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Abstract. - We report on experiments with the photosensitive chlorine dioxide-iodine-malonic
acid reaction (CDIMA) when forced with a random (spatiotemporally) distributed illumination.
Acting on a mixed mode consisting of oscillating spots, close enough to the Hopf and Turing
codimension-two bifurcation, we observe attenuation of oscillations while the spatial pattern is
preserved. Numerical simulations confirm and extend these results. All together these observations
point out to a larger vulnerability of the Hopf respect to the Turing mode when facing noise of
intermediate intensity and small correlation parameters.

During these last decades it has been fully recognized
that fluctuations, either internal (thermal) or parametric
can conspire with nonlinearities to enhance regular be-
havior. Examples range from electronic and optical de-
vices to chemical reactions or biophysical systems, as re-
cently summarized in [1]. In time evolving systems, noise-
anticipated periodicities are known to result from a phe-
nomenon known as coherence resonance (or stochastic co-
herence as we prefer to call it) [2]. In extended systems,
noisy-precursors of steady patterns may appear below but
close enough to a spatially symmetry-breaking instabil-
ity [3]. A still never addressed question refers to the role
of noise in the neighborhood of higher order bifurcations,
for instance a Turing/Hopf coexistence. Below the corre-
sponding codimension-two point, the relevant question is
whether a particular mode, either a global oscillation, a
patterned static state or some mixed solution, would be
selectively anticipated under noise forcing. Above the bi-
furcation, the principal interest lies, conversely, in the role
of fluctuations in making one of these particular modes
dominant over the rest. Adopting this latter view we re-
port on observations of a mixed oscillating patterned state
losing stability to a pure spatial mode under distributed
noise of intermediate intensity and small values of the cor-
relation parameters.

Chemical systems are natural candidates to investi-
gate effects of noise superimposed on modes of self-

organization [4]. This is particularly true for photosensi-
tive reactions, where the illumination intensity acts as an
easily tunable control parameter. The prototypical exam-
ple is the Belousov-Zhabotinsky (BZ) reaction, where spa-
tially distributed noise has been demonstrated to drive [5],
sustain [6] or organize waves [7]. The somewhat alterna-
tive, still of photosensitive nature, is the chlorine dioxide-
iodine-malonic acid mixture (CDIMA), well-known to give
rise to spatial Turing patterns [8].

The CDIMA reaction, other than Turing patterns, is
capable as well to sustain global oscillations [9] and forced
spatio-temporal resonances [10–12]. In addition, we re-
cently reported observations of mixed Turing/Hopf modes
close to codimension-two conditions [13]. In this situa-
tion, the CDIMA sample displays a hexagonal static lat-
tice of spots synchronously oscillating in amplitude. Here,
we pursue experimentally and numerically the study of
this regime by addressing the situation of a Turing-Hopf
coexistence when subjected to the disturbing effect of a
spatiotemporal noise. The influence of distributed fluctu-
ations is interpreted in terms of a differential noise suscep-
tibility of each mode under such degenerated conditions.
Our work extends previous studies of noise-anticipated
patterns close to the pure Turing instability of the CDIMA
reaction under disorderly frozen illuminating conditions
(static noise) [14]. Numeric results based on the Lengyel-
Epstein (LE) model [15] have been also published recently
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Fig. 1: Scheme of the experimental setup for noise forcing of
the CDIMA reaction.

for spatio-temporal Gaussian fluctuations [16, 17]. In a
rather different context and, actually, as a result of a global
random alternation between a pair of pattern-free dynam-
ics, Turing-like structures have been predicted to occur
for morphogenic models [18] and in a FitzHugh-Nagumo
dynamics [19].

Experiments were performed with the photosensitive
CDIMA reaction with input chemical concentrations
[I2]0 = 0.45 mM, [ClO2]0 = 0.1 mM, [malonic acid]0 =
0.9 mM, [poly(vinyl alcohol)]0 = 0.5 g/L and [H2SO4]0 =
10 mM. Fig. 1 is a schematic representation of the setup
used, which is described in more detail in [12]. Reaction
occurred in a continuously stirred tank reactor (CSTR).
Patterns are formed in a 2% agarose gel inside the CSTR,
and observerd and recorded through an optical window
with a CCD (JAI M50 high resolution) camera connected
to a computer. Applied spatio-temporal noise consisted of
a computer generated pattern of square pixels with ran-
dom Gaussian distributed intensities in an eight-bit gray
scale between 0 and 255 (mean value 128 and variance
35) and further projected onto the gel (LCD Hitachi, CP-
X327 projector). White light illumination intensity ranged
from 1100± 50× 10−6W/cm2 (corresponding to 0 in gray
level) to 19800 ± 50 × 10−6W/cm2 (corresponding to 255
in gray level). The chemical reactor was inmersed into a
thermostated water bath at 4◦C continuously stirred to
avoid possible local increases in temperature due to illu-
mination. Synchronization between projection and image
acquisition processes allowed to turn off the projection for
a very short period of time (negligible compared with the
time scales of the chemical system) to take a snapshot of
the pattern without disturbing it. To be close but above
the Turing/Hopf codimension-two point we chose an aver-
aged illumination I = (10500± 50)× 10−6W/cm2. Under
this reference level, i.e. in absence of noise, the system ex-
hibits a hexagonal ordering of spots, with a typical wave-
length of the order of 0.5 mm and oscillating in amplitude
with a period of the order of 5 min. The pixel size and
refreshing time of the noise were chosen respectively to be
0.1 mm and 15 sec, large enough to produce a sizeable
effect but small compared with the given space and time
scales of the respective Turing and Hopf modes.

In a typical experiment, the system entrains, after
a transient, to a rhythm of synchronized oscillating
spots [13]. After a few periods of the sustained oscillation
of the spots, the noise is switched on. Following noisy
forcing, oscillations are drastically arrested within one to
two periods. Only some minor incoherent and irregular
twinkling of the spots remains as a residual dynamics of
the otherwise perfectly steady pattern. Different represen-
tations of this phenomenon are shown in Fig. 2. Noise in-
tensities must be carefully selected, since spots are either
unaffected or incoherently created and destroyed under,
respectively, too weak or strong random forcing.

Two-dimensional simulations were conducted using the
LE model [15] modified to account for light sensitivity [9]

∂u

∂t
= a − c u −

4 u v

1 + u2
− φ(x, t) + ∇2u,

∂v

∂t
= b

(

c u −
u v

1 + u2
+ φ(x, t) + d∇2v

)

. (1)

In this dimensionless form, u and v are proportional to
the activator (I−) and inhibitor (ClO−

2 ) concentrations; a,
b, and c are parameters related to other initial concentra-
tions and rate constants, and d is proportional to the ratio
of diffusivities. φ(x, t) stands for the illumination inten-
sity. To mimic the experiments above, we take φ(x, t) =
φ0 + ξ(x, t), with ξ(x, t) an additive, Gaussian, zero-mean
(〈ξi(t)〉 = 0) random quantity, independently prescribed
in each lattice site and following an Ornstein-Uhlenbeck
statistics 〈ξi(t)ξj(t

′)〉 = (ǫ/τ)exp(−|t − t′|/τ)δij . This set
of stochastic reaction-diffusion equations was solved using
a standard 5-points discretization, with no-flux boundary
conditions, and the Heun method for temporal integra-
tion [20].

In absence of superimposed noise we characterize the
LE model in terms of a phase diagram constructed from
a linear stability analysis around the unstable rest state
(u0 = (a−5φ)/5c and v0 = (25c2+(a−5φ)2)a/25c(a−5φ)).
The basic results are summarized in Fig. 3. Beyond both
the Turing and Hopf instabilities, but still close to the lat-
ter bifurcation curve, (Fig. 3A), the oscillatory mode is
weak and Turing patterns dominate, except near the Tur-
ing/Hopf cobifurcation conditions where oscillating spots
are observed (point B). Simulations slightly beyond that
point show, conversely, a large number of mixed modes
and complex dynamics, for example bistability, formation
of moving domains between two modes or transient solu-
tions [21].

As a first numerical experiment to compare with the
CDIMA results under noise forcing, we consider the sys-
tem initially free of external noise and with a random dis-
tribution of the u and v variables around their values at
the center of the limit cycle (u0,v0). A proper choice of
model parameters (see caption of Fig. 4) leads, in absence
of external noise, to a pattern of oscillating spots [13].
Again, when external noise is introduced into the model,
the oscillations are largely attenuated (see Fig. 4), as it
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Fig. 2: Effect of noise over an experimental oscillatory Turing pattern. (A) Space-time plot constructed from a one-dimensional
cut of the original two-dimensional lattice of oscillating spots. Dashed line marks the time when noise is introduced. (B) Gray
intensity as a measure of inhibitor concentration in arbitrary units (a. u.), averaged over an area of seven spots. Once noise is
applied, synchronized oscillations are largely suppressed. Horizontal axis (time) is the same in both plots. Letters inserted in
(B) refer to the corresponding snapshots (2 × 2 mm2) of the experiment: (C) lower phase of oscillation, (D) higher phase of
oscillation, (E-F) twinkling pattern under noisy forcing. (G) The Fourier transform of pannel B for both cases with and without
noise are compared.
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Fig. 3: A) Phase diagram of the LE model for fixed param-
eters c = 0.3, d = 1.07. Thick lines correspond to φ = 3.2
and thin lines to a = 18. Vertical solid lines correspond to the
Turing bifurcation and curved dashed lines to the Hopf bifurca-
tion. Panel B shows the dispersion relation for real (above) and
imaginary (below) components of the eigenvalues obtained with
a linear stability analysis corresponding to conditions marked
B in panel A. Point B was chosen to correspond to numerical
simulations in Fig. 4, 5 and 6.

is observed experimentally, although some irregular twin-
kling of the spots is here slightly more apparent than in
experiments.

Second panels in Fig. 2 and Fig. 4 show the evolution
of a local quantity, the amplitude of the activator variable
integrated over an area containing seven spots. The at-

Fig. 4: Effect of noise over a numerically simulated oscillatory
Turing pattern. (A) Space-time plot in the LE model with
parameter values a = 18.0, c = 0.3, b = 4.5, φ = 3.2 and
d = 1.07. Temporal and spatial discretization units are respec-
tively ∆t = 0.0025 time units (t.u.) and ∆x = 0.5 space units
(s.u.). Dashed line marks the time when the noise is introduced
with intensity ǫ = 0.03 and correlation time τ = 0.01 t.u. (B)
Gray intensity (as a measure of inhibitor concentration) av-
eraged over a circle of radius 10 s.u. Once noise is applied,
synchronized oscillations are largely arrested. Panels (C) and
(D) correspond, respectively, to lower and higher phase of os-
cillation. (E-F) Snapshots after noise forcing, with a phase
separation of half of the deterministic period (T0 = 9.7 t.u.).
The displayed region corresponds to 50 × 50 s.u.2. (G) The
Fourier transform of pannel B for both cases with and without
noise are compared.
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Fig. 5: Effects of superimposed noise on the LE model for the dynamics of a single spot under conditions marked B in Fig. 3
(oscillating spots). Registers correspond to four different noise intensities. Parameter values as in Fig. 4. Plots in column A
shows the temporal trace of the averaged amplitude for a single spot. Plots in column B shows the probability distribution of
such averaged amplitude. Fourier transforms (FT) of the signals in A are calculated and plotted in column C. The units of the
concentrations are adimensional and are noted by model units (m. u.). Units of pannels in columns B and C are arbitrary.

tenuation of the amplitude of the oscillation by the noise
is clearly observed in both cases. To confirm that the ex-
ternal noise indeed attenuates the oscillation, rather than
causing a simple spatial desynchronization of the spots, we
proceed to analyze the amplitude change of the oscillation
over a single spot. This study is experimentally unfeasible
due to limited accuracy but can be simply performed on
numerical simulations. During the numerical integration
of Eqs. (1) we monitor a particular spot and compute an
averaged amplitude of the inhibitor over the whole area of
that spot

v =
1

A

∫ xo+xm

xo−xm

dx

∫ yo+ym

yo−ym

dy v(x, y) (2)

In the latter expression (xo, yo) corresponds to the local
maximum of the inhibitor field, calculated at each tempo-
ral step, xm and ym are chosen to encompass the whole
spot, and A denotes the total integrated area. The evo-
lution of this quantity is plotted in Fig. 5A. When the
noise is very weak (first row on Fig. 5) the oscillation of
a single spot is perfectly periodic and the corresponding
probability of finding a particular value of the amplitude
P (v) displays the characteristic shape of a sinusoidal sig-
nal, with two peaks corresponding to the extrema of the
oscillation. The Fourier representation displays the char-
acteristic peak at the oscillating frequency. The introduc-
tion of noise makes the spot oscillations to loose tempo-
ral coherence (second and third rows on Fig. 5) and the
probability distribution correspondingly flattens. For a

moderate intensity of the noise (last row on Fig. 5) the
spots behave much more irregularly and the probability
distribution tends to adopt a Gaussian shape centered at
the midpoint between the original maxima. The Fourier
transform still peaks at the oscillation frequency but with
a substantially decreased strength. The oscillation of the
spots has been practically arrested and it is thus being
replaced by a random dynamics.

A more systematic analysis is performed by calculat-
ing the standard deviation (σ) of the probability distri-
bution P (v), plotted in Fig. 5B, and the intensity of the
Fourier peak (vωo

), plotted in Fig. 5C. To gain a confident
statistics we follow five different spots in each numerical
simulation and the procedure is four times repeated with
different random initial conditions and different realiza-
tions of the noise. In Fig. 6 we plot the averaged values σ
and vωo

for a wide range of noise intensities. For very low
noise amplitudes the standard deviation is quite large as
corresponds to the harmonic periodic signal. As the noise
intensity increases, the standard deviation gets reduced
due to the change on the shape of the distribution P (v)
(see Fig. 5B). After this reduction, it passes through a
minimum because the gaussian-like distribution P (v) gets
wider with higher noise intensities Fig. 6A. It is thus clear
that there is a particular noise intensity for which the re-
duction of the local oscillation of the spots is maximal,
as expected. Eventually, for intense noise the spots are
randomly created and destroyed. This regime further en-
hances the standard deviation that is now the signature
of a completely noisy signal, such dynamics s observed
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Fig. 6: Study of the effects of superimposed noise on the mixed
mode solution of the LE model in the situation described in
Fig. 5. The mean standard deviation of the probability dis-
tribution (column B of Fig. 5) and the strength of the peak
of the Fourier transform (column C of Fig. 5) are plotted for
different noise intensities. The latter quantity is renormalized
to the corresponding value of the system in absence of super-
imposed noise. For each intensity an average over twenty spots
is employed (see text). Error bars in both magnitudes account
for statistical errors. Parameter values as in Fig. 4.

for ǫ > 0.08 and it is not shown in Fig. 6. In terms of
the maximum response in Fourier spectrum, attenuation
of oscillations is also clearly seen reproducing at the high-
est noise intensities the quasi-flat spectrum of the forcing
random signal.

Numerical studies concerning the effects of the correla-
tion time (τ) does not show substantial differences with
respect to the results obtained here in the limit of small τ .
In particular, frozen noise is also able to arrest oscillations.
Contrarily such an effect is not observed when increasing
the correlation length. Actually for uniform noise (only
time dependent) the Turing pattern is destroyed in this
case and the system recovers a regime of global Hopf-like
oscillations.

The phenomena here reported point out to a noise-
enhanced relative stability of the Turing vs. the Hopf
mode. One might thus be tempted to propose an interpre-
tation based on a noise-mediated renormalization of the
LE parameters, eventually leading to a shift of the stabil-

ity boundaries in the deterministic phase diagram (Fig. 3).
This idea, much invoked in relation to multiplicative-noise
effects [7], can not be completely ruled out in the present
additive case, since fluctuations enter into the LE model
simultaneously for the activator/inhibitor couple (see Eq.
(1)) [17]. In any case, this approach would require a chal-
lenging theoretical elaboration, including noise correlation
effects, that goes beyond the scope of the present account.
The possibility, instead, of using reduced, amplitude-like
equations, is suggestive but again non standard when noise
with spatiotemporal structure acts on a (spatial and tem-
poral) cobifurcation, as it is the case here. We thus pro-
pose at this time a more intuitive interpretation based on
a different susceptibility of the coexisting Turing and Hopf
modes. A global oscillation, either homogeneous or mixed
with a patterned mode as it is considered here, supposes
a high degree of spatial synchronization, entirely medi-
ated by diffusion. Facing distributed noise of intermedi-
ate intensity, such condition may be rather vulnerable to
rapidly changing fluctuations of small correlation length.
The underlying Turing solution may benefit from its in-
trinsic noise-averaging nature at these scales and thus ap-
pears more robust in front of fast evolving fluctuations of
small intensity and whose spatial structure does not ex-
ceed the pattern wavelength.

In summary we have studied the effect of random forc-
ing on the CDIMA reaction near a Hopf/Turing bifurca-
tion. Prevalence of the latter mode is evidenced for noise
of small correlation parameters and moderate intensity.
To eventually probe the generality of this phenomenon in
other scenarios of mixed bifurcations, different from the
chemical context here, i.e semiconductor [22] or optical
devices [23], should be a challenge for future experimental
and theoretical research.
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