M. Armbrüster, K. Kovnir, R. Giedigkeit, J. Grin, MPI CPFS

Robert Schlögl Fritz-Haber-Institut der MPG

Pd and its Intermetallics in Heterogeneous Catalysis

FUNDAMENTALS

4

Department of Inorganic Chemistry www: fhi-berlin.mpg.de

The function of a catalyst: The single crystal approach

5

Department of Inorganic Chemistry www: fhi-berlin.mpg.de

Hydrogenation Catalysis

- The most active catalyst for hydrogenation reactions is Pd metal as nano-particles on supports.
- Selectivity controlled by additives (poorely reproducible).
- Concept: Size of active site controls selectivity.
- Concept: sub-surface "hydride" is relevant or detrimental.

Abundance of "active hydrogen"

Projected DOS (arbitrary units)

Competition between hybridisation and Pauli repulsion determines bond strength; any effect that shift metal surface d-band has great effects

7

Reaction pathway: role of H_{sub}

Active site: 6 Pd atoms: Rate controlled by equal chemical potentials of [H] and [substrate].

Sub-surface hydrogen strongly increases [H] above surface sticking: + activity

- selectivity.

Metal (?) Hydrogenation Catalysts

Pd in selective hydrogenation

10

A consecutive reaction

Deep hydrogenation before selective hydrogenation

0.03 mbar pentyne 0.85 mbar H2

11

In-situ XPS: Pd 3d (720 eV): sub-surface C

In-situ XPS: Pd 3d depth profiling

unambiguous localisation of carboninduced component in the surface-near region

Sub-surface H vs. sub-surface C

The Model

Pressure gap: reaction

Pressure gap: origin

Real structue: the role of nanostructuring

Somorjai 1994

Hydrogen dissolution under carbon!

18

"Structure sensitivity"

FIRST SUMMARY

Catalyst dynamics

Comparison to model studies: role of sub-surface hydrogen

Alloys and Intermetallics As Catalysts

Department of Inorganic Chemistry www: fhi-berlin.mpg.de

Alloy Catalysis

Opportunities

- Alloys are chemically unstable and segregate: rapid loss of site-isolating effect.
- Alloys exhibit only weak modifications of electronic structure: strong influence of local geometry, (ensemble effect).
- Concept: use intermetallics:
 - Covalent metal-metal interaction: High structural stability
 - No sub-surface chemistry: Design of active site.

Meet the challenge: Intermetallics of Pd

www: fhi-berlin.mpg.de

26

PdGa: a designer system

A stable sub-surface regime

Site isolation: experimental

SECOND SUMMARY

Materials

- Intermetallics provide a novel and robust opportunity for selective catalysis:
- Decoupling of surface catalysis and subsurface reactant storage.
- Strong modification of electronic structure: "design".
- Chemically robust surface termination: site isolation.

Outlook

- Combination of intermetallics and nanostructuring should allow control over catalytic material properties: no more material dynamics.
- Enhanced chance to apply theory as predictive tool.
- Synthesis of system with yet unknown catalytic properties ("pseudo Pt") for largest challenges in catalysis: energy conversion.

New opportunity through interdisciplinary collaboration: Metal physics meets catalysis

Thank You

Metastable sub-surface species

At low potential: metal plus dissolved species ("dirt")

At slightly elevated potential: "trilayer" (theory)

At potentials bejond the "pressure gap": sub-oxide, sub-surface oxide, TSO (HP-XPS)

At high potential: oxide; when defective: nucleo and electrophilic

Structural stability: No bulk reaction

PdGa und Pd_3Ga_7 in 50% H_2 + 50% He No hydrides, no segregation, no phase transformations.

The catalysts

Active sites

Pd metal

- supported on oxides
- activity
- × selectivity
- × long-time stability

- Pd-Ga intermetallics:
- PdGa and Pd₃Ga₇
- activity
- ✓ selectivity
- ✓ long-time stability

Isolated Pd atoms

Department of Inorganic Chemistry www: fhi-berlin.mpg.de

Consequences

- Well-ordered extended (model) materials slow down activation and stay often non-reactive (gaps);
- Except for kinetically non-demanding reactions (single step processes);
- Where they also reach only moderate performance.
- High performance catalysis needs addition of complexity:
 - Nanostructuring (for synthesis)
 - In-situ methods (for functional analysis and optimization)

A stable sub-surface regime

The reactions

Selective hydrogenation of C-C triple bonds in medium-sized molecules to olefins: Key step in vitamin and pharmaceutical synthesis

> Extremely critical reaction conditions Severe stability problems

Selective hydrogenation of acetylene in ethylene as pre-requisite for effective polyethylene synthesis

Flexibility of concept?

PdSn₂ Sn Pd

Sample	Etching solution	Conversion after 1 hour	Conversion after 3 hour
# 2039	100mg of sample, no etching	4 %	_
# 2040	saturated EDTA	15%	10%
# 2041	EDTA/NH ₃ , pH=10.3	21%	15%
# 2042	EDTA/NH ₃ /H ₂ O ₂ , pH=10.5	> 10%	_
# 2049	EDTA/NaOH, pH=12.8	25%	12%
# 2051	EDTA/NaOH, pH=13.3	43%	20%
# 2015	EDTA/NaOH, pH=13.8	37%	5%

Good active sites but solid state dynamics?

85 mg after washing with EDTA at pH 13

Proof of concept: new hydrogenation systems

no modification of local

EXAFS analysis Pd_3Ga_7 in 10% C_2H_2 + 20% H_2

Active sites in a high performance catalyst

- An active heterogeneous catalyst contains adaptive sites for reaction.
- They adapt their structure according to the local chemical potential and guarantee selective operation on progressively more reactive adsorbates.
- The complex structure of the precursors is required to fix the chemical potential of the active phase in the reaction environment.

Decouple oxygen reagent from cat structure Metal-free catalysis for butane ODH

 $\Delta E_{\rm ODH}$ = -0.98 eV/molecule

Coupling of transformation and material

Catalyst dynamics

ment of Inorganic Chemistry www: fhi-berlin.mpg.de

Reaction pathway: role of H_{sub}

