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We explore the consequences of a rotation between graphene layers for the electronic spectrum. We
derive the commensuration condition in real space and show that the interlayer electronic coupling is
governed by an equivalent commensuration in reciprocal space. The larger the commensuration cell, the
weaker the interlayer coupling, with exact decoupling for incommensurate rotations and in the �! 0
limit. Furthermore, from first-principles calculations we determine that even for the smallest possible
commensuration cell the decoupling is effectively perfect, and thus graphene layers will be seen to
decouple for all rotation angles.

DOI: 10.1103/PhysRevLett.101.056803 PACS numbers: 73.21.Ac, 81.05.Uw

Uniquely in condensed matter physics, graphene, a
two-dimensional crystal of carbon, offers a realization of
the massless Dirac equation. This situation arises from the
symmetry of the graphene honeycomb lattice that, for low
energy excitations, results in a linear energy-momentum
dispersion and an internal degree of freedom similar to that
of chirality, features which mimic those of massless Dirac
fermions. From this follows a wealth of novel electronic
properties including an anomalous phase in the integer
quantum Hall effect,

����
B
p

dependence of Landau level
energies, and suppressed backscattering leading to quasi-
ballistic transport [1,2].

Rich and novel physics also arises in stacks of two or
more atomic layers of graphene, so-called few-layer gra-
phene (FLG) systems. In particular, the graphene bilayer
has received a great deal of attention [3]. Here the elec-
tronic excitations are, as in the case of single-layer gra-
phene (SLG), chiral, but the electronic coupling of the
layers results in a quadratic energy-momentum dispersion;
they behave as massive Dirac quasiparticles. This system is
particularly interesting for possible future applications as a
controllable gap may be opened with an external electric
field, as recently realized for the case of exfoliated gra-
phene on a SiO2 substrate [4].

The structural degrees of freedom of FLG are the trans-
lations and rotations of the constituent layers. While the
electronic consequences of the former degree of freedom
have been explored [5,6], only very recently has the rota-
tional degree of freedom received attention. This has been
stimulated by the observation of Hass et al. [7] that gra-
phene grown epitaxially on SiC �000�1� contains a high
density of twist boundary faults, i.e., layers with a relative
rotation. The same authors demonstrated that a bilayer
structure with the relative rotation frequently observed in
experiment (� � 30� � 2:20�) manifests an apparent elec-
tronic decoupling. Namely, ab initio calculations showed
that both layers displayed the Dirac cone and Fermi veloc-
ity characteristic of SLG [7]. This remarkable result has
inspired a number of subsequent theoretical and experi-

mental works [8–10]. In Ref. [8], bilayer and trilayer twist
boundary systems were investigated by ab initio calcula-
tions, and in both cases layers with a relative rotation were
found to display apparent SLG behavior. On the other
hand, Ref. [9] considered the �! 0 limit of the rotated
bilayer in a continuum approximation, with the result that
the layers exactly decoupled but with the Fermi velocity of
the Dirac cone suppressed as compared to SLG. This latter
result is in striking contrast to ab initio calculations [7,8]
for finite rotation angles where a Fermi velocity exactly
equal to that of SLG is found.

Since to date only specific rotation angles or limits have
been investigated, an outstanding and fundamental ques-
tion is the identity of the full set of rotation angles that
cause decoupling. Of equal interest is the basic physical
mechanism underlying this decoupling which, at this stage,
remains unclear. In this work we demonstrate that all finite
rotation angles that give rise to commensurate structures
lead to approximate, although for nearly all cases effec-
tively perfect, decoupling with exact decoupling only in
the limit �! 0 or for incommensurate rotations. The rea-
son for this remarkable behavior we identify as a destruc-
tive interference between the layers, which may be ex-
pressed by a commensuration condition in reciprocal
space.

Before investigating the rotated bilayer on the electronic
level, it is essential to understand the crystallographic
problem posed; i.e., to find the set of rotation angles which
give rise to commensurate crystal structures. It is easy to
see that, while the resulting structure will depend on the
initial stacking and choice of rotation axis, the existence of
a commensuration depends only on the mutual orientation
of the primitive lattice vectors of each layer. The problem
is thus reduced to finding rotations such that applied to the
parent triangular lattice leave a subset of atoms coincident
with the original unrotated lattice. This condition may be
expressed as a2 � Ra1, with a1;2 direct-lattice vectors and
R the rotation operator. In natural lattice coordinates, this
condition reads
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where T is the operator that transforms between the trian-
gular lattice and Cartesian coordinate systems. Both n and
m, being expressed in the lattice coordinate system, are
integer-valued, and hence Eq. (1) is a Diophantine system
which, with a standard choice of basis vectors, may be
written as
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A necessary condition for an integer solution of this equa-
tion is that the matrix be rational-valued which implies that
cos� � i2=i3 and sin�=

���
3
p
� i1=i3 and so 3i21 � i

2
2 � i23,

where fi1; i2; i3g 2 Z. Solution of this Diophantine equa-
tion yields

 i1 � p2 � 2pq� 3q2; (3)

 i2 � ��p
2 � 6pq� 3q2�; (4)

 i3 � 2�p2 � 3q2�; (5)

where p; q 2 Z. Substitution back into Eq. (2) then yields

 i3m1 � �i2 � i1�n1 � �2i1�n2;

i3m2 � ��2i1�n1 � �i2 � i1�n2;
(6)

and so the problem is reduced to that of simultaneous
Diophantine equations for the unknown integers n1, n2,
m1, and m2.

One may show that for any �p; q� pair these equations
have infinitely many solutions which correspond to two
superlattices of sites related by Eq. (1). Thus every com-
mensuration of two graphene layers may be labeled by a
�p; q� integer pair. What remains is to determine, from
these superlattices, the primitive commensuration cells.
Defining � � 3= gcd�p; 3�, we find for � � 1
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�
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and for � � 3
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where � � gcd�p� 3q; p� 3q�. [Examples of such com-
mensuration cells are shown in the lower panel inset in
Fig. 2. The left inset corresponds to �p; q� � �1; 3�, with
�p; q� � �3; 5� shown on the right.] The commensurations
found in Ref. [9] are a special case of those presented here;
they may be recovered by the choice �p; q� � �1; 2i� 1�

for which always � � 2 and � � 3. From these primitive
vectors may then be found a more convenient definition of
the rotation angle

 � � cos�1

�
3q2 � p2

3q2 � p2

�
(9)

(it is defined such that for p � q we have 0< �<�=3),
and the number of primitive vectors from each layer in the
commensuration cell

 N �
3

�
1

�2 �3q
2 � p2�; (10)

with the number of carbon atoms in the cell equal to 4N.
This factor of 4 is simply due to the fact there are two
layers in the cell and two basis atoms in the honeycomb
structure. The rapidly increasing sequence described by
Eq. (10) as �! 0 [4N � �sin2�=2��1 is the lower bound]
makes ab initio calculations for the full range of angles
rather prohibitive. Fortunately, as we shall now show, a
general statement on the angular dependence of the elec-
tronic coupling is possible.

We consider two graphene layers with the second rotated
relative to the first. Because of the different translational
symmetries of each layer, it is natural to decompose the
bilayer potential as V�1� � V�2� � �V. The potentials V�1;2�

have single-layer translation symmetry; TaV
�1� � V�1� and

TRaV�2� � V�2�, while �V has only the translational sym-
metry of the bilayer as a whole. Since the layers are weakly
interacting, we shall assume that �V may be neglected;
possible consequences of this potential will be investigated
in numerical simulations.

A complete basis for the bilayer is that formed from the
eigenkets of the single-layer problems, i.e., from fj��n�ik ig
with H�n�j��n�ik i � �

p2

2m� V�n��j��n�ik i � ��n�ik j�
�n�
ik i. Here n is

the layer index, k a k-vector index, and i a state index. The
Hamiltonian of the bilayer is diagonal in the k index only
for k vectors in the corresponding Brillouin zone (BZ), and
so to use this fact the basis elements must be folded back to
this superlattice BZ. This procedure amounts to renumber-
ing the basis elements between the i and k indices.
Expressing the Hamiltonian of the rotated bilayer H �
p2

2m� V�1� � V�2� in this basis as

 	H�k�
ij �
��1�ik �ij 0

0 ��2�ik �ij

 !

�
h��1�ik jV

�2�j��1�ik i h��1�ik jHj�
�2�
jk i

h��2�jk jHj�
�1�
ik i h��2�jk jV

�1�j��2�jk i

0
@

1
A;
(11)

we see that the term causing interlayer hybridization in-
volves always an overlap between basis functions or op-
erators of different translational symmetry. Using the
plane wave expansions hrjV�2�jr0i �

P
RGV

�2�
RGe

iRG�r��r�
r0� and hrj��1�jk i� �1=

����
V
p
�
P

Gcjk�Gei�k�G��r one finds that
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overlap integrals of the type h��1�ik jV
�2�j��1�jk i have nonzero

terms in such an expansion only where �k1 � k2� �G1 �
G2 �RG3 � 0. Similar results are found for the other
terms; e.g., for the term h��1�ik jHj�

�2�
jk i, we find �k1 �

k2� �G1 �RG2 � 0, �k1 � k2� �G1 �G2 �RG3 �
0, and �k1 � k2� �G1 �R�G2 �G3� � 0 for, respec-
tively, the kinetic energy and V�1�and V�2� operators (where
k1 and k2 are k vectors of plane waves before backfolding
to the commensuration Brillouin zone).

All of these are commensuration conditions for the
reciprocal lattices of the two layers which, since the recip-
rocal lattice is also hexagonal, correspond exactly to the
conditions for determining crystal commensuration in real
space. A fraction 1=N2 of the terms in the expansions of
all overlap integrals will therefore be identically zero.
However, due to the backfolding procedure of the basis
functions, the size of the Hamiltonian matrix increases also
by N2, and so this reduction of the number of terms does
not prove the vanishing of interlayer hybridization. The
crucial point is that the expansion coefficients approach
zero as jGj ! 1, and so the commensuration conditions
ensure coupling only through G vectors of very low
weight, and therefore the interlayer hybridization becomes
weaker asN increases. Essentially, the rotation of graphene
layers causes a destructive interference which reduces
interlayer hybridization. On the other hand, for the unro-
tated AB stacked bilayer, R � 1 and the interaction is
through all G vectors, sufficient to cause a splitting of

0:8 eV between bonding and antibonding states at the
K point and the destruction of the linear spectrum. This
analysis therefore predicts that there may be some resid-
ual interlayer hybridization for small N, and hence split-
ting of bands at the K point and nonlinear behavior, but as
N ! 1 this will vanish. To test this prediction, and to
explore the possible role of the neglected �V term, we
now turn to first-principles simulations of the rotated gra-
phene bilayer.

Our calculations have been performed using the local
density approximation (LDA) to density functional theory,
with the Kohn-Sham equations solved within the projected
augmented wave method [11], as implemented in the elec-
tronic structure program VASP [12,13]. We have cross-
checked several results with the full potential all electron
code EXCITING [14]. It is well known that the LDA fails to
describe dispersion forces and that these are important for
graphite and, presumably, also for few-layer graphene
systems. On the other hand, numerous studies have con-
firmed that the LDA does provide a good description of the
band structure of graphite and graphene systems [7,15,16],
and so it is sufficient for our purposes here. Character-
ization of a general bilayer requires that the initial stacking,
choice of rotation axis, and rotation angle be specified. For
conciseness of expression, we adopt a nomenclature
whereby we first specify the initial stacking (AA or AB),
then the choice of rotation axis—assumed a high symme-
try point—by the number of C atoms it intersects (�0a,

� 1a, �2a), and finally the rotation angle, e.g., �AB; 2a�
� � 38:21�.

In Fig. 1 is displayed the dependence of the K point
splitting on N for commensuration cells of the �AB; 2a�
type. Although there is a splitting of 
7 meV for the
lowest commensuration cell (N � 7), this rapidly de-
creases as N increases, a result we found to be robust
against all numerical parameters, e.g., the vacuum separa-
tion of the bilayer slabs. The graphene bilayer therefore
effectively decouples for all rotation angles.

As may be seen in the upper panel in Fig. 2, the band
structure of the graphene bilayer [the case �AB; 2a� N � 7
is shown] is not identical to that of SLG away from the K
point. To determine the origin of this, we have calculated
the N � 7 ABA trilayer with the rotation applied to the
middle layer. In this case (lower panel in Fig. 2) there is
always one band which falls nearly exactly on that of
single-layer graphene. The main difference between these
bilayer and trilayer systems is that in the former the gra-
phene planes are in an unsymmetrical environment, quite
different from that of single-layer graphene, while in the
latter this symmetry is restored for the middle plane. The
differences between the bilayer and single-layer band
structure are thus not due to a covalent interaction between
the layers, which would not be affected by global symme-
try, but instead due to electrostatic effects arising from the
lower symmetry of the bilayer.

We now consider the impact of the crystal structure of
the rotated bilayer. Shown in the upper panel in Fig. 2 are,
in fact, in addition to the band structures of the �AB; 2a�
� � 21:79� bilayer (crystal structure shown in top left
inset) and �AB; 2a� � � 38:21� bilayer (top right inset),
seven bilayers formed by taking the �AA; 0a� � � 38:21�

cell and applying a translation �a � ��a1 � a2� to one
layer (lower inset for � � 0:1). Remarkably, the band
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FIG. 1 (color online). The inset graph displays band structure
near the Dirac point for the �AB; 2a� � � 30� � 8:21� commen-
suration cells (N � 7). Clearly, near the Dirac point the � and
�� bands are not linear. The main graph details the rapid decay,
as N increases, of the energy window where such deviations
from linearity occur.
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structure is almost independent of these changes in crystal
structure, the largest difference being found at the M point.
This indicates that the �V contribution to the bilayer
potential, which would depend on details of the crystal
structure, is not important. Complementary to this, we find
that the sliding energy of the rotated bilayer is less than
10�6 eV, a result already noted in Ref. [15].

We now turn to the question of the Fermi velocity vF at
the K point of the rotated bilayer. It is clear from Fig. 2 that
our calculations show vF of the bilayer to be equal to
that of SLG, a feature that we find for all rotation angles
we have studied (� � 30� � 2:20�, 30� � 8:21�, 30� �
12:10�, and 30� � 20:57�), in agreement with all other
ab initio studies [7,8]. This, however, is in contrast to the
finding of Ref. [9], where, by deploying a continuum
approximation, the small angle limit was investigated and
vF found to be suppressed. Experimentally, the evidence
for this seems uncertain as a suppression of vF is found for
graphene stacks grown on both the C and Si faces of SiC,
whereas twist boundary faults appear only during growth

on the C face [17]. This disagreement between the contin-
uum approximation for the (singular) �! 0 limit and real
lattice calculations requires further investigation but is
beyond the scope of the present work.

Finally, we note that the rotation of one layer in an
otherwise ordered graphene stack is a trivial extension of
the analysis above for the rotated bilayer. The meaning of
the potential operators V�1� and V�2� simply becomes that
of the graphene stack and rotated layer, respectively, and
the remainder of the analysis follows as before. The well-
known rotation of graphite surface layers leading to móire
patterns is a case covered by this extension, as well as the
trilayer systems studied here and in Ref. [8].

While there are currently only two experimental obser-
vations linking twist boundary faults with SLG behavior
[7,10], we hope the general nature of the decoupling pre-
sented stimulates the search for new situations in which
effective SLG may be fabricated.
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FIG. 2 (color online). (a) Band structure of several rotated
bilayer structures for � � 30� � 8:21� (corresponding to N �
7); the inset shows resulting atomic structures where shading
distinguishes atoms belonging to different layers. (b) Band
structure of the single-layer graphene and the ABA trilayer
with the middle layer rotated by � � 21:79�. The inset displays
close-ups of structures in (a) with commensuration primitive
vectors [Eqs. (7) and (8)] and rotation angle [Eq. (9)] shown.
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