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Based on Ruch’s concept of diagram lattices formed by Young diagrams we investigated the
possibility to transform incomparable diagrams into comparable ones by means of vector catalysis.
Ruch’s diagram lattices allow a very general description of comparing frequency distributions by
their mixing-character as an order relation which is equivalent to majorisation in the mathematical
theory of inequalities. Dealingwith Young diagrams or vectors containing only integer components,
respectively, vector catalysis is strongly related to entanglement catalysis in quantum informatics.
In a very systematic way the diagram lattices of the partitions up to the number n = 20 have
been searched for incomparable pairs which can be catalysed. This concept opens the opportunity
for regarding vector catalysis as a universal phenomenon which is not restricted to the quantum
mechanical idea of entanglement catalysis. Such a general approach offers the possibility to compare
vector catalysis with chemical ideas of catalysis and autocatalysis in a very fundamental sense.
We emphasize that vector catalysis is a universally valid procedure for classification purposes,
where incomparable sequences of symbols are transformed into comparable ones in a much higher
dimensional space ignoring any physical interpretation of these symbols.

Copyright q 2008 Ernst-Christoph Haß et al. This is an open access article distributed under
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1. Introduction

Catalysis is very old but still an unsolved problem in chemistry and biochemistry, although
there exist a lot of experimental and theoretical publications on this topic. The term catalysis
was introduced 1835/36 into chemistry by Berzelius [1] to describe the ability of substances
to awake affinities, which are asleep at a particular temperature, by their mere presence and not by
their own affinity (the catalytic power seems actually to consist in the fact that substances are able to
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awake affinities, which are asleep at a particular temperature, by their mere presence and not by their
own affinity). In other words, reactions which do not occur on their own or spontaneously
take place only at the presence of an additional substance—the so-called catalyst. It took about
hundred years to develop the almost generally accepted idea of catalysis. Now, this classical
definition of catalysis is given by Ostwald in 1894 on the basis of the theory of chemical
reaction rate [2–4]; catalysis is the acceleration of a slowly preceding chemical reaction through the
presence of a foreign substance, which may participate intermediately but is not consumed by the
reaction.

Abel (85thMeeting of GermanNatural andMedical Scientists, Vienna 1913) claimed in a
much more abstract and modern way that only reactions, but no substances are catalysing and
that there do not exist catalysts in general, “the speaker comes to the conclusion that according
to the general view of current research on homogeneous catalysis one can clearly deduce
not substances, but only reactions are catalysing . . . . Since only reactions, but not substances are
catalysing it is strange that in the presence of several catalysts they do not act additively, even
though the catalysing reaction paths can be well interleaved . . . . Catalysis emerges in case of
chemical activity of the catalyst by extension of the reaction path and in case of physical interference of
the catalyst by shifting of the reaction level” [5].

Most of the theoretical works on chemical catalysis deal with numerical quantum-
chemical treatment on themolecular level. Nonlinear dynamics based on the ideas of Prigogine
[6, 7] and Haken [8, 9] favoured the old idea of autocatalysis in order to describe macroscopic
pattern formation in chemical systems. In heterogeneous catalysis, enormous scientific effort
has been made in order to close the gap between high vacuum investigations on molecular
processes on surfaces [10–12] on the one hand and the technical level of catalysis at normal
and high pressure [13–15] on the other hand. Although the atomic structure of elementary
steps in the catalytic formation of NH3 [16–20] or the oxidation of CO on single crystal surfaces
in vacuum meanwhile has been figured out in great detail [21–27], there still remains an
unavoidable gap. Furthermore, there exists another question which rises from the assumption
of the existence of a catalytic centre (catalytic sites) which is created by separation from its
surrounding. There are a lot of fancy descriptions like “spill over effects” in heterogeneous
catalysis or “steric effects” in enzyme catalysis, which are connected with this artificial
separation [28].

It is somehow a miracle that one needs large molecular systems like enzymes or
haemoglobin in order to catalyse very small molecules. In heterogeneous catalysis, one needs
surfaces or large clusters to catalyse small molecular systems. However, if the system to
be catalysed is of medium size, one only needs catalysts of medium sizes to arrange the
reaction.

In recent years, the term catalysis was introduced in quite another field than chemistry,
that is, in the mathematics of quantum information theory [29]. Starting point was the
observation that entangled quantum states can be transformed with certainty into each other
by local transformations, if the distribution of ordered Schmidt coefficients of one state is
majorising the corresponding distribution of the other state [30]. This connects entanglement
with the linear algebraic theory of majorisation [31–33]. As a consequence, entangled quantum
states cannot be transformed with certainty, if their distributions of Schmidt coefficients are
incomparable in terms of majorisation. But in some special cases, there exists an additional
entangled quantum state that enhances the local transformation of two incomparable quantum
states without changing itself at the end [29]. This additional state is called catalyst in analogy
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to chemistry and the corresponding transformation of quantum states as entanglement catalysis.
Although some progress wasmade in the last few years for special types of incomparable states
and catalysts, the problem of entanglement catalysis is far away from being well understood
[34–41].

On the first view, catalysis in chemistry and entanglement catalysis have nothing in
common. But besides the name there are even more aspects related to catalysis which suggest
a connection between both fields, that is, the application of quantum logic [42, 43] and
majorisation theory [31]. For this reason, we are strongly convinced that entanglement catalysis
and catalysis are much more general phenomena than considered until now.

The idea of majorisation was adopted to chemistry for the first time when Ruch together
with Schönhofer introduced a greater relation for Young diagrams [44–47] in order to answer
questions in connection with the theory of chirality functions. Later on, Ruch generalised this
concept in his articles on diagram lattices as structural principle [48], on the principles of increasing
mixing [49] and on information extent, and information distance [50]. These powerful ideas have
been applied recently to rank biodiversity indices for the comparison of water quality of lakes
[51].

Taking into account the concepts of Ruch, we investigated in our previous articles the
decay of beer foam and its bubble size distributions as well as—more generally—diffusion
processes by diagram lattices and variants of majorisation using discrete partition vectors
[52–55]. More precisely, the foam decay is described by a bubble size distribution function
and its variation in time. As a consequence, we consider distribution functions which are
transformed into each other. Assuming that any distribution function describes a snapshot
of a certain situation or “state” during foam decay, these states are compared by majorisation.
Depending on the kind of beer and the conditions of decay, we observe transitions between
incomparable distributions, which are not yet fully understood. It seems that we have similar
phenomena than those observed in quantum informatics.

In this paper, we will extend our previous approaches to discrete vector catalysis, that
is, we investigate the question under which circumstances two discrete (distribution or state)
vectors containing only integer components, which are incomparable in terms of majorisation,
can be made comparable by a third discrete state vector of integer components, which we
call catalyst vector. This corresponds in a discrete formulation to the problem in quantum
informatics of enabling a certain transformation of two quantum states by a third quantum
state which cannot be done without this latter state.

We are convinced that the results can be transferred uniquely to entanglement catalysis
in quantum informatics. Recall that the Schmidt coefficients of the orthonormal bases of
the entangled quantum states are distributions of nonnegative real numbers that can be
arranged as ordered vectors summing up to one. On the other hand, in all numeric examples
of normalised distributions or—equivalently—proportions with sum “1” the space of real
numbers R is projected onto the space of rational numbers Q. Furthermore, since the sets
of rational numbers Q and of nonnegative integers N

0 are of the same cardinality, all results
obtained for discrete vector catalysis by comparing vectors with nonnegative integer numbers
should analogously be valid for entanglement catalysis. It is therefore our aim to treat
the problem of catalytic majorisation on this simplest possible system and to show some
fundamental aspects of discrete vector catalysis.
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2. Mathematical background

2.1. Partition lattices and incomparable pairs of partitions

Using discrete mathematical model state vectors can be described in terms of partition
diagrams. Let u1 + u2 + · · · + ud = n with d ≤ n and ui ≥ ui+1 for i = 1, 2, . . . , d − 1 a partition
of natural number n with d positive integers. It can be represented graphically by a partition
diagram or Young diagram [45–47] consisting of n boxes, arranged in rows and columns in such
a way that the ith row has ui boxes and the first box in each row lies in the first column. For
example, the partition “3 + 2 + 1” of n = 6 is represented by the Young diagram.

(2.1)

If one introduces a greater relation in the sense of majorisation [31], the set of partitions
of a natural number n forms a lattice, the so-called diagram lattice ([48, 52], see Figure 1 for
n = 6).

Ruch formulated this greater relationwith respect toYoung diagrams as follows.A diagram
γ is called greater than a diagram γ ′, if γ ′ can be constructed from γ by moving boxes upward, that is,
from shorter rows into longer or equal ones [48]. Starting from this definition, he summarised in his
fundamental article about the diagram lattice as a structural principle all lattices up to n = 10.
With regard to the following investigation we like to emphasise that diagram lattices of n ≥ 6
are partially ordered, that is, they exhibit pairs of diagrams which are not comparable in sense
of majorisation by the partial order of the lattice (see Figure 1(a)).

Each of the partition diagrams can also be expressed by a (column) vector uwith trace n,

u =

⎛
⎜⎜⎜⎝

u1

u2
...
ud

⎞
⎟⎟⎟⎠ , tr(u) =

d∑
j=1

uj = n (2.2)

containing d nonzero components which are ordered in decreasing (nonincreasing) sequences
(see Figure 1(b)). For comparison of different partitions, partition vectors are filled with
additional zeros up to totally n components such that the numbers of components in a vector
pair are equal.

In the terminology of (classical) majorisation [31], a partition vector u is said to be
majorised by a partition vector v, denoted u ≺ v, if (i) the partial sums ou,i of u are less or
equal to the partial sums ov,i of v for all i = 1, . . . , n − 1 and (ii) both the sums of components
of u and v are equal to n (see (2.3)), which is the natural number of the diagram or partition
lattice,

u ≺ v if

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(i)

(
ou,i =

i∑
j=1

uj

)
≤
(
ov,i =

i∑
j=1

vj

)
, i = 1, . . . , n − 1,

(ii)

(
ou,n =

n∑
j=1

uj

)
=

(
ov,n =

n∑
j=1

vj

)
= n.

(2.3)
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Figure 1: (a) Ruch’s lattice of the partition diagrams of the natural number n = 6 with 11 diagrams; (b)
corresponding lattice of partition vectors. The diagrams no. 4 and 5 and partition vectors a and b which
are marked in magenta show examples for incomparable structures.

If condition (i) of (2.3) does not hold, the vectors u and v are said to be incomparable, denoted
by (u/≺ v) ∧ (u/�v), abbreviated u/≈v (see also Table 7). As an example of an incomparable
vector pair in the sense of majorisation we consider diagrams no. 5 and no. 4, or partition
vectors a and b of Figure 1. The discrete distribution function of the components of a and
b is shown in Figure 2. Forming the vectors of the partial sums oa and ob, respectively, one
can easily show that a/≈b, that is, there exists a component j, where oa,j < ob,j , and another
component j ′ with oa,j ′ > ob,j ′ ,

oa =

⎛
⎝

3
6
6

⎞
⎠ , ob =

⎛
⎝

4
5
6

⎞
⎠ ,

3 < 4, j = 1,
6 > 5, j ′ = 2,

6 = 6,
a/≈b. (2.4)

If one of the partition vectors u and v is majorising the other, there exists always a doubly
stochastic matrix [53] which transforms the vector u into v or vice versa. In a physical
interpretation, the vectors u and v may be any probability vectors or states and the doubly
stochastic matrix describes the transition between these states. On the other hand, if u and v
are incomparable, such as a and b in the example above (a/≈b, see Figure 2), it follows that
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Figure 2: The components of the two vectors a (blue) and b (red) of Figure 1 as a discrete function of the
corresponding row numbers. Both distribution (probability) functions are incomparable.

there does not exist a doubly stochastic matrix [53] which transforms the vectors into each
other, that is, there is no transition between both states.

2.2. Introduction of catalyst partition vector

However, one may ask if there exists another vector c (see, e.g., Figure 1(b))which enables the
vectors a and b to be transformed into each other, that is, to become comparable. This question
is usually answered by comparing the nonincreasingly ordered set of elements of the tensor
products of the vectors a and b with the transpose cT a third vector c, respectively. The tensor
product of two vectors is a rectangular matrix, where each component of the first vector is
multiplied with each component of the second one. Arranging the elements of these matrices
in a list with decreasing (nonincreasing) order one gets ordered vectors θb⊗c and θa⊗c of the
same dimension as of the rectangular matrix which can now be investigated with respect to
their comparability. For this purpose, one has to form the vectors ob⊗c and oa⊗c of the partial
sums of the components of the new vectors θb⊗c and θa⊗c,

b ⊗ cT =

⎛
⎝

4
1
1

⎞
⎠ ⊗

(
3 2 1

)
=

⎛
⎝

12 8 4
3 2 1
3 2 1

⎞
⎠ =⇒ θT

b⊗c = ( 12 8 4 3 3 2 2 1 1 ),

a ⊗ cT =

⎛
⎝

3
3
0

⎞
⎠ ⊗

(
3 2 1

)
=

⎛
⎝

9 6 3
9 6 3
0 0 0

⎞
⎠ =⇒ θT

a⊗c = ( 9 9 6 6 3 3 0 0 0 ),

oTb⊗c = ( 12 20 24 27 30 32 34 35 36 ),

oTa⊗c = ( 9 18 24 30 33 36 36 36 36 ),

oTb⊗c − oTa⊗c = ( +3 +2 0 −3 −3 −4 −2 −1 0 ).

(2.5)

If there is a change of the signs of the components in the difference vector ob⊗c − oa⊗c (as
shown for the actual choice of a, b, and c), the new tensor vectors θa⊗c and θb⊗c still remain
incomparable. In other words, the elements of the difference vector have to be semidefinite.
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Figure 3: The components of the difference vector ob⊗c − oa⊗c as a discrete function of the position count of
the vector components.

To illustrate the property of incomparableness graphically, in Figure 3 the difference
ob⊗c − oa⊗c is shown as a discrete function of the position count of vector components. The
existence of negative deviations from the zero line indicates that the compared partition vectors
are incomparable.

But there exist pairs of incomparable vectors which can be catalysed by a third vector,
such that the resulting tensor vectors are comparable. One of the simplest examples is given in
the following.

Consider the pair of vectors

d =

⎛
⎜⎜⎜⎜⎜⎝

5
4
1
1
1

⎞
⎟⎟⎟⎟⎟⎠

, e =

⎛
⎜⎜⎜⎜⎜⎝

6
2
2
2
0

⎞
⎟⎟⎟⎟⎟⎠

(2.6)

of the partition lattice with n = 12. These partition vectors are obviously incomparable, d/≈ e,
but can be catalysed by a third vector

fT = ( 2 1 1 ). (2.7)

Calculating the tensor products d ⊗ fT and e ⊗ fT , and ordering their components in decreasing
sequence, respectively, one obtains the following tensor vectors θe⊗f and θd⊗f,

θT
e⊗f = ( 12 6 6 4 4 4 2 2 2 2 2 2 0 0 0 ),

θT
d⊗f = ( 10 8 5 5 4 4 2 2 2 1 1 1 1 1 1 ).

(2.8)

Constructing their partial sums oe⊗f and od⊗f, and building the difference oe⊗f − od⊗f yields,

oTe⊗f = ( 12 18 24 28 32 36 38 40 42 44 46 48 48 48 48 ),

oTd⊗f = ( 10 18 23 28 32 36 38 40 42 43 44 45 46 47 48 ),

oTe⊗f − oTd⊗f = ( +2 0 +1 0 0 0 0 0 0 +1 +2 +3 +2 +1 0 ).

(2.9)
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Figure 4: The components of the difference vector oe⊗f − od⊗f as a discrete function of the position count of
the vector components.

If one draws the difference oe⊗f − od⊗f as a discrete function over the position numbers of the
vector components, one obtains the graph represented in Figure 4, which is touching but not
crossing the abscissa. This indicates that the corresponding pair of ordered tensor product
vectors is comparable in the sense of majorisation.

The catalyst vector f is the minimum partition vector catalysing the incomparable pair of
vectors d and e, that means it is the partition with the smallest natural number n which is the
trace of the vector catalyst. In addition to this catalyst vector one can find an infinite number
of catalysing partitions for this couple of vectors (and also for any other pair of vectors which
can be catalysed), for example, (4 2 2), (6 3 3), and so on.

3. Results and discussion

In the following, we present a systematic approach to discrete vector catalysis by considering
vectors of integer components with sum (trace) nwhich can be correlated to partition diagrams
of n boxes forming the diagram lattice according to Ruch [48]. For this purpose, we have
written a computer program in C++, which calculates all incomparable pairs of partition
vectors which occur in partition lattices up to n = 20. Also, we computed for any catalysable
couple of partition vectors the list of all catalyst vectors which can be found in partition lattices
up to n = 20. In addition, we determined some more catalysts of partition lattices with n > 20
using the functional language Haskell and an empirical method. The notation being used is
summarised in Tables 7 and 8.

3.1. Minimal global properties of discrete vector catalysis

Concerning minimal global properties of discrete vector catalysis, one may ask the following
questions, the answers of which are listed in Table 1.

(a) What is the minimal component sum (trace) n, for which one can find an
incomparable pair u and v of partition vectors which can be catalysed?
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Table 1: Incomparable, catalysable pairs of partition vectors and their corresponding catalyst partition
vectors with distinguished minimal global properties of discrete vector catalysis. The significant minimal
global properties are marked in bold italic letters.

n m n ·m du,v dc du,v ·dc

Incomparable, catalysable pair Catalyst partition vector
of partition vectors

uT vT cT

(a) 11 42 482 5 9 45 (4, 4, 1, 1, 1) (5, 2, 2, 2, 0) (10, 6, 5, 5, 4, 3, 3, 3, 3)

(b) 12 410 4 920 4 38 152 (5, 5, 1, 1) (6, 3, 3, 0)

(36, 24, 20, 20, 16, 16,
15, 15, 12, 12, 12, 12, 10,
10, 10, 10, 9, 9, 9, 9, 8, 8,
8, 8, 8, 8, 8, 8, 6, 6, 6, 6,
6, 6, 6, 6, 6, 6)∗

(c) 14 3 42 4 2 8 (6, 6, 1, 1) (8, 3, 3, 0) (2, 1)
(d) 14 3 42 4 2 8 (6, 6, 1, 1) (8, 3, 3, 0) (2, 1)
∗ Catalyst partition vector may not be minimal.

(b) What is the minimal dimension du,v of an incomparable pair of partition vectors u and
vwhich can be catalysed and the natural number n of its first occurrence?

(c) What is the smallest catalyst partition vector c and its corresponding pair of
incomparable partition vectors u and v?

(d) What are the smallest balanced combinations consisting of a catalysable pair of
incomparable partition vectors u and v and its smallest catalyst c, that is, where either
(n ·m) or (du,v ·dc) is minimal?

Answering question, (a) follows that the smallest number n for which one can find an
incomparable but catalysable vector pair is n = 11, and the corresponding partition vectors
are uT = (4, 4, 1, 1, 1) and vT = (5, 2, 2, 2, 0), respectively. Thus, the first diagram or partition
lattice with the possibility of vector catalysis is that of 11 boxes. The minimal catalyst vector
of the smallest catalysable pair is cT = (10, 6, 5, 5, 4, 3, 3, 3, 3), which belongs to a lattice of the
integer m = 42. As a consequence, both the dimension du,v ·dc and the trace (no. of boxes)
n ·m of the resulting tensor product space in which vector catalysis occurs are rather high. This
corresponds to the observation in chemistry that small molecules are often catalysed by large
catalysts.

This analogy turns out even stronger, if one considers—as in question (b)—the tensor
product space of the first occurrence of an incomparable but catalysable pair u and v of smallest
dimension du,v. Jonathan and Plenio have already proven in their fundamental article on
entanglement catalysis [29] that incomparable states with less than four components cannot
be catalysed, hence the minimal dimension of catalysable pairs of partition vectors is du,v = 4.
The first such a pair is uT = (5, 5, 1, 1) and vT = (6, 3, 3, 0) with n = 12. It can be catalysed, but
the smallest catalyst which we found by extended calculations contains dc = 38 components
and has a trace ofm = 410 (see Table 1) yielding a tensor product space with du,v ·dc = 152 and
n ·m = 4 920. Such a highly dimensional space of vector catalysis may possibly be related to
enzyme catalysis in chemistry or biochemistry.

On the other hand, the answers to questions (c) and (d), that is, to the smallest catalyst
partition vector c and to the smallest balanced combinations of u/v and c lead to a tensor
product space of comparatively low dimensionality (du,v ·dc = 8, n ·m = 42). This result
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Table 2: Incomparable pairs of partition vectors which may be catalysable from partition lattices up to
n = 13 and corresponding catalyst partition vectors.

n du,v uT vT m dc cT Nc,20

11 5 (4, 4, 1, 1, 1) (5, 2, 2, 2, 0) 42 9 (10, 6, 5, 5, 4, 3, 3, 3, 3) 0

12 4 (5, 5, 1, 1) (6, 3, 3, 0) 410 38

(36, 24, 20, 20, 16, 16,
15, 15, 12, 12, 12, 12, 10,
10, 10, 10, 9, 9, 9, 9, 8, 8,
8, 8, 8, 8, 8, 8, 6, 6, 6, 6,
6, 6, 6, 6, 6, 6)∗

0

12 5 (5, 4, 1, 1, 1) (6, 2, 2, 2, 0) 4 3 (2, 1, 1) 87
12 6 (4, 4, 1, 1, 1, 1) (5, 2, 2, 2, 1, 0) 42 9 (10, 6, 5, 5, 4, 3, 3, 3, 3) 0
12 6 (3, 3, 3, 1, 1, 1) (4, 2, 2, 2, 2, 0) 37 5 (12, 8, 7, 5, 5)∗ 0
13 4 (6, 5, 1, 1) (7, 3, 3, 0) 31 6 (10, 6, 5, 4, 3, 3)∗ 0
13 5 (6, 4, 1, 1, 1) (7, 2, 2, 2, 0) 4 3 (2, 1, 1) 120
13 5 (5, 5, 1, 1, 1) (7, 2, 2, 2, 0) 4 3 (2, 1, 1) 229

13 5 (5, 5, 1, 1, 1) (6, 3, 3, 1, 0) 410 38

(36, 24, 20, 20, 16, 16,
15, 15, 12, 12, 12, 12, 10,
10, 10, 10, 9, 9, 9, 9, 8, 8,
8, 8, 8, 8, 8, 8, 6, 6, 6, 6,
6, 6, 6, 6, 6, 6)∗

0

13 5 (5, 5, 1, 1, 1) (6, 3, 2, 2, 0) ?∗∗ ?∗∗ ?∗∗ ?∗∗

13 6 (5, 4, 1, 1, 1, 1) (6, 2, 2, 2, 1, 0) 4 3 (2, 1, 1) 87
13 6 (4, 4, 2, 1, 1, 1) (5, 2, 2, 2, 2, 0) 42 9 (10, 6, 5, 5, 4, 3, 3, 3, 3) 0
13 7 (4, 4, 1, 1, 1, 1, 1) (5, 2, 2, 2, 2, 0, 0) 16 4 (6, 4, 3, 3) 9
13 6 (4, 3, 3, 1, 1, 1) (5, 2, 2, 2, 2, 0) 4 3 (2, 1, 1) 134
13 7 (4, 4, 1, 1, 1, 1, 1) (5, 2, 2, 2, 1, 1, 0) 42 9 (10, 6, 5, 5, 4, 3, 3, 3, 3) 0
13 7 (3, 3, 3, 1, 1, 1, 1) (4, 2, 2, 2, 2, 1, 0) 37 5 (12, 8, 7, 5, 5)∗ 0
∗Catalyst partition vector may not be minimal for the respective pair.
∗∗A catalyst could not yet be found by our investigations. We assume that a catalyst vector for this pair does not exist.

corresponds in chemistry particularly to homogeneous catalysis of medium-sized molecules
by medium-sized catalysts.

3.2. Incomparable vector pairs and necessary conditions for vector catalysis

Table 2 summarises all incomparable pairs u and v of partition lattices up to n = 13 which
may be catalysable together with a (minimal) catalyst partition vector c, if such was found by
systematic calculation or empirical investigation. Also, the number of incomparable pairs—
denoted by Nc,20—which are catalysed by a catalyst partition vector of a partition lattice with
n ≤ 20 is given in Table 2.

In the case of partition lattices with n ≤ 10 no incomparable pair exists which can be
catalysed, as will be shown in the following.
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An important question is now under which circumstances two incomparable pairs of a
partition lattice with natural number n can be catalysed by a third partition vector. A necessary
conditionwas given by Jonathan and Plenio [29]which can be expressed using the terminology
of discrete partition vectors as follows.

Let uT = ( u1 u2 · · · ui · · · udu,v ) and vT = ( v1 v2 · · · vi · · · vdu,v ) a pair of
incomparable partition vectors of length du,v, then this pair can be catalysed be a third
(catalytic) partition vector only if both

u1 ≤ v1, udu,v ≥ vdu,v (3.1)

hold. If one can find such a catalyst vector, denoted by cT = ( c1 c2 · · · cdc ), the resulting
ordered tensor product v ⊗ cT majorises the ordered tensor product u ⊗ cT . Accordingly, in the
interpretation of quantum information theory the corresponding entangled quantum states
can be transformed with entanglement-assisted local transformation and classical communication
(ELQCC) [29]. As mentioned above, Jonathan and Plenio have also shown that incomparable
partitions of dimension du,v < 4 cannot be catalysed [29].

In the following, we suggest a stronger necessary condition for vector catalysis which is
based on the concept of majorisation.

Proposition 3.1. A pair of incomparable partition vectors of dimension du,v (du,v ≥ 4) can be catalysed
only if there exist two indices i1 and i2 with 1 < i1 < i2 < du,v such that for the partial sums ou,i and
ov,i holds

(I) ov,i ≥ ou,i for 1 ≤ i < i1,

(II) ov,i < ou,i for i = i1,

ov,i ≤ ou,i for i1 + 1 ≤ i < i2,

(III) ov,i > ou,i for i = i2,

ov,i ≥ ou,i for i2 + 1 ≤ i ≤ du,v.

(3.2)

In addition, for the du,vth vector component the majorisation condition

ov,i = ou,i = n (3.3)

is fulfilled.

Although we cannot give yet a strict mathematical proof, our proposition can be
confirmed by the following consideration. In the case of the largest partition values, that is,
interval (I) in (3.2), one partition vector (v) obviously “majorises” the other (u). Since the
pair is incomparable, there must follow an interval (II) with partition values such that the
second partition vector (u) “majorises” the first (v). Finally, in order to enable majorisation
after building the ordered tensor products with a catalyst vector, it seems to be necessary to
have a last interval (III) with the smallest partition values, where the first partition vector (v)
takes over “majorisation” again.

For a pair of incomparable partition vectors u and vwith these properties, we suggest to
introduce the notation “v �≺� u” or—equivalently—“u ≺�≺ v” (see also Table 7).



12 Discrete Dynamics in Nature and Society

543210

Index of vector components

�1

0

1

o v

�

o u

Difference of partial sums of partition vectors v and u

uT = (4,4,1,1,1)

vT = (5,2,2,2,0)

(I)

(II)

(III)

i1

i2

Figure 5: The components of the difference vector oTv − oTu of the partial sums of partitions uT = (4, 4, 1, 1, 1)
and vT = (5, 2, 2, 2, 0) as a discrete function of the position count of the vector components.

The condition (3.2) will be illustrated at the example of the incomparable pair uT =
(4, 4, 1, 1, 1) and vT = (5, 2, 2, 2, 0) with du,v = 5 and n = 11. The corresponding partial sums are
oTu = (4, 8, 9, 10, 11) and oTv = (5, 7, 9, 11, 11). Thus,

(ov,1 = 5) > (4 = ou,1), interval (I),
(ov,2 = 7) < (8 = ou,2), interval (II),
(ov,3 = 9) = (9 = ou,3), interval (II),

(ov,4 = 11) > (10 = ou,4), interval (III),
(ov,5 = 11) = (11 = ou,5), interval (III),

(3.4)

and hence i1 = 2 and i2 = 4.
A graphical representation of the resulting difference vector oTv − oTu = (1,−1, 0, 1, 0) is

drawn in Figure 5, where also the interval boundaries i1 and i1 as well as the intervals (I),
(II), and (III) are indicated, respectively. The dotted line shows the limiting curve (envelope)
between the values of the difference of partial sums. Note that this curve is crossing twice the
(dashed) zero line of the diagram indicating a twofold change of sign of the difference vector
oTv − oTu; in other word, the envelope exhibits three extremal points (nodes).

Keeping in mind that the necessary condition (3.2) for vector catalysis of the given pair
u and v is fulfilled one would like to find a suitable—possibly minimal—catalyst partition
vector c. This can be done by calculating the ordered tensor product vectors u ⊗ cT and v ⊗
cT with all possible partition vectors of partition diagrams with n ≥ 3 and test them with
respect to majorisation. Although one can exclude systematically many partitions, this method
of testing grows exponentially with increasing n and is only feasible up to n ≈ 150–200 due to
this problem of NP complexity.

Another way of finding catalysts is to minimise the negative deviation of the difference
vector oTv − oTu (see Figure 5) which occurs in interval (II), where ou,i ≥ ov,i. If a catalyst exists,
this difference must “converge” towards zero by comparing the ordered tensor products of u
and v with varying catalyst vectors c. In the case of the above example, a catalyst vector cT =
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Figure 6: The components of the difference vector ov⊗c − ou⊗c for uT = (4, 4, 1, 1, 1), vT = (5, 2, 2, 2, 0), and
cT = (10, 6, 5, 5, 4, 3, 3, 3, 3) as a discrete function of the position count of the vector components.

(10, 6, 5, 5, 4, 3, 3, 3, 3) was found for the limiting case, where the negative deviation vanishes
(see Figure 6).

As mentioned above, the proposition (3.2) is more restrictive than condition (3.1) of
Jonathan and Plenio. This can be verified by the example of the incomparable pair uT =
(4, 4, 1, 1) and vT = (5, 2, 2, 1) with du,v = 4 and n = 10 [29]. Clearly, u1 < v1 and udu,v = vdu,v ,
and therefore the necessary condition (3.1) for catalysis is fulfilled. On the other hand, starting
from the partial sums ov = (5, 7, 9, 10) and ou = (4, 8, 9, 10) one obtains

(
ov,1 = 5

)
>
(
4 = ou,1

)
, interval (I),(

ov,2 = 7
)
<
(
8 = ou,2

)
, interval (II),(

ov,3 = 9
)
=
(
9 = ou,3

)
, interval (II),(

ov,4 = 10
)
=
(
10 = ou,4

)
, interval (II).

(3.5)

This means, there is no interval (III) where at least one partial sum of v is greater than that of
u and thus condition (3.2) does not hold. As a consequence, the pair (5, 2, 2, 1) and (4, 4, 1, 1)
should not be catalysable according to proposition (3.2)which agrees with the results listed in
Table 2.

Concluding the discussion of necessary conditions for vector catalysis of an incompara-
ble pair we would like to give an idea, how proposition (3.2) can be extended. Starting from
the concept of intervals (I), (II),. . ., where v and u are alternately “majorising” each other we
conjecture that an incomparable pair may be (nontrivially) catalysable only if the number of
these intervals is odd, that is, it equals 2k + 1 (k = 1, 2, . . .). Conversely, if the number of such
intervals is even (2k, k = 1, 2, . . .), the corresponding incomparable pair cannot be catalysed.

To get a symbolic formulation for alternately “majorising” pairs of partition vectors, we
suggest the following notation (see also Table 7).

Notation 1. If the number of intervals is even, the “sequentially changing majorisation
property” should be denoted by v(�≺)ku or u(≺�)kv and in the case of odd intervals by
v � (≺�)ku or u ≺ (�≺)kv with k ∈ N. Then, the above conjecture is stated by the following.



14 Discrete Dynamics in Nature and Society

An incomparable pair of partition vectors is potentially catalysable only if v � (≺�)ku or,
equivalently, u ≺ (�≺)kv.

A tantamount statement of this supposition is as follows.

Proposition 3.2. An incomparable pair is catalysable only if the number of crossings of the limiting
curve for the difference vector ov − ou of partial sums of the incomparable partitions u and v is even
or—equivalently—the number of nodes of this curve (envelope) is odd.

This proposition is a nice analogy to odd/even rules in chemistry which possibly may
also lead to a deeper understanding of vector catalysis.

3.3. Autocatalysis

3.3.1. Reaction kinetics

Beside the classical ideas of catalysis as mentioned above, one can observe self-accelerating
chemical processes in solid-solid reactions, such as the historical tin-refuse reaction or the
decomposition of silver oxide (Lewis, 1897). In solutions the Landolt-reaction (1896) obeys
a velocity dependence of the formation of iodide on its own concentration.

For such types of reactions, the idea of autocatalysis is fully accepted. Autocatalysis
became a very powerful heuristic idea with the concept of self-organisation introduced by
Prigogine [56, 57] in order to describe chemical oscillations in homogenous fluid systems and
enzymatic reactions assuming autocatalytic reaction steps like

A +X
k2−−−→ 2X (3.6)

or

A + 2X
k3−−−→ 3X, (3.7)

where k2 and k3 are reaction rate constants.
This symbolic formulation of chemical reactions is expressed in the nonlinear kinetics by

dX

dt
= k2AX,

dX

dt
= k3AX2,

(3.8)

respectively, by introducing a dissipative term into the dynamics. The formal equations (3.6)
and (3.7) are not really chemical equations in the classical sense. Only in their reduced form
(3.9) they fulfill the rules for writing down chemical equations,

A
k1−−−→ X. (3.9)

This reduced equation will give a conservative dynamics (3.10),

dX

dt
= k1A, (3.10)
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which is not in agreement with the typical structure formation as can be observed in dissipative
chemical systems. It seems that the so-called autocatalytic equations (3.6) and (3.7) are
auxiliary constructions in order to introduce dissipative terms in the dynamics by typical
methods to derive chemical kinetics.

Both autocatalytic reactions equations (3.6) and (3.7) seem to accentuate the classical
idea of catalysis, but the differential equations (3.8) of the correlated chemical kinetics indicate
that it is the dynamics of the reaction which is catalysing because of the nonlinear dissipation
terms. This is in total agreement with the ideas of Abel [58] that reactions are catalysing and
generating autocatalysis as well.

3.3.2. Mathematical classification

Similarly, one can define autocatalysis in vector catalysis, if one of the partitions u or v of the
incomparable pair u/≈v is identical with the catalysing partition vector,

u ⊗ u ≈ u ⊗ v, v ⊗ v ≈ u ⊗ v, withu/≈v. (3.11)

As in the discussion up to now we choose without loss of generality the partition vector v as
the one which is able to majorise u by forming the respective tensor products.

Several kinds of autocatalysis can be distinguished.

(i) The catalyst partition is identical to the partition vector v, the resulting ordered tensor
product vector v⊗v of which is majorising the other tensor product vector u⊗v (3.12).
We suggest to call this type Master-Autocatalysis:

Master-Autocatalysis := (u/≈v) ∧ (u ⊗ v ≺ v ⊗ v). (3.12)

Our calculations show that the first diagram or partition lattice, where Master-
autocatalysis occurs is that of natural number 16 (see Table 3).

(ii) The catalyst partition is identical to the partition vector u, the resulting ordered tensor
product vector u ⊗ u of which is majorised by the other tensor product vector u ⊗ v
(3.13). For this type we propose the term Slave-Autocatalysis:

Slave-Autocatalysis := (u/≈v) ∧ (u ⊗ u ≺ u ⊗ v). (3.13)

Slave-Autocatalysis occurs for the first time in the partition lattice with n = 16, as can
be shown by our calculations (see Table 3).

(iii) Both partition vectors u and v act as catalyst partition, that is, the resulting ordered
tensor product vector v ⊗ v is majorising the other tensor product vector u ⊗ v and—
simultaneously—the ordered tensor product vector u ⊗ u is majorised by u ⊗ v (3.14).
In other word, Master-Autocatalysis and Slave-Autocatalysis occur concurrently. For
this type we propose the term Mutual Autocatalysis:

MutalAutocatalysis := (u/≈v) ∧ (u ⊗ v ≺ v ⊗ v) ∧ (u ⊗ u ≺ u ⊗ v). (3.14)

According to our calculations, Mutual Autocatalysis can be found for the first time in
partition lattices with n = 22.
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Table 3: Incomparable pairs of partition vectors u and v which exhibit Master- or Slave-Autocatalysis and
are contained in partition lattices up to n = 17, and incomparable pairs showing Mutual Autocatalysis of
partition lattice with n = 22. In addition, the type of autocatalysis and the minimal catalyst vector cmin for
u and v are listed.

n uT vT Autocatalytic partition Type of autocatalysis cTmin

15 (6, 3, 3, 1, 1, 1) (7, 2, 2, 2, 2, 0) u Slave (2, 1, 1)
16 (6, 3, 3, 1, 1, 1, 1) (7, 2, 2, 2, 2, 1, 0) u Slave (2, 1, 1)
16 (4, 4, 4, 1, 1, 1, 1) (6, 3, 2, 2, 2, 1, 0) v Master (2, 1)
16 (5, 3, 3, 1, 1, 1, 1, 1) (6, 2, 2, 2, 2, 2, 0, 0) u Slave (2, 1, 1)
17 (7, 4, 3, 1, 1, 1) (9, 2, 2, 2, 2, 0) u Slave (2, 1)
17 (6, 3, 3, 2, 1, 1, 1) (7, 2, 2, 2, 2, 2, 0) u Slave (2, 1, 1)
17 (6, 3, 3, 1, 1, 1, 1, 1) (7, 2, 2, 2, 2, 2, 0, 0) u Slave (2, 1, 1)
17 (5, 4, 3, 2, 1, 1, 1) (7, 2, 2, 2, 2, 2, 0) u Slave (2, 1)
17 (6, 3, 3, 1, 1, 1, 1, 1) (7, 2, 2, 2, 2, 1, 1, 0) u Slave (2, 1, 1)
17 (4, 4, 4, 1, 1, 1, 1, 1) (6, 3, 2, 2, 2, 2, 0, 0) v Master (2, 1)
17 (4, 4, 4, 1, 1, 1, 1, 1) (6, 3, 2, 2, 2, 1, 1, 0) v Master (2, 1)
17 (5, 3, 3, 1, 1, 1, 1, 1, 1) (6, 2, 2, 2, 2, 2, 1, 0, 0) u Slave (2, 1, 1)
22 (7, 5, 4, 3, 1, 1, 1) (10, 4, 2, 2, 2, 2, 0) u, v Mutual (2, 1)
22 (8, 5, 3, 3, 1, 1, 1) (10, 3, 3, 2, 2, 2, 0) u, v Mutual (2, 1, 1)
22 (8, 4, 4, 3, 1, 1, 1) (10, 3, 3, 2, 2, 2, 0) u, v Mutual (2, 1)
22 (6, 5, 3, 3, 1, 1, 1, 1, 1) (9, 3, 2, 2, 2, 2, 2, 0, 0) u, v Mutual (2, 1)
22 (6, 4, 4, 3, 1, 1, 1, 1, 1) (9, 3, 2, 2, 2, 2, 2, 0, 0) u, v Mutual (2, 1)
22 (6, 5, 3, 3, 1, 1, 1, 1, 1) (9, 3, 2, 2, 2, 2, 1, 1, 0) u, v Mutual (2, 1)

Table 3 lists all autocatalytic pairs which can be found in partition lattices from n = 15 to
n = 17 as well as all mutually autocatalytic pairs for n = 22.

As can be seen from Table 3, surprisingly the minimal nonautocatalytic catalyst partition
vector cTmin is always (2, 1) or (2, 1, 1), that is, its dimension dc,min and its trace mmin is
much smaller than that of the autocatalysts. This means that simple vector catalysis with a
catalyst vector c/=u,v can take place in a space of much lower dimensionality as compared to
autocatalysis.

Recently, Uhlman [59] suggested to use the term “autocatalysis” for entanglement
transformations of multiple copies of bipartite quantum states (MLOCC or multiple-copy
local operation and classical communication), a phenomenon in quantum informatics which
was discovered by Bandyopadhyay et al. [60]. We suggest to call this type Multiple-Copy
Autocatalysis (3.15),

Multiple-CopyAutocatalysis := (u/≈v) ∧ { ∃(p ∈ N) > 1, such that:u⊗p ≈ v⊗p
}
, (3.15)

where u⊗p and v⊗p denote tensor exponentiation by the exponent p, that is, u and v, respectively,
are p-times multiplied by tensor products with itself (3.16),

u⊗p = u ⊗ u ⊗ · · · ⊗ u︸ ︷︷ ︸
p-times

, v⊗q = v ⊗ v ⊗ · · · ⊗ v︸ ︷︷ ︸
p-times

. (3.16)

Note that the exponentiation with p = 0 yields the unity vector (2.3)with one component equal
to “1.”
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Table 4: Conditions for special cases of autocatalysis derived from unified autocatalysis.

Type of autocatalysis Conditions for exponents p, q, r, and s
Master-autocatalysis (p = 1) ∧ (q ≥ 1) ∧ (r = 0) ∧ (s = q + 1)
Slave-autocatalysis (p ≥ 2) ∧ (q = 0) ∧ (r = p − 1) ∧ (s = 1)
Multiple-copy autocatalysis (p = s ≥ 2) ∧ (q = r = 0)

Using tensor exponentiation our idea of Master- and Slave-Autocatalysis in vector
catalysis can be generalised by (3.17),

(u/≈v) ∧ {∃(p ∈ N) > 1, such that:u⊗p ≈ u⊗(p−1) ⊗ v
}
. (3.17)

A combination of both concepts of autocatalysis leads to (3.18) and will be denoted by Unified
Autocatalysis.

Unified Autocatalysis : = (u/≈v) ∧ {∃p, q, r, s ∈ N
0 such that:

(p + q = r + s ≥ 2) ∧(u⊗p ⊗ v⊗q ≈ u⊗r ⊗ v⊗s
) }

.
(3.18)

The individual cases of autocatalysis can be derived from (3.18) by setting the exponents p, q,
r, and s as shown in Table 4.

Allowing p + q = r + s = 1 for an arbitrary vector pair u and v, one gets (classical)
majorisation.

3.3.3. Relation to chemistry

Let us identify the reaction arrow “→” in formal chemical kinetics with the majorisation
relation symbol “≺.” This approach corresponds to the observation that common spontaneous
reactions occur towards higher disorder and thus in downward direction within the diagram
lattices of Ruch [48].

Then the classical autocatalytic reaction equation (3.6) is related to (3.13) of Slave-
Autocatalysis in the mathematical framework. Analogously, one can formulate formal kinetic
equations for the other types of autocatalysis:

Master-Autocatalysis: 2A k4−−−→ A +X, (3.19)

Mutual Autocatalysis: Both 2A k4−−−→ A +X, A +X
k2−−−→ 2X hold, (3.20)

where k2 and k4 correspond to different reaction conditions,

Multiple-CopyAutocatalysis: pA
km−−−→ pX, (3.21)

Unified Autocatalysis: pA + qX
ku−−−→ rA + sX. (3.22)

A typical example for autocatalysis is the so-called tin pest, that is, the conversion of white β-tin
into grey α-tin [61, 62]. The velocity of this autocatalytic reaction is—apart from temperature—
depending on size and shape of the growing seeds. Such reactions are also called collectively
autocatalytic [63], that is, the reactions produce themselves as reaction products such that the
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entire set of reactions is self sustaining and accelerating. Without going into details, we suggest
that the kinetic equations (3.6) and (3.19) to (3.22)may serve as an adequate description of such
processes.

A similar phenomenon can be observed in case of heterogeneous catalysis which takes
place by processes of adsorption from the gas phase, reaction at solids or solid surfaces and
desorption into the gas phase. During these processes adsorption clusters are formed which
are the reactive units of catalysis. These units can be local adsorption complexes at “active
centres,” clusters at larger surface domains, the adsorption layer or even the adsorbate together
with the bulk [64]. The catalytic properties are strongly depending upon the size of the reactive
units which may be considered as an accelerating autocatalytic set combined with structure
formation. In other words, the reaction is determined by the distribution function of the
adsorption clusters which catalyse theirs own formation and decay.

As a particular example, one may consider the oxidation of CO on Palladium supported
catalysts [13–15, 21–27]. By model studies one can show that the phase transition between Pd
and PdO occurs faster with decreasing size of the catalytic Pd clusters [13–15]. As a result,
it comes to resonance phenomena between catalysts of different sizes whereupon self-affine
patterns are formed the overall shape of which depends on the particle size distribution. The
synchronised CO oxidation as well as the fast loss of catalytic activity in the oxidised state
of the catalyst particles is indicative for autocatalytic processes. A detailed description of this
model is given in [13–15].

3.4. Counting properties of partition lattices for n = 1 to n = 20

To give an impression of the complexity of the discrete approach to vector catalysis, in Table 5
some counting properties of partition lattices up to n = 20 are given. All characteristics listed
in this table are increasing exponentially due to NP complexity of the problem.

The following notations are used in Table 5.

(i) N: No. of partition vectors u and v with tr(u) = tr(v) = n which is identical to the no.
of diagrams of Ruch’s diagram lattices with natural number n;

(ii) Nu,v: No. of all possible pairs of partition vectors u and v in a partition lattice with
natural no. n;

(iii) Nu−v: No. of all adjacent pairs in a partition lattice with natural no. n, that is, couples
of partition vectors u and v, where one of them is directly majorising the other;

(iv) Nu/≈v: No. of all incomparable pairs of partition vectors u and v in a partition lattice
with natural no. n;

(v) Nu(pot)v: No. of all incomparable pairs of partition vectors u and v in a partition lattice
with natural no. nwhich are potentially catalysable, that is, which fulfill the condition
v � (≺�)kuwith k ∈ N (see Section 3.2 and Table 7);

(vi) Nu(c≤20)v: No. of all incomparable pairs of partition vectors u and v in a partition
lattice with natural number n which are catalysed by a catalyst partition vector c of a
partition lattices with n ≤ 20;

(vii) Nu(auto)v: No. of all incomparable pairs of partition vectors u and v in a partition lattice
with natural no. n which are autocatalysed according to (3.12) or (3.13) by one of the
partition vectors of the incomparable pair;
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Table 5: Counting values of partition vectors u and v and their properties concerning vector catalysis
depending on the natural number n of the partition lattice.

n N Nu,v =
(

N

2

)
Nu−v Nu/≈ v Nu(pot)v Nu(c≤ 20)v Nu(auto)v Nu(Master)v Nu(Slave)v

1 1 — — — — — — — —
2 2 1 1 — — — — — —
3 3 3 2 — — — — — —
4 5 10 4 — — — — — —
5 7 21 6 — — — — — —
6 11 55 12 2 — — — — —
7 15 105 17 4 — — — — —
8 22 231 28 15 — — — — —
9 30 435 41 35 — — — — —
10 42 861 62 85 — — — — —
11 56 1 540 87 170 1 — — — —
12 77 2 926 128 385 4 1 — — —
13 101 5 050 175 712 11 5 — — —
14 135 9 045 247 1 405 28 14 — — —
15 176 15 400 335 2 583 69 34 1 — 1
16 231 26 565 459 4 771 149 74 3 1 2
17 297 43 956 611 8 307 313 161 8 2 6
18 385 73 920 824 14 798 630 324 27 7 20
19 490 119 805 1 081 24 976 1 215 631 78 25 53
20 627 196 251 1 430 42 805 2 286 1 192 171 57 114

Table 6: Counting values of partition vectors u and v and their properties concerning vector catalysis
depending on the natural number n of the partition lattice.

Counting value a ln(a) b R2

N 5.2 e−02 −3.0 2.1 0.99992

Nu,v = ( N
2

) 1.0 e−03 −6.9 4.3 0.99996

Nu−v 2.9 e−02 −3.5 2.4 0.99997
Nu/≈ v 3.5 e−05 −10.2 4.7 0.99996
Nu(pot)v 2.3 e−08 −17.6 5.7 0.99992
Nu(c≤ 20)v 9.5 e−09 −18.5 5.7 0.99989
Nu(auto)v

∗ 2.4 e−11 −24.5 6.6 0.99984
Nu(Master)v

∗ 3.3 e−13 −28.7 7.3 0.99997
Nu(Slave)v

∗ 1.2 e−10 −22.8 6.2 0.99941
∗Counting values were calculated up to n = 24.

(viii) Nu(Master)v: No. of all incomparable pairs of partition vectors u and v in a partition
lattice with natural no. n which show Master-Autocatalysis according to (3.12);

(ix) Nu(Slave)v: No. of all incomparable pairs of partition vectors u and v in a partition
lattice with natural no. n which show Slave-Autocatalysis according to (3.13).
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Table 7:Notations for pairs of partition vectors and majorisation.

n ∈ N Positive integer (natural number) to be partitioned.

u =

⎛
⎜⎜⎜⎜⎝

u1

u2
...

udu

⎞
⎟⎟⎟⎟⎠

, v =

⎛
⎜⎜⎜⎜⎝

v1

v2
...

vdv

⎞
⎟⎟⎟⎟⎠

Discrete partition vectors (column vectors) with non-
negative integers ui and vi as components (i, ui, vi ∈ N).
They are used as pair of partition vectors to be compared
with respect to majorisation and discrete vector catalysis.
The following conventions are assumed. If a pair of
different vectors u and v (u/=v) is compared with respect
to majorisation, u is chosen as the vector with the first
occurrence of a component ui < vi.

du, dv ∈ N
Dimensions, that is, number of nonzero components, of u
and v, respectively. In general, du and dv are different.

du,v = sup
(
du, dv

) Supremum of dimensions du and dv. The vector with
the lower dimension is filled up with zeros to du,v
components.

nu = tr(u) =
du,v∑
j=1

uj ,

nv = tr(v) =
du,v∑
j=1

vj , nu, nv ∈ N

Trace (sum of components) of u and v, respectively;
(classical)majorisation, nu = nv = n.

ou =

⎛
⎜⎜⎜⎜⎝

ou,1
ou,2
...

ou,du,v

⎞
⎟⎟⎟⎟⎠

, ov =

⎛
⎜⎜⎜⎜⎝

ov,1
ov,2
...

ov,du,v

⎞
⎟⎟⎟⎟⎠

ou,i =
i∑

j=1

uj , ov,i =
i∑

j=1

vj , i = 1, 2, . . . , du,v

Vectors of partial sums of partition vectors u and v,
respectively.

≺, �:
u ≺ v ≡ v � u := ou,i ≤ ov,i, i = 1, 2, . . . , du,v

(Classical) majorisation relation. Comparable pair, where
u is beingmajorised by v and v is majorising. u In quantum
informatics the corresponding transition of entangled
states is possible with certainty by LOCC (local operation
and classical communication).

u ≈ v: = (u ≺ v) ∨ (u � v) Pair of partition vectors which is comparable with respect
to majorisation.

u/≈v = ¬(u ≈ v) Pair of partition vectors which is incomparable with
respect to majorisation.

u ≺� v ≡ v �≺ u

Incomparable pair, where both u and v, respectively, are
divided in two subsections of contiguous components,
such that in the first section all partial sums ov of v are
greater or equal to ou of ou and in the second section
vice versa. (For this and the following definitions see also
Section 3.2).

u(≺�)kv ≡ v(�≺)ku, k ∈ N

Same as u ≺� v but changing subsections of components
are repeated k times; in case of k = 1 one obtains the
notation above.

u ≺�≺ v ≡ v �≺� u

Incomparable pair, where both u and v, respectively, are
divided in three subsections of contiguous components,
such that in the first and last (third) section all partial sums
ov of v are greater or equal to ou of u and in the second
section vice versa.

u ≺ (�≺)kv ≡ v � (≺�)ku, k ∈ N
0

Same as u ≺�≺ v but changing subsections of components
are repeated k times; in case of k = 1 one obtains the
notation above, in case of k = 0 one gets the majorisation
relation � (≺).



Ernst-Christoph Haß et al. 21

/
u v

⊗ ⊗
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Forbidden transition by majorisation

Catalyst interaction

Catalytically allowed transition

u
⊗

c v
⊗

c

Figure 7: Incomparable pair u and v corresponding to a forbidden transition, which will be allowed by a
third vector c as catalyst.

The number series of Table 5 can roughly be approximated by the power law

y = aebn
0.5

or lny = lna + bn0.5, (3.23)

where y are the least square fits of each of the counting values as a function of nwith R2 values
of about 0.9999. The coefficients of these fits are listed in Table 6.

As can be seen from coefficients b, the counting numbers of properties correlated to
all and to the incomparable partition pairs are growing about twice as fast as the number
N of partition vectors and the number Nu−v of directly majorising partitions. The calculated
coefficients b for properties which are attributed to vector catalysis are even larger, but may
be less significant, because a fewer number of values are included in the fits; if one takes a
sufficiently large number of counting values the coefficients b for catalysable or catalytic pairs
cannot exceed that for incomparable pairs.

4. Conclusion and summary

Our mathematical model of discrete vector catalysis is based on partition vectors, the
components of which are only natural numbers including zero. The set of all these vectors
forms a special, discrete vector space Vdisc which—in analogy to real vector spaces—is based
on d-dimensional vectors u = (u1, . . . , ud) with ui, d ∈ N

0 and tr(u) = n ∈ N
0, a direct sum “⊕”

of vector components, a multiplier μ ∈ N
0 and a scalar multiplication “ · ” such that

u,v,w, 0 ≡ (0), 0d ≡
(
0 0 · · · 0︸ ︷︷ ︸

d-times

)
∈ Vdisc, μ ∈ N

0 =⇒ 0 ⊕ u = u, 0 ·u = 0d,

u ⊕ (v ⊕w) = (u ⊕ v) ⊕w, 1 ·u = u,
u ⊕ v = v ⊕ u, μ ·u = u ·μ,

μ · (u ⊕ v) = μ ·u ⊕ μ · v.

(4.1)

On this discrete vector space the majorisation relation “≺,�,≈” and the tensor product “⊗” are
defined as described in the previous sections and in Tables 7 and 8. The restriction to such a
discrete space enabled us to develop some powerful rules for describing vector catalysis for an
effective search of correlated catalysts. On the other hand, this method is of great advantage
for discussing our results in the number-theoretical framework of Young diagrams and Ruch’s
diagram lattices. Particularly, with regard to further investigations on discrete vector catalysis
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we would like to represent the procedure, that a transition which is forbidden by majorisation
due to incomparable vector pairs becomes allowed by participation of a third catalyst vector,
schematically as shown in Figure 7.

The results can be summarised as follows.

(i) We could verify numerically that not all pairs of incomparable diagrams or partition
vectors, respectively, can be catalysed. The smallest possible lattice, which contains a
catalytic vector pair, is the diagram lattice for n = 11 with the catalysable vector pair
(4, 4, 1, 1, 1) and (5, 2, 2, 2, 0), and the catalytic partition vector (10, 6, 5, 5, 4, 3, 3, 3, 3)
the trace of which is m = 42.

(ii) The smallest nontrivial catalyst vector is (2, 1) belonging to the diagram lattice for n =
3; and the smallest incomparable vector pair (6, 6, 1, 1)/≈ (8, 3, 3, 0)which is catalysable
by this catalyst is contained in the diagram lattice with n = 14.

(iii) We have introduced the ideas of nonprimitively catalysable incomparable vector
pairs and of potentially catalysable vectors pairs. Moreover, we have presented a
selection rule which distinguishes between potentially catalysable and noncatalysable
incomparable vector pairs by considering alternately majorising subsections in an
incomparable pair. This can be seen as a nice analogy to odd/even rules in chemistry.

(iv) In connection with potentially catalysable vector pairs we have sketched a semiem-
pirical/graphical method for finding catalyst vectors by minimising the negative
deviation of the difference vector of the partial sums of the ordered tensor products.
Using this procedure a catalyst with 38 components and trace of value 410 could
be found for the smallest 4-dimensional pair (5, 5, 1, 1)/≈ (6, 3, 3, 0) belonging to the
diagram lattice with n = 12.

(v) For any catalysable pair of incomparable vectors, a countable infinite number of
catalysts exist. The set of the catalyst vectors assigned to the same pair can be grouped
into different classes based upon the component structure and the tensor powers of
the catalysts. This will be discussed in detail in a further paper.

(vi) In analogy to chemistry we have adopted the term “autocatalysis” as a special type
of vector catalysis, at which at least one partition vector of the incomparable pair acts
as catalyst. Depending upon the partition vectors which are catalysing we distinguish
between Master-, Slave-, and Mutual Autocatalysis. The smallest diagram lattice in
which autocatalysis occurs is that with n = 15 and the respective incomparable pair
is (6, 3, 3, 1, 1, 1)/≈ (7, 2, 2, 2, 2, 0) with (6, 3, 3, 1, 1, 1) serving as Slave-Autocatalyst.
Mutual Autocatalysis takes place at the first time in a diagram lattice with n = 22, and
there exist already 6 incomparable pairs with this property. We would like to mention
that there are remarkable connections between vector catalysis and the structure of
diagram lattices which we consider in a forthcoming publication.

Comparing the chemical ideas of catalysis and autocatalysis with the idea of vector catalysis,
it seems on a first view that vector catalysis reflects the old chemical idea of a substance as a
catalyst. But the formation of tensor products implies that with help of a catalyst much larger
vector spaces of the entangled systems are created. These systems can be interpreted as new
pure states which are now comparable by majorisation, and therefore the transition between
these entangled states occurs in a high-dimensional space—as opposed to the forbidden
noncatalysed transition in the lower-dimensional space (see also Figure 7).
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Table 8: Notations for tensor operations and discrete vector catalysis.

c =

⎛
⎜⎜⎜⎜⎝

c1
c2
...
cdc

⎞
⎟⎟⎟⎟⎠

cT =
(
c1 c2 · · · cdc

)

Catalyst partition vector, represented as column vec-
tor c or as row vector cT ; it will be used for tensor
multiplication with u or v, respectively, in vector
catalysis.

dc ∈ N
Dimension (number of nonzero components) of cata-
lyst partition vector c.

m = tr(c) =
dc∑
j=1

cj , m ∈ N
Trace (sum of components) of catalyst partition vector
c.

⊗ Symbol for tensor product relation.
u⊗cT , v⊗cT (vector product
notation)

Tensor products of uwith c(cT ) and v with c(cT ),
respectively, in both cases represented as a
(du,v × dc)-matrix.u ⊗ c, v ⊗ c (tensor product

notation)

θu⊗c, θv⊗c
Vectors of tensor products u⊗ c and v⊗ c, respectively,
where all components (tensor product elements) are
arranged in decreasing (nonincreasing) order.

du⊗c = dv⊗c = du,v ·dc

Dimension (number of components) of tensor prod-
uct vectors, that is, dimension du,v of partition pair
vectors multiplied with dimension dc of catalyst
vector.

nu⊗c = nv⊗c = n ·m
Trace (sum of components) of tensor product vectors,
that is, trace of partition vectors multiplied with trace
of catalyst vector.

ou⊗c, ov⊗c
Vectors of partial sums of tensor product vectors θu⊗c
and θv⊗c, respectively.

u⊗p = u ⊗ u ⊗ · · · ⊗ u︸ ︷︷ ︸
p-times

,

v⊗q = v ⊗ v ⊗ · · · ⊗ v︸ ︷︷ ︸
q-times

,

p, q ∈ N
0

Tensor exponentiation of partition vectors u and v
with exponents p and q, respectively. Special cases,
u⊗1 = u, v⊗1 = v,
u⊗0 = v⊗0 = (1).

But catalysis means also that there is a possibility that the catalyst can be extracted again
after a catalytic transition. The decomposition of the new entangled vectors into the catalyst
and the original vectors is possible if one knows the one of them. In general, there are several
alternatives to disaggregate, that is, the decomposition; it is by no means unique.

On the other side, recall that the process of vector catalysis is enabled by formation of
the tensor product matrices of the partition pair vectors and the catalyst vector, respectively,
followed by downwards reorganisation of thematrix elements into vectors withmonotonously
decreasing order of their components, such that the resulting vector states are comparable. As a
consequence of this rearrangement, the components of the initial partition pair vectors and the
catalyst vector are mixed within the ordered tensor product vectors, and thus the distribution
relations are changed. In other words, the new ordered vectors of the entangled states are not
at all simple linear combinations of the source vectors but result of a complex transformation
combined with the loss of identity of the catalyst vector. Indeed, not only the formation of
tensor products in a high-dimensional space but primarily the process of reorganisation causes
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catalysis. This is a nice analogy to the statement in chemistry that not substances but only
reactions are catalysing [5].

We are convinced that in future the comparison of chemical catalysis and entanglement
catalysis will be fruitful for both sides.
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[13] P. J. Plath, K. Möller, and N. I. Jaeger, “Cooperative effects in heterogeneous catalysis—part II: analysis

and modelling of the temperature dependence of the catalytic oxidation of CO on a palladium Al2O3-
supported catalyst,” Journal of the Chemical Society, Faraday Transactions I, vol. 84, no. 6, pp. 1751–1771,
1988.

[14] P. Svensson, N. I. Jaeger, and P. J. Plath, “Phase and frequency relations with forced oscillations of the
heterogeneous catalytic oxidation of carbon monoxide on supported palladium,” Journal of Physical
Chemistry, vol. 92, no. 7, pp. 1882–1888, 1988.

[15] C. Ballandis and P. J. Plath, “A new discrete model for the non-isothermic dynamics of the exothermic
CO-oxidation on Palladium supported catalyst,” Journal of Non-Equilibrium Thermodynamics, vol. 25,
no. 3-4, pp. 301–324, 2000.

[16] M. Grunze, F. Bozso, G. Ertl, and M. Weiss, “Interaction of ammonia with Fe(111) and Fe(100)
surfaces,” Applications of Surface Science, vol. 1, no. 2, pp. 241–265, 1978.
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