adsorption energy is so much larger than that obtained from PBE. Work with
symmetry-adapted perturbation theory [229] is currently underway to address this
issue.



Summary and Outlook

In this thesis, various electronic structure simulation methods such as density-
functional theory and explicitly correlated methods, e.g., Møller-Plesset perturba-
tion theory and coupled cluster have been applied to the several different aspects of
surface process on NaCl(001).

First, the properties of bulk NaCl, NaCl(001), and stepped NaCl(001) surfaces
have been examined with density-functional theory. The properties of bulk NaCl
such as equilibrium lattice constant, bulk modulus, formation energy, and cohesive
energy have been computed with the LDA, PBE, and PBE-WC xc functionals. The
good agreement obtained for these properties with previous experimental and theo-
retical studies established firm foundations for the subsequent work on NaCl(001).
Further, the new PBE-WC functional offers improved performance over both LDA
and PBE in the description of key bulk properties such as the equilibrium lattice
constant and bulk modulus. However, no clear improvement with PBE-WC over
PBE was observed for the energetics properties of bulk NaCl, e.g., the formation
energy, cohesive energy, and lattice energy.

When coming to NaCl(001), first the buckling and relaxation of atoms in the
surface layer was predicted to be small and the bulk equilibrium interlayer distance
has been recovered at the third layer from the surface which is also in good agree-
ment with the corresponding experimental measurements. For the surface energy
of NaCl(001), a fundamental property of any surface, the experimental values are
old (from the 1960’s and before) and differ considerably from each other. For the
first time, the surface energy of NaCl(001) has been determined from first principles
computations and the range of 9–15 meV/Å2 was obtained from DFT GGA and
LDA calculations. Also the new PBE-WC functional yield a similar surface energy
to the PBE functional. In the absence of reliable experimental measurements it is
difficult to judge which functional is the most reliable. Some speculations were made
that LDA might actually be the most reliable functional of those tested, based on
experience from quantum Monte Carlo on Mg(001) and comparisons between DFT
and experiment for the surface energy of Pb. This is, however, a clear area where
more work would be highly desirable, both from experiment and theory. For exam-
ple, quantum Monte Carlo or quantum chemistry simulations aimed at establishing
more precisely the surface energy of NaCl(001) would be highly desirable.

The step formation energies are crucial to the prediction of the surface morphol-
ogy. From the current thesis, the step formation energy of monoatomic height steps
on NaCl(001) has been predicted to be ∼42 meV/Å from DFT-PBE calculation
which is, to my knowledge, the first ab initio estimate of the step formation energy
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of NaCl(001). The interaction between neighboring steps on NaCl(001) has been
predicted to be repulsive and small. Furthermore, the relative stabilities between
nonpolar (100) terminated and polar (111) terminated steps have been compared
under 1 atm and UHV pressures up to 1000 Kelvin.

One particular highlight of current thesis comes from the studies of the halide
atom adsorption on alkali halide surfaces. To a big surprise, both DFT and MP2
indicate that the halogen atoms bond preferentially to halide substrate atoms on a
series of alkali halide surfaces (NaF(001), NaCl(001), and NaBr(001)), rather than
to the alkali atoms as might be anticipated. An analysis of the electronic structures
in each system reveals that this novel adsorption mode is stabilized by the forma-
tion of a textbook two-center three-electron covalent bond. This discovery served
as an example as to never stop to question some “conventional wisdom”. Moreover,
this finding has important implications to the initial epitaxial alkali halide crystal
growth.

A large part of my PhD work has been dedicated to achieving high accuracy
in terms of adsorption energies beyond what is available from current density-
functional theory. Or more precisely, moving beyond the typically large range in
adsorption energies from different DFT exchange-correlation functionals. To this
end, the water adsorption on NaCl(001) was examined as a model system. Con-
siderable efforts have been employed with MP2 and CCSD(T) together with the
extrapolation to complete basis set limit and embedding cluster technique to ar-
rive at a reliable estimate of the adsorption energy which is 487 and 517 meV for
fixed or relaxed slab. Careful tests on the cluster size, basis set, and core-valence
electrons correlation guarantee the high accuracy from our estimate which is close
to the “chemical accuracy” to be obtained. This has lead to one of the most reli-
able theoretical estimates of an adsorption energy of a molecule on a solid surfaces
made to date. Further, none of the xc functionals tested, those popular in treating
adsorption at solid surfaces, such as LDA and PBE, and hybrid functionals (PBE0
and B3LYP) yielded results that were particularly close the quantum chemistry
value (>100 meV difference). In particular the hybrid functionals show basically no
change from their non-hybrid counterparts.

With regard to water adsorption, there are many clear areas for further study.
For example, it would be very exciting to refine the adsorption energy estimate from
quantum chemistry. As discussed in section 6.5 there remain error bars of ±62 meV
on the value obtained here. Getting these error bars and closing in on the exact
value for the adsorption energy would be well worth doing. Of course, it would be
good if an improved experimental measurement of the adsorption energy (such as
from microcalorimetry) was to be obtained to provide a real stern test for the theo-
retical values. In addition it would be interesting to test other DFT xc functionals
to identify which one was most reliable for water adsorption on NaCl, whilst at the
same time predicting other relevant properties (e.g. surface energies, step formation
energies) with high precision. More generally, having followed a roadmap to obtain
high accuracy estimates of adsorption energies of molecules on insulators, it would
be very interested to obtain other benchmark adsorption energies for some other
adsorption systems. Indeed, in ongoing work water on LiH(001) is being examined.
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In the final chapter, analysis on the electronic structures that lay behind the
water adsorption system were performed. This has shed some light on the nature
of the interaction between water on salt. The conclusion is that it is mainly elec-
trostatic with some hydrogen bonding contribution. However, there is obviously
much scope for understanding this interaction at a deeper level. In particular, it
would be important and interesting to understand exactly why such different ad-
sorption energies are obtained with the different xc functionals. As part of this work,
Symmetry-Adapted Perturbation Theory (SAPT) is now being used.



Appendices
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Appendix A Selected Convergence Tests

A.1 NaCl(001) and Defects on NaCl(001)

Some of the tests carried out in order to determine the numerical accuracy of the
computational set-up employed for the calculations in chapter 3 and chapter 4 are
reported here. Specifically, convergence tests on the dependence of the surface
energy on the plane-wave cut-off (Figure A.1(a)) and k point mesh (Figure A.1(b))
used are presented as are convergence tests on the dependence of the ledge energy
on the plane-wave cut-off (Figure A.1(c)) and k point mesh (Figure A.1(d)). In all
calculations a fixed 4 layer NaCl slab was used and the Monkhorst-Pack k point
meshes reported correspond to the sampling per 1×1 surface unit cell. It can be seen
from Figure A.1 that our chosen cut-off energy (400 eV) and k point mesh (4×4)
yield surface energies and ledge energies converged to within 0.2 meV/Å2 and 0.5
meV/Å, respectively, of those obtained with a much higher cut-off (1200 eV) and
much denser k point mesh (16×16×1).

Figure A.1: (a)-(b) Variation of the computed PBE surface energy of a 4 layer NaCl(001) slab
with plane-wave cut-off energy (a) and k point mesh (b). (c)-(d) As for (a) and (b) but now for
the ledge energy.
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A.2 Water on NaCl(001)

Results of some of the tests on the set-up of the periodic DFT calculations reported
in chapter 6 are given here. All tests are carried out with the PBE functional and
a 1×1 unit cell. Specifically, in Table A.1 results are reported for k point mesh,
plane-wave cut-off, vacuum spacing between neighboring slabs in the supercell, and
slab thickness. From the table it can be established for this small 1×1 unit cell, the
computational setup with 4×4×1 k point mesh, 400 cut-off energy, 15 Å vacuum
space, and 4 layer slab could guarantee an accuracy of ∼10 meV.

Table A.1: Selected convergence tests on the computed adsorption energy, Eads, for the periodic
DFT(PBE) calculations.

Setup Eads (meV/H2O)
k point mesh 4×4×1 (8 k) 358

8×8×1 (32 k) 359
cut-off energy (eV) 400 358

600 362
vacuum space (Å) 15 402

20 398
slab layer 2 layers 393

4 layers 402
6 layers 401
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Appendix B Thermodynamic Relations of Non S-

toichiometric Step

Here we briefly sketch the thermodynamic route that takes us from Eq. (4.1) to
Eq. (4.3), which enables the ledge energy of stoichiometric and non-stoichiometric
steps on NaCl(001) to be compared. As given in Eq. (4.1) the ledge energy is:

Eledge = (Eslab − Ebulk − γA)/2L

where Ebulk is the energy of the (stoichiometric) NaCl formula unit in bulk NaCl.
The well-known problem is that one cannot define the energy of the atomic species in
a compound like NaCl, and thus one cannot determine Eledge for a non-stoichiometric
system, i.e., one in which there are different numbers of Na and Cl atoms. However,
by employing thermodynamics and considering Na and Cl as “subunits” of NaCl
the problem can be quite effectively side-stepped.

To begin we consider the equilibrium condition for NaCl, which we express as

(ENa(s) + µNa) +
1

2
(ECl2(g) + µCl2) = Ef + ENaCl(s) (B.1)

where, as before, Ef is the formation energy of NaCl, and ENa(s), ECl2(g), and ENaCl(s)

are the total energies of Na atoms in bulk Na, gas phase Cl2 molecules, and bulk
NaCl, respectively. Setting the total energies to zero yields a formation energy for
NaCl that is now given by the chemical potentials of chlorine molecules, µCl2 , and
Na atoms, µNa :

µNa +
1

2
µCl2 = Ef (B.2)

If we choose the chemical potential of Cl2, µCl2 , as the only independent variable,
then its accessible range is obviously given by

Ef 6 µCl2 6 0 (B.3)

where the lower limit, the “chlorine poor” limit, is the computed heat of formation
of NaCl, which with the PBE functional is -3.63 eV (Table 3.1). By construction
the other limit, the “chlorine rich” limit is given by, ECl2(g), the computed total
energy of gas phase chlorine molecules. Combining Eq. (B.1) and (B.2) thus leads
to the expression for the ledge energy given in Eq. (4.3),

Eledge =

{
Eslab−NNa

[
ENa(s) +

(
Ef −

1

2
µCl2

)]
− 1

2
NCl

(
ECl2(g)+µCl2

)
−γA

}
/2L

where Eledge now depends only on the chemical potential of Cl2 molecules.
Further, treating the Cl2 molecules as an ideal-gas reservoir allows us to ex-

tract the temperature and pressure dependence of the chlorine chemical potential,
µCl(T, p), which gives a crude temperature and pressure dependence for the relative



Thermodynamic Relations of Non S-toichiometric Step 91

stabilities of the differently terminated steps on NaCl(001). Specifically, the chlorine
chemical potential is given by

µCl(T, p) =
1

2
+ ∆µCl(T, p)

=
1

2

[
ECl2(g) + µCl2(T, p

◦) + kBT ln

(
pCl2

p◦

)]
(B.4)
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Appendix C Ab initio Molecular Dynamics Simu-

lations of a Cl Adatom

A Born-Oppenheimer ab initio molecular dynamics simulation was run in the canon-
ical ensemble at 300 K for a total of 12.5 ps in order to gain insight into the dynamical
properties of this adsorption system. Throughout the entire lifetime of this short
simulation the Cl adatom remains at the Cl adsorption site, with the dynamical
behavior of this system resembling an embedded Cl−2 molecule rather than a single
Cl adatom.

Figure C.1: Four snapshots taken at 2, 4, 6, and 8 ps from the ab initio molecular dynamics
simulation of the Cl adatom on NaCl(001). The yellow atoms are the Cl adatom and the Cl atom
of the surface.
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Appendix D Electron Density Differences

Electron density difference plots for the different embedding schemes discussed in
chapter 6 are shown in the following figures. The electron density difference between
the naked cluster and the cluster embedded in PCs are shown in Figure D.1 and the
electron density difference between the cluster embedded in PCs and in PCs+ECPs
is shown in Figure D.2, respectively. With both embedding schemes the density at
the central Na adsorption site is not perturbed by the embedding.
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Figure D.1: Isosurface of the electron density difference (∆ρ) between the density (ρnaked) of the
naked clusters and the density (ρPCs) of the clusters embedded in PCs . ∆ρ = ρnaked − ρPCs.
Blue is positive and yellow is negative. The isovalue is 0.0004 a.u.



Electron Density Differences 95

Figure D.2: Isosurface of the electron density difference (∆ρ) between the density (ρPCs) of the
clusters embedded in the point charges (PCs) and the density (ρPCs+ECPs) of the clusters embed-
ded in the combination of PCs and effective core potentials (ECPs). ∆ρ = ρPCs − ρPCs+ECPs.
Blue is positive and yellow is negative. The isovalue is 0.0004 a.u.
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[203] P. Jurečka and P. Hobza, Chem. Phys. Lett. 365, 89 (2002). 68, 71

[204] D. G. Truhlar, Chem. Phys. Lett. 294, 45 (1998). 70

[205] A. Halkier, T. Helgaker, P. Jørgensen, W. Klopper, and J. Olsen, Chem.
Phys. Lett. 302, 437 (1999). 70

[206] D. W. Schwenke, J. Chem. Phys. 122, 014107 (2005). 70

[207] P. L. Fast, M. L. Sánchez, and D. G. Truhalr, J. Chem. Phys. 111, 2921
(1999). 70

[208] S. B. Huh and J. S. Lee, J. Chem. Phys. 118, 2035 (2003). 70

[209] J. Pittner and P. Hobza, Chem. Phys. Lett. 390, 496 (2004). 71
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