Robert Schlögl Fritz-Haber-Institut der MPG

NANOSTRUCTURED CARBON AS HETEROGENEOUS CATALYSTS

FUNDAMENTALS

4

Department of Inorganic Chemistry www: fhi-berlin.mpg.de

Some Facts about "Carbon"

Anisotropy

There is no other material than graphitic carbon showing such pronounced electronic structural anisotropy resulting from the anisotropy of the sp² bonding: only the (blue) prism face is reactive, the (red) basal plane is inert

Nanostructured anisotropy

Nanostructures allow flexibiliy in controlling anisotropy

7

Graphitic CNT with high surface area

4202-002 5.0kV x150k SE(U,LA0)

Enhancement of surface area from 16 m²/g to 347 m²/g

Gesti

8

Department of Inorganic Chemistry www: fhi-berlin.mpg.de

300nm

Graphene

100 x 100 nm Wintterlin et al, PRB, 76, 2007

Department of Inorganic Chemistry www: fhi-berlin.mpg.de

The electronic structure issue

Bending with decreasing diameter causes localization of π states enhancing artificially the "density of states " of the semimetal graphite

Concept: Tune the C-O bond properties

Soot and soot II

Acid-base groups

Surface functional groups

Department of Inorganic Chemistry www: fhi-berlin.mpg.de

Synthesis of oxygen functional groups

High resolution TPO through slow heating rate and back-mixing-free operation

The combination of fluid phase oxidation followed by calcination to 600 – 900 K generates a specific set of OH-groups

PSLD CNT

15

The Li C interaction Li: a chameleon of chemical bonding

Nature of carbon Li interaction

Nature of Carbon Li interaction

NMR: co-existence of bonding states www: fhi-berlin.mpg.de

Nature of carbon Li interaction

Carbon as Catalyst metal-free heterogeneous catalysis

Nano-synthesis for Li-storage

Technical Challenges:

- **1. Where do metal nanoparticles stay?**
- 2. Can reactant diffuse inside of CNTs?
- 3. How big are the *children* CNFs

Analytics for controlled synthesis: Li storage

After optimization: a material

Structure of the C/C composite

CNFs@CNTs in Li Batteries

-Cycling stability in 1 M LiPF₆ in EC/DMC solution

CNFs@CNTs in Li Batteries

Electrochemical stability of CNFs@CNTs in 1 M LiPF₆ in EC/DMC solution at 1C after 120 cycles at C/5

CNFs@CNTs in Li Batteries

Galvanostatic discharge curves of CNFs@CNTs (cycled at a rate of C/5)

Unlikely ethylene carbonate (EC), propylene carbonate (PC) is safe at low T.

PC solvent and the solvated Li⁺ ions tend to co-intercalate into graphite, accordanied by severe exfoliation of graphite layers and thus destruction ²⁷ structure dangsheng@fhi-

Novel Carbon-2: CTIT

Carbon tube-in-tube via wet chemical assembly

Carbon tube-in-tube (CTIT)

dangsheng@fhi-

Carbon tube-in-tube (CTIT)

Unfortunately, performance decreased during 20 cycles

Fixation of oxygenate sites

reduction of oxygenate sites

Carbon as Catalyst metal-free heterogeneous catalysis

Control of Localization

Oxide particles are killing nanocarbon: limit it to the bare minimum, avoid formation of lumps e.g. in the inner parts of nanotubes

Steps for the selective decoration of the outer surface

- 1. 250 mg of MWNT treated with HNO₃
- 2. Filling of the inner cavity with 1.4 ml n-C8 (γ = 21 mN.m⁻¹ and low miscibility with water)
- 3. Impregnation with 1 ml of an aqueous solution containing metal-salt (final loading: 1 wt.%)
- 4. Drying, calcination. Metal oxide nano particles are only outside.

Control of localization with CNT

Department of Inorganic Chemistry www: fhi-berlin.mpg.de

Cathode in Li storage

35

Cyclic voltammograms of a) the $V_2O_5/CTIT$ nanocomposite and b) micro-sized V_2O_5 at a scan rate of 0.1 mV/s.

Department of Inorganic Chemistry www: fhi-berlin.mpg.de

Nano clusters

Nanocarbons represent an attractive family of catalytic materials: metal-free and as supports

Thank You

Application: Synthesis of Carbon Nanocomposite

