Robert Schlögl Fritz-Haber-Institut der MPG

VANADIUM OXIDES IN SELECTIVE OXIDATION CATALYSIS: DYNAMICS

FUNDAMENTALS

The function of a catalyst: The single crystal approach

Bulk lattice oxygen vs surface lattice oxygen

Di-oxygen as oxidant

- Atomic chemisorbed oxygen (created typically in UHV) is amphoteric in redox properties: at "virtual pressure" → sub-surface
- Sub-surface oxygen is not reactive but
 - Polarizes the surface for adsorption
 - Restructures the surface by incorporation (autocatalytic)
 - Segregates to the surface as O nucleo
 - Polarizes atomic oxygen into O electro
- Electrophilic oxygen
 - Oxidizes functional substrates (CO, olefines)
 - Creates all oxygenate organic molecules
- Nucleophilic oxygen
 - Activates C-H bonds into functional substrates
 - Creates basicity and binds water (OH)

With metals

7

Catalyst material science

FHI

Catalyst dynamics

Consequences

- Active catalysts cannot be prepared: precursors activate in chemical potential of reactants.
- {Structure} of the precursor controls composition and structure of the active phase.
- Analysis of fresh precursors and ex situ allow limited conclusions about active state.
- The same precursor will catalyze different processes under different conditions: screen and optimize operation conditions as much as precursor compositions.

CASE STUDY: V_XO_Y IN VPO FOR BUTANE OXIDATION

Butane oxidation: the challenge

J.-C. Volta, (2000)

VPP structure: crystal?

Order and activity

VPO The mystery of a reaction

Bulk structural dynamics: The V⁵⁺ component

In-situ XPS of VPO in Riser Mode

17

How much of a catalyst is "active" in steady state ?

Reversible modifications of a fraction of the surface

18

Electronic Structure: EELS vs NEXAFS Spatial vs surface sensitivity

Dynamics of the active phase

MODEL CATALYSTS

Surface organometallic synthesis: V-SBA 15 as active model

Support effects: "silica" How sensitive are detection methods?

Two impregantion methods on powder and mesoporous silica

Department of Inorganic Chemistry www: fhi-berlin.mpg.de

The activated state

Freund et al., Surf. Sci. 539, 2003

XPS sees a local coordination similar to pyramidal but with a reduced electron density than in V_2O_5 giving rise to a relaxation shift ("naked V atom")

www: fhi-berlin.mpg.de

0.8V/SBA 15: propane adsorption

Per surface area, the V-containing catalyst adsorbed more propane. $\rightarrow \Delta n_{ads} \sim 0.5 \ \mu mol/m^2$ Si-OH + Si-O-V-OH / V-O-V-OH \rightarrow not detectable in the IR spectrum

10¹⁰ sites per mm²

Reaction pathway

Department of Inorganic Chemistry www: fhi-berlin.mpg.de

Reaction pathway

V-SBA15: a functional model

CONSEQUENCES OF A CASE STUDY: V_XO_Y AS CATALYST

Department of Inorganic Chemistry www: fhi-berlin.mpg.de

What have we learnt

Termination

Analytical challenge of identification: only in situ, sub-monolayer

Department of Inorganic Chemistry www: fhi-berlin.mpg.de

Compositional dynamics

Catalyst dynamics

FHI

Active sites in a high performance catalyst

- An active heterogeneous catalyst contains adaptive sites for reaction.
- They adapt their structure according to the local chemical potential and guarantee selective operation on progressively more reactive adsorbates.
- The complex structure of the precursors is required to fix the chemical potential of the active phase in the reaction environment.

Coupling of transformation and material

Department of Inorganic Chemistry www: fhi-berlin.mpg.de

Dynamics: Formation and regeneration of adaptive sites

M1 phase in C_3H_8 selective oxidation

Activity scales not with SA (001); nature of active sites?

Department of Inorganic Chemistry www: fhi-berlin.mpg.de

"Atomic oxygen" on silver

Theory of Ag-O interaction

J. Schnadt, 1 A. Michaelides, 2 J. Knudsen, 1 R. T. Vang, 1 K. Reuter, 2 E. Ltgsgaard, 1 M. Scheffler, 2 and F. Besenbacher 1 PRL 2006 Department of Inorganic Chemistry www: fhi-berlin.mpg.de

Defects: Oxo-philicity

Mo-V compounds for C3,C4 oxidation

