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Proteins acting as molecular machines can undergo cyclic internal conformational motions that are coupled
to ligand binding and dissociation events. In contrast to their macroscopic counterparts, nanomachines operate
in a highly fluctuating environment, which influences their operation. To bridge the gap between detailed
microscopic and simple phenomenological descriptions, a mesoscale approach, which combines an elastic
network model of a machine with a particle-based mesoscale description of the solvent, is employed. The time
scale of the cyclic hinge motions of the machine prototype is strongly affected by hydrodynamical coupling to
the solvent.
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Molecular machines, acting as motors, enzymes, or ion
pumps, are involved in the function of biological cells �1,2�
and are fundamental elements in applications in soft matter
nanotechnology �3�. Their operation relies on conformational
motions in proteins, with time scales typically ranging be-
tween milliseconds and seconds. Although structures of ma-
chine proteins are known, full molecular dynamics simula-
tions of such slow internal motions are currently not feasible.
Therefore, theoretical analysis of stochastic dynamics of mo-
lecular machines is often based on simple models that de-
scribe these complex biomolecules as single-coordinate
ratchets or oscillators �4,5�. This approach has been success-
ful in clarifying some principal aspects of machine operation
�6�, but the connection between simple phenomenological
models and actual protein machines is often not evident. The
gap between realistic microscopic models and simplified
phenomenological approaches is an obstacle to the theoreti-
cal understanding of machine operation.

Mesoscale models, which can fill this gap, are already
broadly used to describe polymer dynamics and protein fold-
ing �7�. In elastic network models, a protein is represented by
a set of identical beads �coarse grained atomic groups� con-
nected by identical elastic bonds; the pattern of connections
is determined by the known equilibrium conformation of a
given protein �8�. Remarkably, elastic network models can
reproduce large-amplitude slow conformational motions in
many proteins �9�, including some aspects of nonlinear con-
formational relaxation �10,11�.

Protein machines operate in molecular environments and
solvent hydrodynamical effects play an important role in
their dynamics. Solvent particles can be included in micro-
scopic molecular dynamics simulations, but this is computa-
tionally challenging. In contrast, continuum hydrodynamical
models cannot account for either molecular fluctuations or
specific interactions. Coarse grained molecular dynamics

schemes for the solvent can be used to incorporate both in-
teractions and fluctuations �12�.

In this paper, we show that mesoscale models, combining
coarse grained descriptions for molecular machines and their
solvent environment, can provide an efficient intermediate-
level approach, bridging the gap between microscopic and
macroscopic schemes. As an example, we consider an elastic
network prototype of a molecular machine �11� and take the
solvent into account by using multiparticle collision �MPC�
dynamics �13�. Our numerical simulations demonstrate that,
within this framework, machine dynamics can be followed
for many operation cycles, so a statistical analysis is pos-
sible.

The elastic network machine prototype consists of two
relatively rigid domains connected by a more flexible joint.
This structure mimics that of naturally occurring proteins
characterized by large scale hinge motions �14�. It was de-
signed by an optimization procedure to have a relaxation
spectrum that is qualitatively similar to that of real hinged
proteins, with one small relaxation eigenvalue, related to the
hinge motion, which is well separated from other eigenval-
ues �11�. The special property of the network is that it has a
unique attractive conformational relaxation trajectory leading
to the equilibrium state. Starting even with large initial de-
formations, the network rapidly approaches this trajectory
and a subsequent slow relation proceeds along it. The poten-
tial energy of the network has the form

Vn�R� = �
v=1

nL 1

2
k�Rv − Rv

o�2.

The sum is over all bonds in the network, k is the common
force constant, Rv is the distance between beads in bond v,
Rv

o is the equilibrium bond distance of this bond, and nL is
the number of links. Here R is the set of all coordinates of
the Np=64 beads in the network. The specification of the
network can be found in �11�.

The network undergoes cyclic conformational changes
between open and closed forms, which are coupled to ligand
binding and product release. The ligand is attached by con-
necting it to three special ligand binding beads in an active
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site of the hinge region of the network. The active site is
defined by the center of mass of the three beads, and the
connections are made through stretched bonds. When the
network is in its open state and each of the three bond
lengths in the active site lie within �b of their open state
equilibrium average values, then a ligand may bind with
probability pb. The ligand is chosen to be the nearest solvent
molecule, modeling the situation where the ligand concentra-
tion is high and ligand binding is not diffusion limited.
Ligand-network bonds are formed upon ligand attachment.
The network then undergoes a conformational change in or-
der to relieve the resulting tension, bending by approxi-
mately 90°. During this transition, the ligand is converted to
a product particle that is ready to leave the network. Release
of the product occurs from the closed state and, again, if the
three bonds in the active site lie within �d of their new
equilibrium values, release occurs with probability pd. When
the product is released the bonds holding it in place are sev-
ered; the network relaxes back to its open state. We consider
tight �b=d=0.04 and pb= pd=0.0015� and loose �b=d=0.05
and pb= pd=0.0005� binding-detachment parameters. The
cycle is shown in Fig. 1 and a video of the motion is avail-
able in �15�.

These conformational changes take place in a dense fluc-
tuating molecular environment described by MPC dynamics.
In MPC dynamics, Ns solvent particles, representing coarse
grained real molecules, free stream and undergo effective
collisions at discrete time intervals �, accounting for the ef-
fects of many real collisions during this time interval. The
collisions are carried out by dividing the system into a grid
of cells V� and assigning rotation operators �̂�, chosen from
some set of rotation operators, to each cell of the system at
the time of collision. Particles within each cell “collide” with
each other and the postcollision velocity of particle i in a cell
V� is given by vi�=V�+ �̂��vi−V��, where V� is the center of
mass velocity of particles in the cell. MPC dynamics satisfies

mass, momentum, and energy conservation laws. The dy-
namics is microcanonical and preserves phase-space volumes
�13�.

The solvent molecules interact with the network through
intermolecular forces, which may be attractive or repulsive,
mimicking hydrophilic or hydrophobic interactions. We use
repulsive Lennard-Jones �LJ� network-solvent interactions:
V�r�=4�(�� /r�12− �� /r�6+1 /4) for r�21/6 and zero other-
wise. Between MPC events, the system evolves through
Newton’s equations of motion, taking into account network
and network-solvent forces. This hybrid MD-MPC dynamics
satisfies all conservation laws �13�. As a result, hydrody-
namic interactions are again taken into account. The relative
magnitudes of network-solvent and thermal energies are con-
trolled by the reduced temperature T.

The large scale conformational changes between open O
and closed C forms of the network that result from the bind-
ing and detachment processes can be monitored by observing
the radius of gyration of the network, Rg�R�, or the angle
through which the hinge motion occurs. Figure 2, which
plots Vn�R� and Rg�R� versus time, shows the cycling mo-
tion of the machine arising from repeated closing and open-
ing due to ligand binding and product detachment. Hydrody-
namic interactions can be eliminated by replacing MPC with
a random sampling of postcollision velocities from a Boltz-
mann distribution �16�. Figure 2 �bottom� plots the machine
cycle dynamics when hydrodynamic coupling is neglected.
The cycle time scale is longer and the dynamics more irregu-
lar.

Figure 3 shows four machine cycles in the �Vn ,Rg� plane.
The temporal direction of the trajectory is indicated by ar-
rows. Binding of a ligand in the O state �A� abruptly in-
creases the elastic energy. This initiates the hinge motion
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FIG. 1. �Color online� Conformational changes in the elastic
network from open O �A� to closed C �D� forms in a machine cycle.
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FIG. 2. Cyclic hinge motion with loose binding-detachment pa-
rameters. Solvent LJ units, where energy, distance, and mass, �
=�=m=1, are used to express system parameters: force constant
k=40, bead mass M =10, number of solvent molecules Ns=1.08
	106, solvent number density ns=5, �=0.5, and reduced tempera-
ture kBT /�=1 /6 �denoted by T in text�. The cubic simulation box
had linear dimension L=60 and the MPC collision cell size was a
=1. The molecular dynamics step size was 
t=0.01. Velocity rota-
tions about a randomly chosen axis by angles �= �� /2. �Top two
panels� MPC simulation results for network potential energy, Vn,
and radius of gyration, Rg. �Bottom� Simulation without hydrody-
namic interactions.
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�B,C�, which represents conformational relaxation toward
the C state �D�. When the ligand is detached, three deformed
bonds are removed and the elastic energy falls. Subsequently,
reverse conformational hinge motion �E,F� begins, returning
the free network to its O state. For comparison, Fig. 3 also
shows the deterministic trajectories. We see that, in each
cycle, hinge motions are regular and closely follow the cor-
responding deterministic relaxation trajectories for the free
network and the ligand-network complex. Transverse fluc-
tuations around the deterministic trajectories are small. There
are, however, substantial random variations in the network
conformations from which ligand binding and detachment
transitions take place. As a result, the durations of the “on”
and “off” stages �ligand attached or absent, respectively�
fluctuate strongly.

In our mesoscale simulations, tens of machine cycles
could be followed, allowing statistical characterization of the
cycles and study of their sensitivity to hydrodynamic inter-
actions. Figure 4�a� plots the distribution of cycle times. The
cycle time, tc, is defined as the time interval separating two
subsequent ligand binding transitions �sum of the on and off
times in a given cycle�. Hydrodynamic interactions acceler-
ate conformational relaxation processes. The mean cycle
time �tc� decreases from 16 708 to 9185 in the presence of
hydrodynamic interactions. The statistical dispersion of tc is
large. The simulated tc distribution differs from that for a
simple stochastic two-state element. To show this, we con-
structed tc distributions �black plots in Fig. 4�a�� for an ele-
ment with just two independent on-off and off-on transitions,

each characterized by its own mean waiting time, chosen to
be the same as those for the average on and off times in our
stochastic machine simulations. The actual distribution is
more narrow and the peak is more pronounced than that for
the two-state fit. This is because the off-on and on-off tran-
sitions are separated by intervals of ordered conformational
relaxation motions. Using fluorescent resonant energy trans-
fer and other single-molecule experimental methods, confor-
mational changes and internal rotations in each cycle of mo-
lecular machines can be monitored �see, e.g., �17��. For
comparison, statistical distributions of the amplitudes of
hinge motions in the machine prototype are shown in Fig.
4�b�. These amplitudes are defined as the changes of the
hinge angle between subsequent off-on and on-off transi-
tions. On average, hydrodynamic interactions increase the
amplitude of hinge motions. A more detailed assessment of
hydrodynamic effects on the hinge motion can be obtained
from the mean first passage times, to→c

H and tc→o
H , between O

and C states. Starting from O and C initial configurations,
the times at which a trajectory first crossed the Rg=12.7
dividing surface were computed. We find to→c

H =725�140
and tc→o

H =569�30 from averages over 40 realizations of the
transition processes. The average first passage times without
hydrodynamic interactions �free draining� are: to→c

FD

=9175�1118 and tc→o
FD =6229�490. Since to→c

H / to→c
FD =0.08

and tc→o
H / tc→o

FD =0.09, including hydrodynamic interactions
decreases the closing and opening times by a factor of ap-
proximately 10.

From the known value of the kinematic viscosity of the
MPC solvent with mass density s=mns �13,18�, �=� /s
=0.13, the characteristic length of a domain, Ld=8, and the
velocity v=0.004 of passage between the open and closed
states, which can be estimated from the average first passage
times and the distance the domains travel, the Reynolds
number is found to be Re=vLd /��0.25. Thus, our proto-
typical molecular machine, like most real molecular ma-
chines, operates in the low Reynolds number regime, indi-
cating that inertial effects do not dominate the dynamics.

A phenomenological stochastic description of the
network machine dynamics is provided by the many
particle Langevin equation �19�, MdVi�t� /dt
=Fi(R�t�)−� j=1

Np �ij(R�t�)V j�t�+ fi�t�, where Vi�t� is the veloc-
ity of bead i, and Fi�R� and fi are the mean force and random
force, respectively, on bead i. The configuration-dependent
friction tensor is �ij�R�. Since inertia is not important, the
overdamped limit of this equation can be used to model
the dynamics. In order to simulate the dynamics using this
equation, the spatial dependence of the friction tensor
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FIG. 3. �Color online� Elastic potential energy Vn versus the
radius of gyration Rg for a cyclic trajectory. �Thick line� Determin-
istic dynamics shifted by the thermal energy. The labels A-F indi-
cate configurations like those in Fig. 3.

FIG. 4. �Color online� Histograms of cycle
times �a� and hinge angle changes �b� for MPC
dynamics and dynamics without hydrodynamic
interactions, based on data for 32 and 16 cycles,
respectively, with tight binding-detachment
parameters.
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must be specified. The Oseen approximation,
(��R�−1)ij =�0

−1I�ij +Tij�Rij�, where the Oseen tensor is
Tij�Rij�= �1−�ij��I+ R̂ijR̂ij� / �8��Rij�, which is derived un-
der the assumption that the beads are separated by distances
that are large compared to their size, is often used. Each
domain of the network is a nearly rigid object. The effective
friction that the center of mass of a domain experiences as a
result of the hinge motion is �c�R�=�i,j

Nd�ij�R�, where the
sum is over all Nd beads in the domain. If hydrodynamic
interactions are ignored, the friction is given by �c�R�
=Nd�0I. Using a sample configuration of a domain, Rd, the
domain friction tensor was computed in the Oseen approxi-
mation and it was found that �c�R� /Nd�0I�0.3, so that
Oseen hydrodynamic interactions reduce the friction by a
factor of about 3. Since the domains move to yield open and
closed conformational states in response to the forces that
arise from the binding and detachment processes, the ratio of
the opening-closing times in the presence of hydrodynamic
interactions to that without such interactions is tH / tFD

	�c�R� /Nd�0I. The change in time scale is not predicted
quantitatively; MPC dynamics provides a more accurate de-
scription of the hydrodynamic interactions.

Our study of a prototype of molecular machines demon-
strated that mesoscale simulations of their operation in fluc-

tuating solvent environments can be carried out. Not only
individual operation cycles but also long sequences of such
cycles could be followed, enabling statistical analysis. The
example considered in our study reveals principal features of
the mesoscale approach for modeling molecular machines.
While fluctuations are relatively strong, they do not destroy
the ordered cyclic dynamics. Except for the rapid transitions
that follow after the binding and detachment of a ligand,
internal motions of the machine turn out to be well described
by a single “mechanical” coordinate, as traditionally as-
sumed in the phenomenological models. Our mesoscopic ap-
proach allows one to account for hydrophobic and hydro-
philic �not discussed here� interactions with solvent particles
and hydrodynamic interactions. The statistical properties of
the artificially designed machine prototype agree with the
characteristic behavior known for real molecular machines.
The method can be extended to simulate elastic models cor-
responding to actual protein machines, including solvent ef-
fects.
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