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Abstract

Reduced density matrix functional theory for the case of solids is presented and a new exchange

correlation functional based on a fractional power of the density matrix is introduced. We show that

compared to other functionals, this produces more accurate results for finite systems. Moreover,

it captures the correct band gap behavior for conventional semiconductors as well as strongly

correlated Mott insulators, where a gap is obtained in absence of any magnetic ordering.
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One of the most dramatic failures of the usual local density approximation (LDA) or gen-

eralized gradient type approximations to the exchange-correlation (xc) functional of density

functional theory (DFT) is the incorrect prediction of a metallic ground state for the strongly

correlated Mott insulators, of which transition metal oxides (TMOs) may be considered as

prototypical. For some TMOs (NiO and MnO) spin polarized calculations do show a very

small band gap (up to 95% smaller than experiments) but only as the result of AFM or-

dering, however all TMOs are found to be metallic in a spin unpolarized treatment. On

the other hand, it is well known experimentally that these materials are insulating in na-

ture even at elevated temperatures (much above the Néel temperature) [1]. This indicates

that the magnetic order is not the driving mechanism for the gap and is just a co-occurring

phenomenon. A real challenge for any kind of ab-initio theory then is the prediction of an

insulating state for these strongly correlated materials in the absence of magnetic order.

Until now the main focus of reduced density matrix functional theory (RDMFT) has been

on finite systems like atoms and molecules [2, 3, 4, 5, 6, 7, 8, 9, 10, 11] with various xc

functionals [3, 4, 5, 6, 7, 8, 9, 12, 13, 14, 15] which are essentially modifications of the

original Müller functional [2]. In the present work we extend RDMFT to the case of solid-

state systems and introduce a new functional which generates not only accurate gaps for

conventional semiconductors, but demonstrates insulating behavior for Mott-type insulators

in the non-magnetic phase.

Formally, the one-body reduced density matrix γ for a pure state of N electrons is defined

as (spin degrees of freedom are omitted for simplicity)

γ(r, r′) = N
∫

Ψ(r, r2, . . . , rN)Ψ∗(r′, r2, . . . , rN) d3r2 . . . d3rN . (1)

Diagonalization of this matrix produces a set of natural orbitals [16] , φi, and occupation

numbers, ni, leading to the spectral representation

γ(r, r′) =
∑

i

niφi(r)φ
∗

i (r
′) (2)

where the necessary and sufficient conditions for ensemble N -representability [17] require

0 ≤ ni ≤ 1 for all i, and
∑

i ni = N . In terms of γ, the total ground state energy of the

interacting system is [18] (atomic units are used throughout)
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EV[γ] =
−1

2

∫

lim
r→r

′

∇2
r
γ(r, r′) d3r′ +

∫

ρ(r)V (r) d3r +
1

2

∫ ρ(r)ρ(r′)

|r − r′|
d3r d3r′ + Exc[γ], (3)

where ρ(r) = γ(r, r), V is a given external potential and Exc we call the xc energy functional.

Minimizing the total energy with Exc[γ] = −1
2

∫

|γ(r, r′)|2/|r − r′| d3r d3r′ is equivalent to

the Hartree-Fock (HF) method. The HF functional satisfies the exact condition of the xc

hole integrating to minus one, however it does not satisfy the condition of convexity, which

is required by the exact functional [19]. Müller proposed [2] a simple alternative to the HF

functional in which |γ(r, r′)|2 is replaced by (γp(r, r′))∗γ1−p(r, r′), where γα indicates the

power used in the operator sense i.e.

γα(r, r′) =
∑

i

nα
i φi(r)φ

∗

i (r
′) (4)

Müller’s functional satisfies both conditions [20] for all p with 0 < p < 1. All studies of

this functional to date have set p = 1/2 (in the rest of the paper we refer to this as Müller

functional). As is well known, however, this functional severely over-estimates electron corre-

lation [5, 6, 12, 15] and we find that changing the value of p away from 1/2 only exacerbates

this problem. Therefore in the present work we instead replace |γ(r, r′)|2 by |γα(r, r′)|2,

where 1/2 ≤ α ≤ 1. This simple functional form interpolates between the uncorrelated HF

limit (α = 1) and the over-correlating Müller functional (α = 1/2). Remarkably, we find

that an intermediate value of α exists for which non-magnetic TMO’s are insulators as well

as accurate gaps found for a diverse set of semiconductors and insulators. The price to pay

for this improved treatment of correlation is that this functional form fails to satisfy the xc

hole condition exactly [21]. However, all numerical tests show that it is at least convex and

in fact, as shown in Fig. 1 for the case of finite systems (Fig. 1 is a plot for a representative

finite system, the LiH molecule), the variation of energy as a function of charge obtained

using current functional (for α = 0.65, 0.7) is much closer to the required straight-line be-

havior [19] than the Müller functional or the so called BBC functionals [5]. This type of

linear behavior has also been recently demonstrated by Cohen et al. [22] for their density

functional.

In solids because of the underlying lattice periodicity of the external potential, the one-

body reduced density matrix for crystals has the symmetry γ(r + T, r′ + T) = γ(r, r′),

where T is a primitive translation vector, and thus the natural orbitals are also Bloch
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FIG. 1: (Color online) Energy for LiH molecule as a function of fractional number of excess

electrons. Results are obtained using various approximations to the xc functional.

states. Since there are no Kohn-Sham-like equations to solve, a direct minimization over

these natural orbitals and occupation numbers is required while maintaining the ensemble

N -representability conditions. In practical terms, the natural orbitals are expanded in terms

of a set of previously converged Kohn-Sham states, and optimization of the natural orbitals

is performed by varying the expansion coefficients. We should stress that the use of Kohn-

Sham states as a basis is merely a numerical convenience and results do not depend upon

the starting point in any way. All calculations are performed using the state-of-the-art full-

potential linearized augmented plane wave (FP-LAPW) method [23], implemented within

the EXCITING code [24].

For finite systems the chemical potential is defined as µ(N) = dE(N)/dN where E(N) is

the ground-state energy of N electrons moving in a fixed external potential. For the exact

functional, µ(N) consists of horizontal lines with possible steps at integer values of N [19].

If N0 is the electron number for which the total system is charge neutral, then the step at N0

given by Eg = limη→0+ [µ(N0 +η)−µ(N0−η)] represents the band gap or twice the chemical

hardness. For periodic solids both E and N are infinite. Moreover, adding a finite charge η
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to each unit-cell while keeping the external potential fixed would lead to an infinitely charged

system which is not stable. The only accessible quantity is the energy per unit volume, Ẽ,

as a function of excess charge η per unit-cell, where Ẽv+δv(η) is the self-consistent total

energy evaluated with an external potential (V) plus the Coulomb potential of a constant

charge background (δv) which makes the total system charge neutral. Clearly, the quantity

Ẽ and the chemical potential µ̃(η) = dẼV+δv(η)/dη are conceptually quite different from the

corresponding quantities E(η) and µ(η) of a finite system because for infinite systems the

external potential is not kept fixed as η is changed. For the case of small excess charge η,

the quantity Ẽ can be written, to second order in η, as

ẼV+δv(η) = ẼV(η) +
∫

δv(r)ρ̃N±η(r)d
3r (5)

The Coulomb potential from the constant charge (η) background is given by

δv(r) = η
∫

1

|r − r′|
d3r′ (6)

and ρ̃M(r), the self-consistent M-electron density evaluated with lattice potential plus neu-

tralizing background potential, can be expressed as

ρ̃N±η(r) = ρ̃N (r) ± ηn±(r) (7)

with
∫

n±(r)d3r = 1. Combining Eqs.(5), (6) and (7) we arrive at

ẼV+δv(η) = ẼV(η) ± η
∫

ρ̃N (r) ± ηn±(r)

|r − r′|
d3rd3r′. (8)

Derivative of Eq.(8) with respect to η yields

µ̃(η) = µ(η = 0−) +











clη for η < 0

Eg + crη for η > 0
(9)

with cl = 2
∫

n−(r)/|r− r′|d3rd3r′, cr = 2
∫

n+(r)/|r− r′|d3rd3r′ and µ = dẼV/dη. From Eq.

(9) we can see that introduction of the background charge has no effect on the size of the

band gap. Another aspect that is clear from this equation is that unlike for the case of finite

systems µ̃ does not consist of horizontal lines on either side of η = 0. Although Eq. (9) is

only valid for small values of η, in practice we find a linear behavior for µ̃(η) even for larger

values of η, a fact which can be attributed to the metallic nature that the system acquires

on addition or removal of charge.
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FIG. 2: (Color online) Chemical potential (in Ha) versus the excess charge per unit-cell for (a) Cu,

(b) Si and (2) NiO. The results are obtained using the current functional with α = 0.65.

In Fig. 2 we show the plot of the chemical potential versus excess electronic charge for

a prototype metal (Cu), semi-conductor (Si) and Mott insulator (NiO) obtained using the

current functional with this value of α = 0.65. For Cu one observes a nearly linear behavior

with a small negative curvature. In contrast, Si and NiO show a qualitatively different

behavior in which the curvature of the chemical potential changes sign. We interpret this

as the appearance of a smoothed discontinuity with a linear behavior to the left and to the

right. This is strikingly different from that of Cu, which remains metallic. This smoothing

of discontinuities, a consequence of approximating the xc functional, has already been noted

in work on finite systems [11]. Nevertheless, owing to the near linearity of the chemical

potential on either side of zero excess charge (see Eq. (9)), the fundamental gap may be
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estimated [11] by construction of two tangents as shown in Fig. 2. This allows a rigorous

test of the functional by comparison with experiment of the fundamental gap of a wide class

of materials; semiconductors, insulators, and strongly correlated systems. We emphasize

that for the Müller and the BBC functionals, without self-interaction correction, all these

systems turn out to be metallic.
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FIG. 3: (Color online) Percentage deviation (δ) of calculated band gap from experiment. DFT

results (circles) are with the LDA. RDMFT values are obtained using the current functional with

α = 0.65, 0.7. The GW data (blue vertical lines) is taken from Refs. [25], a line is drawn between

the smallest and the largest value.

We first consider semiconductors and ionic insulators, for which results are shown in

Fig. 3, again using the current functional with α = 0.65. The agreement between the

calculated gap and experiments is good, with an average deviation of the calculated gap

9.5%, comparable to the GW method where, if we choose the best (worst) result from the

literature for each material we find an average deviation of 3% (9%). It must be stressed that

this good agreement of band gaps is found for a wide range of semiconductors/insulators,

with gaps ranging from 1eV (Ge) to 14.2 eV (LiF) and the character of the material changing

from predominantly covalent to ionic. We find that on increasing the value of α from 0.65
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to 0.7 the agreement with experiment improves somewhat, with an average deviation of now

7.5%. In most cases gaps are overestimated with α = 0.7 and underestimated with α = 0.65.

Reducing the value of α below 0.65 has deleterious consequences; already for α = 0.6 several

of the semiconductors are metallic. Therefore, there exists a small range of α (0.65-0.7) for

which the calculated gaps agree well with experiment.

The TMOs have fundamental gaps ranging from 4.2 eV (NiO) to 2.4 eV (CoO), however

the origin of the gap is profoundly different from conventional semiconductors/insulators.

Here the gap is opened by strong Mott-Hubbard correlations and, towards the end of the

3d series, charge transfer effects also contribute [1]. Gap formation by strong correlations

is largely unaffected by the magnetic state, and so to focus exclusively on Mott-Hubbard

physics we calculate these materials in the non-magnetic state. As can be seen in Fig. 3

the current functional (for both α = 0.65, 0.7) finds TMOs to be insulators. In this case the

sensitivity of the gap to α is significantly greater, however, as before, the best value of α is

still in the range 0.65 − 0.7.

The traditional quasi particle technique used to treat TMOs, the GW method, has only

been applied to NiO and MnO in presence of AFM ordering. The reason for this lies in

the fact that all DFT calculations to-date lead to metallic FeO and CoO, and for the GW

method to produce a gap starting from this metallic ground state would require a diverging

self-energy. In contrast, RDMFT is a fully ab-initio non-perturbative theory which with

the current functional and a fixed value of α, seems to capture not only the physics of

conventional semiconductors/insulators, but also that of strongly correlated materials. What

still remains is the method for choosing α. It is clear from the present work that the optimal

value of α lies in a small range (0.65−0.70). In order to refine α any further one could do one

of two things: make α a functional of the density matrix and determine this functional from

exact properties of Exc[γ] or fit α to best reproduce results for a wide range of materials.

It is clear that the current functional improves the value of the band gaps, however it

is also important that it performs well for properties already adequately described by DFT

within LDA. An example of such a property is the equilibrium lattice constant. In Table I are

presented the values for this for Si, cubic-BN and diamond. The results for the equilibrium

lattice parameter obtained with RDMFT, using both Müller and current functional (α =

0.7), are as good as the values obtained using DFT. For the current functional with α = 0.65

the average percentage deviation of calculated results from experiments is 1.2%.
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Solid Expt. DFT-LDA Müller current

Diamond 6.74 6.68 6.78 6.75

Si 10.26 10.188 10.49 10.55

BN 6.83 6.758 6.86 6.82

1.03 1.07 1

TABLE I: Equilibrium lattice parameter (in a.u.). The DFT values are obtained using the LDA.

RDMFT results are obtained with the Müller and current functional with α = 0.7. In the last row

are given the average percentage deviation of calculated results from experiments.

In conclusion an extension of RDMFT to solids is presented with introduction of a new

functional. The values of the fundamental gap for various semiconductors and ionic insula-

tors are dramatically improved from DFT-LDA values and are in as good agreement with

experiment as GW values. Furthermore, strong Mott-Hubbard correlation is captured in

this approach, as calculations of the non-magnetic TMOs show. The Müller functional ap-

pears to be unsuitable for use with solids, as it fails to produce a gap even for conventional

semiconductors.

We have shown that RDMFT is a viable theory for the study of solids where many body

effects are important, and where DFT based theories have notably failed. This opens up

many future possibilities, such as the study of High TC superconductors in their under-

doped Mott insulating phase. It should also, hopefully, stimulate efforts to develop the

theory formally, including a temperature dependent extension and a method to produce

quasi particle spectra.
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