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Abstract

The rotational spectrum of the symmetric top trimethyl tin chloride (CH3)3SnCl
has been studied using a pulsed molecular beam Fourier transform microwave
spectrometer in the frequency range from 3 to 24 GHz. The spectrum is exceedingly
complicated by the internal rotation motions of the three equivalent methyl tops,
the high number of Sn- and Cl-isotopes and the quadrupole hyperfine structure of
the chlorine nucleus. In this paper, we present the microwave spectrum, ab initio
calculations, permutation inversion (PI) group-theoretical considerations, Stark-
effect measurements and finally the assignments and fits of the different torsion-
rotation species. Based on the Stark-effect measurements, the dipole moment is µ =
3.4980(30) D. Due to∆K = ±1-mixing effects we observe linear Stark-effect behavior
and additional quadrupole splitting for some K = 0 torsion-rotation transitions in
(CH3)3SnCl, which can be group-theoretically explained. The symmetric rotor fit
of A1 states leads to an effective B-constant of 1680.040124(50) MHz for the main
isotopologue (CH3)3

120Sn35Cl. A global fit of 182 K = 0 torsion-rotation transitions
yields a V3 torsional barrier of 148.299(54) cm−1.
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1 Introduction

The molecules of the type (CH3)3XY considered here are symmetric tops
with C3v symmetry in their equilibrium geometry. The rotational spectra
of such molecules are especially interesting since they can show splittings
arising from three chemically equivalent methyl tops, or, from a group-
theoretical point of view, splittings from three C3v-equivalent, individually
C3v-symmetric rotors. From these splittings information on the torsional
barrier height and on torsion-torsion interaction terms can be obtained.
In the past only very few spectroscopic studies on molecules of the type
(CH3)3XY have been reported in which the torsion-rotation splitting is re-
solved [1,2,3,4,5].

In general, both steric repulsion and properties of the chemical bonds are
responsible for the barrier height to internal rotation, and their relative
contributions in varying molecular situations is in general different. We
recently presented a comparative study of the different origins of the barriers
to internal rotation for the series (CH3)3XCl with X = C, Si, Ge, Sn [4], since,
although belonging to the same IVA main group in the periodic table, these
four elements are quite different. The study aimed at a better understanding
of the influence of the covalent radius and the properties of the central
atom on the internal rotation barrier and on the top-top communication.
Here, we present an in-depth analysis of the torsion-rotation spectrum of
(CH3)3SnCl, since this molecule shows the most complex and thus most
interesting spectral features.

For (CH3)3CCl the barrier to internal rotation is high, and torsional splittings
have not been resolved so far [6]. (CH3)3SiCl has recently been studied by
microwave spectroscopy [1]. The barrier to internal rotation was determined
to be V3 = 577 cm−1, with observed torsional splitting pattern widths rang-
ing from 50 kHz for J + 1← J = 1← 0 to about 240 kHz (5← 4-transition).
For (CH3)3GeCl a rotational spectrum was recorded from 18 GHz to 40 GHz
in an earlier investigation without resolving the torsional and the chlorine
quadrupole hyperfine splittings [7]. We recently recorded and analysed the
high-resolution microwave spectrum of (CH3)3GeCl including hyperfine
structure and torsional splittings [3]. The barrier height is determined to
be V3 = 372.359(47) cm−1 ((CH3)3

74Ge35Cl). A detailed investigation of the
torsion-rotation splitting pattern of (CH3)3SnCl might lead to a better un-
derstanding of internal rotation dynamics since the torsional barrier can be
expected to be mainly determined by properties of the three Sn-C bonds,
rather than by steric effects, as briefly discussed in [4]. Following this rea-
soning, the barrier to internal rotation should be relatively low, leading to
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large splittings in the microwave spectrum.

The aim of the present study is to investigate the torsion-rotation spectrum
of (CH3)3SnCl to reveal the competing mechanisms of the internal dynam-
ics. The remaining parts of the paper are divided as follows: In section 2 we
describe the experimental details while in section 3 the observed rotational
spectrum is discussed from a more qualitative point of view. In section 4 the
group-theoretical aspects are described, section 5 continues with the analy-
sis of Stark-effect measurements in order to differentiate between different
torsional species and to determine the dipole moment of (CH3)3SnCl. In
section 6 the results of the spectroscopic investigation are discussed. Section
7 concludes the paper and gives an outlook.

2 Experimental

(CH3)3SnCl, with a stated purity of 97 %, was purchased from Sigma-Aldrich
and was used without further purification. (CH3)3SnCl is a solid at room
temperature and melts between 37–39 °C. Its vapor pressure is sufficiently
high to prepare mixtures of about 1 % substance in neon at stagnation
pressures between 50–100 kPa, and thus to record its rotational spectrum.
A broadband (2–26.5 GHz) high resolution Fourier transform microwave
(FTMW) spectrometer, shown in Figure 1, was used to observe the rota-
tional spectrum of (CH3)3SnCl. The coaxially oriented beam resonator ar-
rangement (COBRA) [8] is utilized, resulting in line widths of about 1 kHz
(half width at half height (HWHH)) for argon and about 1.5 kHz (HWHH)
for neon as carrier gas. This yields a resolving power of about 3 kHz for
argon and about 5 kHz for neon, respectively. The spectrometer was de-
signed to provide high sensitivity and resolution also in the low frequency
range below 6 GHz, which was particularly helpful for this study since the
J + 1← J = 1← 0-transition of (CH3)3SnCl lies near 3.2 GHz.

To differentiate between different torsional species by their Stark behavior
and to precisely determine the dipole moment of (CH3)3SnCl we performed
Stark-effect measurements using the CAESAR setup (coaxially aligned elec-
trodes for Stark-effect arranged in resonators) [9] where the reflectors forming
the microwave resonator are used as Stark electrodes themselves, supple-
mented by additional ring electrodes. In this arrangement, which is illus-
trated in Figure 1, the advantage of the longer transit time of the molecular
jet in the coaxial arrangement is particularly useful for Stark-effect exper-
iments, where very narrow line widths are desired. This is especially true
for (CH3)3SnCl, which exhibits a very dense line pattern in the rotational
spectrum. In this setup the direction of the static electric field is perpendic-
ular to the electromagnetic field, leading exclusively to the selection rules
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Figure 1. Experimental setup of the FTMW spectrometer including an assembly
for Stark-effect measurements. The molecules are supersonically expanded into
the resonator through a pulsed nozzle located in the left reflector (COBRA ar-
rangement [8]). The microwave antennae are mounted on the same reflector. For
Stark-effect measurements the right reflector is raised to a high voltage with respect
to the left reflector, which is kept at ground potential. Additional ring electrodes
between the two reflectors insure a homogeneous electric field along the resonator
axis (CAESAR electrode arrangement [9]).

∆MJ = ±1. The Stark electric field E was determined from calibration mea-
surements with the OC36S and 18OCS isotopologues using a dipole moment
of µ = 0.71519(3) D for both species [10].

3 Geometry considerations and spectral observations

Our ab initio calculations show that (CH3)3SnCl exhibits C3v-symmetry in its
equilibrium configuration, both for its SnC3Cl frame, as well as for the ori-
entations of the three CH3 groups. Figure 2 displays the structure obtained
from our BP86/def-TZVPP/ecp-46-mwb(Sn) optimization with no predeter-
mined symmetry imposed. As a result of this high symmetry, the rotational
spectrum should follow that for a prolate symmetric top. The predicted
rotational constants are A = 2330.67 MHz and B = C = 1614.21 MHz.

The observed rotational spectrum is complicated by rather dense line pat-
terns due to internal rotation of the three methyl tops, chlorine nuclear
quadrupole hyperfine structure, and the large number of isotopes of tin
and chlorine. Based on the ab initio calculations (BP86/def-TZVPP/ecp-46-
mwb(Sn)) we estimate a torsional barrier of about 2.1 kJ/mol (175 cm−1) for
one methyl group.

4



Sn

Cl

C0 C2

C1

1
4

7

2
3

5
6

9

2.399 Å

2.163 Å

105.1°

x

y

z

Figure 2. Equilibrium geometry (BP86/def-TZVPP/ecp-46-mwb(Sn)) and number-
ing of the identical nuclei of (CH3)3SnCl. This configuration corresponds to frame-
work 1 in the high-barrier torsion-rotation formalism described in section 4.4.

Figure 3 shows a scheme of the different splitting patterns and subgroups ob-
served for (CH3)3SnCl (J + 1← J = 5← 4-transition). The 5← 4-transition
is spread over a spectral range of about 1.2 GHz. It exhibits two main
groups of about 400 MHz width corresponding to the 35Cl- and 37Cl iso-
topologues, separated by about 400 MHz. Both groups are further split into
17 groups due to internal rotation, six for K = 0 and eleven for K = 1, which
have a maximum separation of about 50 MHz. Each torsional group is now
further separated into seven more groups corresponding to the seven Sn
isotopologues (124Sn (5.98% natural relative abundance), 122Sn (4.71%),120Sn
(32.97%),119Sn (8.58%),118Sn (24.01%), 117Sn (7.57%), 116Sn (14.24%)), which
are separated by about 10 MHz and which have been detected in natural
abundance. The narrowest pattern we observed is due to quadrupole cou-
pling of the chlorine nucleus (I = 3

2 ). In total, one single J+1← J-symmetric
top rotational transition with J > 0 shows more than 1000 lines in the spec-
trum.

Figure 4a shows the measured rotation spectrum between 16507 MHz and
16917 MHz, which corresponds to the J + 1 ← J = 5 ← 4-transition of the
(CH3)3Sn35Cl isotopologue (part a). The braces indicate different torsion-
rotation states for K = 1 and K = 0, denoted by roman and arabic numbering,
respectively. Up to now we were able to unambiguously identify 14 torsional
states (six for K = 0 and eight for K = 1) with the help of the very characteris-
tic tin isotopolog pattern, while we expect the missing three K = 1-torsional
states to be located in the very dense line pattern, where also the torsional
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Figure 3. Schematic representation of the characteristics of the rotational spec-
trum of (CH3)3SnCl. One rotational J + 1 ← J-transition is divided into sev-
eral subgroups because of Cl- and Sn isotopologues, internal rotation of the
three equivalent CH3 groups and Cl nuclear quadrupole hyperfine structure. The
J + 1← J = 5← 4-transition spreads over 1.2 GHz. It is further divided into two
subgroups, one for the 37Cl- and one for the 35Cl-isotopologue. These two groups
are each spread over about 400 MHz and are separated by about 400 MHz. They
are further split due to internal rotation, the seven tin isotopologues and chlorine
nuclear quadrupole coupling, which is the smallest splitting observed (0.1-2 MHz).

groups VIII, IX, 10, and 11 are found. The tin isotopolog pattern displayed
in Figure 4b (labeled with their mass numbers) facilitated first assignments
of this very complex spectrum since the relative abundances of the different
isotopologues are very nicely reproduced by the intensities in the spectrum.
In Figure 4c the chlorine nuclear quadrupole hyperfine structure from the
most intense quadrupole coupling components F′ ← F = 13
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11
2 , 11
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9
2 ,

9
2 ←

7
2 , and 7

2 ←
5
2 for K = 0 is shown. Note, that the quadrupole coupling

components 13
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2 as well as 9
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2 and 7
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5
2 (K = 0) are

6



K=0
9/2 ← 7/2
7/2 ← 5/2

13/2 ← 11/2
11/2 ← 9/2
F´←F

16573.4 16574.0 MHz

K=0
9/2 ← 7/2
7/2 ← 5/2

13/2 ←11/2
11/2 ← 9/2

F´←F

124 122

118

116
119 117124 122

118

116
119 117

16595.0 MHz16550.0

1

2

4

5

VI

VII
VIII

XIII

XII

IX

9, 10

III
XIV

(a)

16917.0 MHz

1

2

4

5

VI

VII
VIII

XIII

XII

IX
10,11

16507.0

III XIV

(a)

(b)

(c)

120

Figure 4. Parts of the rotational spectrum of (CH3)3SnCl. (a) the
J + 1 ← J = 5 ← 4-transition of the main isotopologue (CH3)3Sn35Cl between
16507 and 16917 MHz. 14 groups due to internal rotation are identified (Roman
numbers indicate K = 1 and Arabic numbers K = 0 torsion-rotation transitions). (b)
seven different tin isotopologues, labeled by their Sn masses, with the characteris-
tic intensity pattern reflecting the natural abundances of the different Sn-isotopes,
and (c) chlorine nuclear quadrupole hyperfine structure for K = 0 labeled with the
corresponding F′ ← F quantum numbers of the transition.

usually unresolvably close in frequency for (CH3)3XCl type molecules [11].
This is indeed observed for (CH3)3SiCl [1] and (CH3)3GeCl [3]. However,
for (CH3)3SnCl we find small differences in the transition frequency ranging
from 40 kHz to 450 kHz for these components. These frequency differences
are dependent on J and on the torsional species; they will be discussed in
more detail in section 6.2.

4 Group Theory / Theoretical Considerations

4.1 The group G162

To facilitate the assignment and the fitting of spectroscopic constants to this
complex rotational spectrum we used permutation-inversion (PI) group
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Table 1
Character Table of G162 with ε = exp(2πi/3). F4a and F4b as well as F5a and F5b
are separable degenerate to each other and can be combined to form the reducible
representations I4 and I5 as given in the last two rows.

E αβγ αβ−1 α−1β α αβ α−1βγ c αc α−1c σ βσ β−1σ

1 2 3 3 6 6 6 18 18 18 27 27 27

A1 1 1 1 1 1 1 1 1 1 1 1 1 1 Tz

A2 1 1 1 1 1 1 1 1 1 1 -1 -1 -1 Rz

E1 2 2 2 2 2 2 2 -1 -1 -1 0 0 0 (Tx, Ty)(Rx,Ry)

E2 2 2 2 2 -1 -1 -1 2 -1 -1 0 0 0

E3 2 2 2 2 -1 -1 -1 -1 2 -1 0 0 0

E4 2 2 2 2 -1 -1 -1 -1 -1 2 0 0 0

I1 6 -3 0 0 0 -3 3 0 0 0 0 0 0

I2 6 -3 0 0 3 0 -3 0 0 0 0 0 0

I3 6 -3 0 0 -3 3 0 0 0 0 0 0 0

F4a 3 3 3ε* 3ε 0 0 0 0 0 0 1 ε ε*

F4b 3 3 3ε 3ε* 0 0 0 0 0 0 1 ε* ε

F5a 3 3 3ε* 3ε 0 0 0 0 0 0 -1 -ε -ε*

F5b 3 3 3ε 3ε* 0 0 0 0 0 0 -1 -ε* -ε

I4 6 6 -3 -3 0 0 0 0 0 0 2 -1 -1

I5 6 6 -3 -3 0 0 0 0 0 0 -2 1 1

theory. The PI group G162, appropriate for (CH3)3SnCl, as well as statistical
weights for the torsional species have already been worked out [12,13,14].
G162 (Table 1) is formed from a direct product of three C3 groups [C3(C0)
⊗ C3(C1) ⊗ C3(C2) = G27] for the three methyl groups following the num-
bering in Figure 2, respectively, and a semi-direct product with the C3v

group (six elements) for the equilibrium symmetry [14]. It consists of 13
classes. With the numbering of the hydrogen and carbon nuclei given in
Figure 2 the generating operations are α = (123), β = (456), γ = (789),
c = (C0,C1,C2)(1, 4, 7)(2, 5, 8)(3, 6, 9) and σ = (C1,C2)(2, 3)(4, 7)(5, 9)(6, 8)∗.
Due to the high symmetry of (CH3)3SnCl the group G162 has four dou-
bly degenerate species (Ei, i = 1 − 4), three sixfold-degenerate (I j, j = 1 − 3),
and four threefold-degenerate irreducible representations (F4a, F4b and F5a,
F5b). F4a, F4b and F5a, F5b, respectively, are separably degenerate [15,16] be-
cause of time inversion and can be combined in pairs to give the reducible
representations I4 and I5 [13], respectively, as shown in the last two rows of
Table 1.

4.2 The coordinate system

The question of how a given symmetric rotor energy level of (CH3)3SnCl
will split when the three CH3 internal rotations become feasible can only
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be answered after the transformation properties of the rotational and other
basis functions have been determined. These transformation properties can
in turn only be determined after the relation between the laboratory-fixed
and molecule-fixed coordinates has been defined. We follow closely the
procedure described in Section II of Ref. [17], resulting in the following
equation

Ri = R + S−1(χ, θ, φ)ai(α0, α1, α2), (1)

which should be read from right to left. This procedure, in its simplest form,
consists of choosing a set of constants a0

i , which describe a set of initial
vector positions for the atoms i in the molecule-fixed axis system. These
initial positions, which are usually chosen as symmetrically as possible, are
then subjected to the large amplitude motions, which for (CH3)3SnCl consist
of three internal rotation angles α0, α1, and α2, to generate a molecule of
some particular instantaneous shape a′i(α0, α1, α2). These shape coordinates
are then translated through a distance A to give coordinates ai(α0, α1, α2) =
a′i(α0, α1, α2)−A(α0, α1, α2), for which the origin coincides with the center of
mass of the molecule. These center-of-mass coordinates are then substituted
into Eq. 1, where they are rotated (using S−1(χ, θ, φ)) and translated (by R)
to give the proper molecular orientation and location in the laboratory-fixed
axis system.

The positions aSn and aCl are simple to describe, since they are initially
chosen to lie at the origin and on the z axis of the molecule, respectively,
and (apart from center-of-mass effects) they do not vary with the internal
rotation angles (e.g., a′Sn = a0

Sn):

aSn(α0, α1, α2) = a′Sn −A(α0, α1, α2) = a0
Sn −A(α0, α1, α2) = 0 −A(α0, α1, α2)

(2)

aCl(α0, α1, α2) = a′Cl −A(α0, α1, α2) = a0
Cl −A(α0, α1, α2) =


0

0

rSn−Cl

 −A(α0, α1, α2).

(3)

The positions of the atoms in each of three methyl groups are less straight-
forward to set up. Each of the three methyl tops consists of a carbon atom
C j ( j = 0, 1, 2) as anchor atom which is connected to the central tin atom and
the hydrogen atoms H jk ( j = 0, 1, 2; k = 0, 1, 2), with, for example, H00 being
H1, H10 being H4, and H22 being H9 in Figure 2 (framework 1), respectively.
To describe the positions of the internal rotors and the internal rotation mo-
tions we first define the initial positions of all the carbon atoms as lying at
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the same point on the positive Sn-Cl axis:

a0
C j
=


0

0

rSn−C

 , (4)

which will then be rotated about the y axis by the Cl-Sn-C bond angle βC

and, for j=1 and 2, out of the zx-plane to give

aC j = S−1(0, βC, 2π j/3)a0
C − A, j = 0, 1, 2. (5)

We assume βC=105.1 °, as obtained from our ab initio optimization (Figure 2),
to be constant. The positions of the hydrogen atoms H jk ( j = 0, 1, 2; k = 0, 1, 2)
are obtained by connecting them to the corresponding C j-atom with the
bond distance rC−H, using a vector

a0
H =


0

0

rC−H

 . (6)

This vector is first rotated about the y axis by the complement π-βH of the
Sn-C-H bond angle βH, then rotated about the z axis by an angle of 2πk/3
for each H jk, and finally attached to the C j atom on the z axis to give

aHjk = S−1(0, βC, 2π j/3)
[
a0

C + S−1(0, π − βH, α j + 2πk/3)a0
H

]
− A, (7)

with βH taken to be constant at 109.5 °. Eq. 7 indicates that a change of the
torsional angle α j leads only to a change of the positions of the hydrogen
atoms connected to the carbon C j. In general, we assume the skeletal bond
distances and angles to be constant during the internal rotation motions,
with the values for the configuration (framework 1) displayed in Figure 2.

We have now defined nine different variables to describe (CH3)3SnCl: The
three torsional angles α j, the three Eulerian angles χ, θ, and φ to transform
from the molecule-fixed to the laboratory-fixed coordinate system, and the
three coordinates for the molecular center-of-mass R. The transformation
properties of these nine variables under the generating symmetry operations
α = (123), β = (456), γ = (789), c = (C0,C1,C2)(1, 4, 7)(2, 5, 8)(3, 6, 9) and
σ = (C1,C2)(2, 3)(4, 7)(5, 9)(6, 8)∗ of G162, which are needed for the following
considerations, are given in Table 2.

Based on these transformation properties the determination of the symmetry
species of the different rotational and torsional states becomes possible. The
torsional states and their symmetry species are given in Table 3, together
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Table 2
Transformation properties of the nine variables under the generating operations of
G162.

R α0 α1 α2 rotation

(123) R α0 + 2π/3 α1 α2 χ, θ, φ

(456) R α0 α1 + 2π/3 α2 χ, θ, φ

(789) R α0 α1 α2 + 2π/3 χ, θ, φ

c R α1 α2 α0 χ + 2π/3, θ, φ

σ −R −α0 −α2 −α1 π − χ, π − θ, π + φ

Table 3
Symmetry species of the torsional tunneling levels and torsion-rotation energy lev-
els [13] which arise when all three methyl rotors have only the zero-point torsional
excitation, the corresponding nuclear spin weights for the torsion-rotation levelsa,
and their linear or quadratic Stark-effect behavior for K = 0, as predicted from group
theory and as experimentally determined from the corresponding torsion-rotation
transitions.

|MaMbMc〉
b Γtorsional K = 0 K = 3n ± 1 K = 3n Stark-effect behavior

Jeven Jodd group theory exp.

|0, 0, 0〉 A1 A1
(24)

A2

(24)
E1
(40)

A1+A2

(24 + 24)
quad quad

|±1, 0, 0〉 I2 I2

(64)
I2

(64)
2I2

(128)
2I2

(128)
linear linear

|±1,±1, 0〉 I1 I1
(32)

I1
(32)

2I1
(64)

2I1
(64)

linear linear

|±1,∓1, 0〉 I4 I4
(32)

I5

(32)
I4+I5

(32 + 32)
I4+I5

(32 + 32)
quad quad

|±1,±1,∓1〉 I3 I3

(16)
I3

(16)
2I3

(32)
2I3

(32)
linear linear

|±1,±1,±1〉 E2 E2

(8)
E2

(8)
E3+E4
(4 + 4)

2E2

(16)
linear quad

a Statistical weights here differ from those in Ref. [13]. Our results agree with the Γspin decomposition and with
Table II in Ref. [13], but we have counted as Pauli-allowed all torsion.rotation-nuclear-spin states of species trnA1

and trnA2 formed in direct products of the form trΓ ×n Γ.
b Four more torsional basis functions must be generated for each of the four I species rows by cyclic permutation
of the quantum numbers inside the ket.

with the statistical weights for their rotational levels [13]. The symmetries of
the symmetric top wavefunctions |JKM〉 are A1 and A2 for J even and odd,
respectively, when K = 0; A1⊕A2 when K = 3n > 0; and E1 when K = 3n± 1.
The rotational levels of I2 torsional states have the largest statistical weight
and can be expected to be dominant in the spectrum.
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4.3 First-order Coriolis coupling

It is well known from earlier studies that for the problem of an asymmetric
top molecule containing one methyl rotor, torsion-rotation levels of the
totally symmetric component A1 can always be fitted using a rigid rotor
Hamiltonian to obtain effective rotational constants. But it has not been
explicitly shown yet if this also applies to a C3v-symmetric molecule of
the type (CH3)3XY, for which additional degeneracies are introduced by
its high symmetry. To describe rotational levels of a given torsional state
using a rigid rotor Hamiltonian, the matrix elements for first-order Coriolis
coupling between torsion and overall rotation must vanish. This in turn
requires

〈nΓ|pαi |n
′

Γ〉 = 0, (8)

with nΓ and n′Γ being torsional components of a state of symmetry Γ, and pαi

being the torsional angular momentum of top i (i = 0, 1, 2). For (CH3)3SnCl
the three pαi span the symmetry species A2 ⊕ E1, and each pαi changes sign
under time inversion. Watson [18] worked out a general theorem in which he
shows that for operators O changing sign under time inversion the matrix
element 〈nΓ|O|n′Γ〉 always vanishes if Γ(O) does not belong to the repre-
sentations of the antisymmetrized product

[
Γ2(n)

]
antisym of the considered

symmetry species. A direct product of an irreducible representation with
itself can always be reduced into a symmetrized and an antisymmetrized
product [19].

To obtain vanishing matrix elements for Coriolis coupling neither A2 nor E1

may be contained in the antisymmetrized product of the symmetry species
of the torsional state. Applying this theorem to (CH3)3SnCl, i.e. the PI group
G162, shows that indeed rotational levels of the A1 and A2 torsional states can
be fitted using a rigid rotor Hamiltonian, while all others will be perturbed
by first-order Coriolis coupling.

4.4 High-barrier tunneling-rotation formalism

To determine the relative ordering and to facilitate an assignment of the
torsional transitions observed in the spectrum we used the high-barrier
group-theoretical tunneling-rotation formalism [20] appropriate for G162,
based on the coordinates and their transformation properties defined above,
to predict the torsional splitting pattern for K = 0. For a C3v-symmetric
molecule with three group-theoretically equivalent internal rotors such as
(CH3)3SnCl, n = 27 different frameworks are present. These frameworks
can be generated by applying the G162 operators αpβqγr to framework 1
(in Figure 2), with the integers p, q and r in the range 0 ≤ p, q, r ≤ 2.
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The frameworks can be ordered in a number of ways, but for the pur-
poses of this work we use the following numbering. Framework 1 has
pqr = 000. Frameworks 2-7 are formed from framework 1 by rotating only
one methyl group at a time and have pqr = 100, 200, 010, 020, 001, 002, re-
spectively. Frameworks 8-13, formed from framework 1 by an antigeared
rotation of two methyl groups, have pqr = 110, 220, 101, 202, 011, 022. Frame-
works 14-19, formed by a geared rotation of two methyl groups, have pqr =
120, 210, 102, 201, 012, 021. Frameworks 20 and 21, formed by a rotation of all
three methyl groups in the same sense, have pqr = 111 and 222. Frameworks
22-27, formed from framework 1 by a rotation of all three methyl groups,
two in one sense and one in the other, have pqr = 112, 221, 121, 212, 211, 122.

These 27 frameworks can be interconnected by 351 tunneling pathways, rep-
resented mathematically by tunneling matrix elements. If the initial frame-
work is taken to be framework 1, as displayed in Figure 2, then the 26
pathways and the corresponding matrix elements can be denoted as 1→ n
and H1,n, respectively, n = 2 − 27. The properties of the group G162 can be
used to show that only five of all tunneling pathways are topologically
inequivalent. These five pathways and the corresponding five tunneling
matrix elements (real for the K = 0 problem) correspond physically to the
ordering described above, i.e.: i) rotation of only one CH3 group (HR=H1,n,
n = 2 − 7), ii) rotation of two CH3 groups in a geared (HG=H1,n, n = 14 − 19)
or antigeared way (HA=H1,n, n = 8 − 13); and iii) rotation of all three CH3

groups at the same time, either having the same (HE=H1,n, n = 20 − 21) or
opposite sense (HL=H1,n, n = 22− 27). In the high-barrier tunneling-rotation
formalism it is necessary to assume that (CH3)3SnCl spends most of its time
vibrating in the vicinity of one of these 27 frameworks and only occasion-
ally tunnels from one conformation to another [21]. Quantum mechanically
speaking, we require the splittings caused by tunneling motions to be small
compared to the vibrational spacings associated with a single equilibrium
configuration (framework).

Based on our ab initio calculations the distance of closest approach for two
hydrogen atoms on different methyl groups is about 3.8 Å for the equilib-
rium geometry of (CH3)3SnCl (Figure 2), while in the equilibrium geome-
try of(CH3)3SiCl [1,4] and (CH3)3GeCl [3] the distances decrease to about
3.2 Å and 3.3 Å, respectively. The van-der-Waals radius for hydrogen is
1.2 Å indicating clearly that all five tunneling pathways have to be con-
sidered as feasible for (CH3)3SnCl. This leads to a tunneling Hamiltonian
matrix for K = 0 connecting all 27 frameworks by the five feasible tunnel-
ing pathways [4]. (Note that the definitions of the matrix elements HL and
HE in the Supporting Information for Ref. [4] are exchanged with respect to
those used here and in Ref. [3].) Diagonalization of this symmetric tunneling
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Figure 5. Torsional splitting pattern for the JK = J0 rotational energy level ob-
tained from the high-barrier torsion-rotation tunneling formalism. The theoret-
ical predictions are compared with the measured rotational spectrum for the
J + 1 ← J = 1 ← 0-transition of the 35Cl isotopologue (right). (The two regions
of 37Cl transitions occurring in the spectrum on the right should be ignored for this
comparison.) Lines in the torsion-rotation symmetry groups are further split due
to tin isotopologues and chlorine nuclear quadrupole hyperfine structure. Some
of these quadrupole assignments are indicated here for the A1- and E2-symmetry
species groups.

matrix yields energy level expressions for the various symmetry species [4],

W(A1) = E0 + 6 HR + 6 HA + 6 HG + 6 HL + 2 HE

W(E2) = E0 − 3 HR − 3 HA + 6 HG − 3 HL + 2 HE

W(I1) = E0 − 3 HA + 3 HL −HE

W(I2) = E0 + 3 HR − 3 HL −HE

W(I3) = E0 − 3 HR + 3 HA −HE

W(I4) = E0 − 3 HG + 2 HE,

(9)

and the torsion-rotation splitting pattern for K = 0 displayed in Figure 5.
This diagram is most easily understood by reading from left to right, starting
with a JK=J0 = even symmetric rotor energy level at energy E0. By consid-
ering internal rotation of only one methyl top at a time (H1,n=2−7 = HR < 0,
other H1,n = 0) the J0-energy level splits into four torsion-rotation sublevels:
A1, I2, I1 ⊕ I4 and I3 ⊕E2, with I1 and I4 as well as E2 and I3 being degenerate.
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Note, that this pattern corresponds exactly to the one obtained using local
mode theory [4].

As the next step we consider further modifications of the energy levels,
which result when interactions due to internal rotation of two tops (geared
(HG) and anti-geared (HA)) as well as of three tops (with the same (HE) and
opposite (HL) sense of rotation) are also included. Figure 5 thus indicates
that the J0 symmetric rotor level splits finally into six G162 (see Table 1)
torsion-rotation components A1, E2, I1, I2, I3 and I4 for Jeven. For Jodd, these
species must be multiplied by A2 to obtain A2, E2, I1, I2, I3 and I5.

Based on other internal rotation studies we expect the K = 0 pure rotational
spectrum to mimic the K = 0 torsional splitting pattern, i.e., to consist of
six components with a relative spacing similar to that calculated for the
energy levels, but with the opposite frequency ordering. (For example, we
expect the torsional transition A2 ← A1 (Jeven) to be located at the high fre-
quency end of the K = 0 series in Figure 5). We display a part (between
3225–3380 MHz) of the recorded J + 1 ← J = 1 ← 0-transition, which only
consists of K = 0-transitions, on the right of Figure 5 to show that this
expectation is fulfilled. The torsion-rotation groups, which exhibit nuclear
quadrupole and isotopolog structures, are marked with braces and labeled
by the corresponding symmetry species for J = 0. For the A1 torsional transi-
tion the quantum numbers indicate the different quadrupole coupling com-
ponents (2F′ ← 2F) of the transition. Each of these quadrupole components
occurs for each of the seven tin isotopologues within one torsion-rotation
group. Here it is interesting to point out that for the J + 1 ← J = 1 ← 0-
transition the splitting due to quadrupole hyperfine coupling is larger than
the separation between the different tin isotopologues. This is reversed for
the higher J-transitions. Three torsion-rotation transitions of (CH3)3Sn37Cl,
namely A2 ← A1, I1 ← I1, and I2 ← I2, are also present in Figure 5. How-
ever, the spectra of (CH3)3Sn35Cl and (CH3)3Sn37Cl are overlapped for the
J + 1 ← J = 1 ← 0-transition only, while they are well separated for all
higher J-transitions.

In order to obtain semiquantitative agreement between the theoretically
derived splitting pattern of the torsion-rotation energy levels and the pattern
of the observed torsion-rotation transition frequencies, the contributions of
the five different torsional tunneling pathways have to be considered as
follows:

−HR ≈ −HG ≈ +HA > −HE ≈ +HL > 0. (10)

This means that B-value changes caused by torsional tunneling effects must
be approximately the same for internal rotation of one (HR) and of two CH3

groups (HA, HG), but with a different sign for HA (antigeared rotation of two
CH3 groups at a time). The contributions of internal rotations of three methyl
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groups (HE, HL) are, as expected, significantly smaller by about one order of
magnitude. As a comparison, for (CH3)3SiCl [1] we have to assume [4]

−HR > −HG ≈ +HA ≈ +HE ≈ −HL ≈ 0, (11)

with |HR| being much larger than the magnitudes of the other four. This
change can be explained to zeroth order by the larger steric repulsion in
(CH3)3SiCl compared to (CH3)3SnCl such that, from an energetic point of
view, internal rotation of two and three methyl groups at a time is quite
unlikely for (CH3)3SiCl [4].

5 Stark-Effect Measurements

To further confirm our initial symmetry-species assignments from the high-
barrier tunneling-rotation formalism of the K = 0 torsion-rotation transi-
tions (Figure 5) we performed Stark-effect measurements using the CAESAR
arrangement [9] for the J + 1 ← J = 1 ← 0- and 5 ← 4-transitions to dif-
ferentiate between torsion-rotation transitions on the basis of their different
(i.e., linear vs. quadratic) Stark effect. Watson [18] deduced a strict selection
rule for linear Stark-effect based on group-theoretical considerations

Γ(µ f ) = Γ(J · µ) ⊂
[
Γ2
]

antisym
, (12)

with Γ(µ f ) = A2 (symmetry species of the space-fixed dipole moment op-
erator µ f ). Eq. 12 is fulfilled when A2 is contained in the antisymmetrized
product of the symmetry species of the considered torsion-rotation state.
If this is the case, the transitions involving torsion-rotation states of that
symmetry can show a linear Stark-effect. Otherwise, the series expansion
for Stark-splittings in powers of the electric field strength E must begin with
a quadratic term. The latter turns out to be the case for A1, A2, I4, and I5. For
torsion-rotation levels of all other symmetries in G162, the expansion may
begin with a linear term in E. The group-theoretical results are included
in Table 3 together with the experimentally observed Stark behavior of the
six internal rotation groups (K = 0 only) of the 1 ← 0-transition. As can be
seen, the Stark measurements support our initial assignments based on the
predicted splitting patterns (Figure 5).

Figure 6 shows example spectra for linear Stark behavior of the species
I2 ← I2 (J + 1← J = 5← 4-transition, K = 1) at two different electric field
strengths: 1.6 V/cm (left panel) and 8.1 V/cm (right panel). These spectra
demonstrate that the Stark-shifted and Stark-split lines from our CAESAR
arrangement are very narrow. Also, significant line splittings are already
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Figure 6. Amplitude spectra of the linearly Stark split torsion-rotation transition
of the main isotopologue with I2 ← I2 and J + 1← J = 5← 4 (K=1), shown at two
different electric field strengths: 1.6 V/cm (left panel) and 8.1 V/cm (right panel). To
avoid clutter, transitions with positive MJ are labeled in the right panel, transitions
with negative MJ in the left.

observed at a relatively low electric field strength of only 1.6 V/cm, indicating
a large dipole moment for (CH3)3SnCl.

Interestingly, not only A2 ← A1 and I5 ← I4 (Jeven), but also the E2 ← E2

torsion-rotation transition, which is located next to A2 ← A1 in the spectrum
(Figure 5), shows a quadratic Stark effect, even though, based on group
theory, it could exhibit linear Stark behavior (Table 3). Furthermore, the
experimental Stark-coefficients for the A1- and the E2-species are absolutely
identical.

As stated, we observed the unusual phenomenon of linear Stark effect for
K = 0 torsion-rotation transitions of a symmetric top molecule. The linear
Stark effect is group-theoretically allowed for the K = 0 torsion-rotation
species I1, I2, I3, and E2 as given in Table 3, while A1 and I4 (Jeven) can
only have quadratic Stark effect. Experimentally, however, we observe a
quadratic Stark effect for E2 (Table 3). Furthermore, the experimental Stark-
coefficients for the A1 and the E2 species are absolutely identical. It seems
possible that the linear Stark effect for K = 0 torsion-rotation species is
due to ∆K = ±1 mixing between the K = 1 and K = 0 sublevels, since
only torsional states which have the same symmetry species for K = 0 and
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K = 1 show linear Stark effect. Usually, ∆K = ±1 mixing plays no role for
the ground vibrational state of symmetric top molecules. For (CH3)3SnCl
it is possible that coupling of the internal rotation angular momenta of the
three equivalent methyl groups with the overall angular momentum leads
to these mixing effects. In addition, (CH3)3SnCl loses its C3v equilibrium
symmetry when internal rotation takes place. To examine the assumption
of ∆K = ±1-mixing we set up a simple wave function linear combination
(LC) ansatz of the |J K M〉 = |J 1 M〉 and |J 0 M〉 states

|ΨLC〉 =
∣∣∣α · ψa(K = 0) + β · ψb(K = 1)

〉
(13)

with the coefficients α and β (α2 + β2 = 1), which describe the contributions
of K = 0 and K = 1 to ΨLC. The ∆J = ∆K = 0 -matrix elements of the linear
Stark effect operator can be written as

HStark = −
µEK

(J + 1)
(14)

for MF = F = I + J, with µ as dipole moment and E as electric field strength
[11]. Following this approach we used our Stark effect measurements to
determine the K = 1 contribution in Eq. 13. For the I1 and the I2 species
we found values of β(I1) = 0.1 and β(I2) = 0.09, respectively, with α2 +
β2 = 1. Consequently, ∆K = ±1 mixing is quite small, but large enough to
significantly change the physical picture of the Stark effect.

Stark effect measurements for other M states are complicated in the presence
of a quadrupole nucleus such as chlorine. With the electric field strengths
possible in the CAESAR arrangement and with quadrupole coupling split-
tings on the order of 0.5–2 MHz for (CH3)3SnCl we have to work in the
inconvenient intermediate field regime, for which simplified methods of
Stark analysis, which are useful for the weak field case, lose their applica-
bility. To quantitatively analyse our Stark effect measurements, we used the
program QSTARK [22], which diagonalizes the energy matrix separately for
each value of the applied electric field.

To determine the dipole moment of (CH3)3SnCl we concentrated only on
the J + 1,Γ′ ← J,Γ = 1,A2 ← 0,A1 torsion-rotation transition to avoid
perturbations and influences from internal rotation. We were able to fit 28
lines, corresponding to five 2MF + 2← 2MF-quadrupole transitions (5← 3
and 3 ← 1 for 2F + 2 ← 2F = 5 ← 3; 3 ← 1 and 1 ← 3 for 2F + 2 ← 2F =
3 ← 3, and 1 ← 3 for 2F + 2 ← 2F = 1 ← 3, respectively) using QSTARK.
This fit gave a standard deviation of σ = 0.71 kHz and a dipole moment
of µ = 3.4980(30) D for (CH3)3SnCl. The calculated value of µ = 3.318 D
(BP86/def-TZVPP/ecp-46-mwb(Sn)) is close to the experimental one.
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Table 4
Effective asymmetric-semi-rigid rotor molecular constants from a fit of the A2 ← A1
(J =even) and A1 ← A2 (J =odd) J + 1 ← J torsion-rotation transitions, i.e., from
a fit of all A species transitions together, of different isotopologues of (CH3)3SnCl.
N denotes the number of lines included in the fit, σ gives the standard deviation
of each semi-rigid-rotor fit, numbers in parentheses are standard deviations of the
molecular parametersa as determined from the fit.

isotopologue Be f f /MHz eqQ/MHz DJ/kHz N σ/kHz

(CH3)3
120Sn35Cl 1680.040124(72) -35.7747(22) 0.3437(17) 29 1.5

(CH3)3
118Sn35Cl 1680.94621(16) -35.7840(47) 0.3466(28) 22 2.2

(CH3)3
116Sn35Cl 1681.871339(59) -35.7704(28) 0.3482(11) 18 0.7

(CH3)3
120Sn37Cl 1634.19255(14) -28.2109(15) 0.34b 3 0.5

a One standard uncertainty (1σ) in units of the last significant digit, as obtained
from the least squares fitting (type A uncertainty, k=1)[24].
b Fixed in the least squares fit.

6 Spectral analyses and discussion

6.1 Rigid rotor symmetric top analysis

As shown in Section 4.3, matrix elements for first order Coriolis coupling
vanish only for A1 and A2 torsion-rotation transitions, implying that only
they can be fitted to effective molecular constants using a rigid symmetric
rotor Hamiltonian (including centrifugal distortion). As a starting point of
our analysis, we thus performed such fits for three different isotopologues
of the A2 ← A1 (J=even) and A1 ← A2 (J=odd) torsion-rotation transitions
for six J + 1 ← J-transitions (J = 0, ..., 5), explicitly taking the quadrupole
components into account. We used the program SYM2QS [23], which is
suited for linear and symmetric top molecules with up to two quadrupole
nuclei. We assume an uncertainty in the frequency determination of the
lines of 2 kHz.

The results for the different isotopologues are summarized in Table 4. For
the main isotopologue (CH3)3

120Sn35Cl we included 29 lines in the fit and
obtained an effective rotational constant B = 1680.040124(72) MHZ and a
quadrupole coupling constant eqQ(35Cl) = −35.7747(22) MHZ. The standard
deviation of this fit is σ = 1.5 kHz. The quadrupole coupling constants agree
within twice their standard deviations for the three most abundant Sn-
species of the 35Cl isotopologue, while the effective B constants increase
with decreasing mass of the Sn-isotope by about 0.9 MHz, for each step
from 120Sn to 118Sn to 116Sn (Table 4). Because of overlapping lines and lower
intensities, the number of lines included in the fit becomes smaller for the
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weaker isotopologues. The spectrum of the 120Sn37Cl isotopologue was in
fact too weak and overlapped to permit secure identification of the higher
J transitions, so only the results of a two parameter fit (i.e., B and eqQ) of
the J+ 1← J = 1← 0 hyperfine components is presented. Nevertheless, the
ratio of the quadrupole coupling constants for chlorine determined from
Table 4 for the 120Sn isotopologues, Q(35Cl)/Q(37Cl) = 1.2681(1), is very close
to the atomic quadrupole moment ratio of 1.2688 [11]. Table 5 gives the
A1/A2 torsion-rotation transition frequencies included in the SYM2QS fits
for the different isotopologues.

Table 5: Torsion-rotation transition frequencies (K = 0;
A2 ← A1 (J =even), A1 ← A2 (J =odd)) for different
isotopologues of (CH3)3SnCl with νobs: observed fre-
quency, νcalc: calculated frequency from the SYM2QS
least-square fit, and δν = νobs-νcalc.

isotopologue J′ J 2F′ 2F νcalc/MHz νobs/MHz δν/kHz

(CH3)3
120Sn35Cl 1 0 1 3 3369.0305 3369.0301 -0.37

5 3 3361.8710 3361.8745 3.53

3 3 3352.9302 3352.9279 -2.29

2 1 5 3 6720.9161 6720.9183 2.11

7 5 6720.9175 6720.9183 0.71

3 1 6711.2138 6711.2145 0.73

1 1 6720.1495 6720.1497 0.15

5 5 6711.9753 6711.9767 1.36

3 2 9 7 10080.6303 10080.6318 1.51

7 5 10080.6297 10080.6318 2.09

7 7 10071.6875 10071.6867 -0.83

4 3 11 9 13440.5045 13440.5037 -0.80

9 7 13440.5042 13440.5037 -0.51

7 5 13439.4650 13439.4634 -1.56

5 3 13439.4664 13439.4634 -2.96

5 5 13448.4072 13448.4049 -2.26

7 7 13443.6447 13443.6439 -0.81

9 9 13431.5614 13431.5610 -0.42
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Table 5: continue: Torsion-rotation transition frequen-
cies (K = 0; A2 ← A1 (J =even), A1 ← A2 (J =odd)) for
different isotopologues of (CH3)3SnCl.

isotopologue J′ J 2F′ 2F νcalc/MHz νobs/MHz δν/kHz

5 4 13 11 16800.4173 16800.4178 0.49

11 9 16800.4172 16800.4178 0.65

9 7 16799.8027 16799.8028 0.11

7 5 16799.8033 16799.8028 -0.47

9 9 16802.9432 16802.9455 2.22

6 5 15 13 20160.3223 20160.3229 0.51

13 11 20160.3222 20160.3229 0.61

11 9 20159.9130 20159.9134 0.32

9 7 20159.9133 20159.9134 0.03

13 13 20151.3790 20151.3792 0.20

11 11 20162.4391 20162.4379 -1.19

(CH3)3
120Sn37Cl 1 0 1 3 3275.4416 3275.4413 -0.22

5 3 3269.7964 3269.7968 0.39

3 3 3262.7455 3262.7454 -0.17

(CH3)3
118Sn35Cl 1 0 1 3 3370.8450 3370.8415 -3.47

5 3 3363.6836 3363.6890 5.40

3 3 3354.7405 3354.7378 -2.67

2 1 7 5 6724.5420 6724.5426 0.55

5 3 6724.5406 6724.5426 1.95

3 2 9 7 10086.0666 10086.0660 -0.66

7 5 10086.0660 10086.0660 -0.08

5 3 10083.8473 10083.8489 1.63

3 1 10083.8524 10083.8489 -3.45

4 3 11 9 13447.7525 13447.7525 -0.07

9 7 13447.7522 13447.7525 0.22
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Table 5: continue: Torsion-rotation transition frequen-
cies (K = 0; A2 ← A1 (J =even), A1 ← A2 (J =odd)) for
different isotopologues of (CH3)3SnCl.

isotopologue J′ J 2F′ 2F νcalc/MHz νobs/MHz δν/kHz

9 9 13438.8071 13438.8086 1.43

7 7 13450.8935 13450.8939 0.35

5 4 13 11 16809.4768 16809.4787 1.90

11 9 16809.4766 16809.4787 2.07

9 7 16808.8620 16808.8596 -2.43

7 5 16808.8626 16808.8596 -3.01

6 5 15 13 20171.1929 20171.1933 0.34

13 11 20171.1928 20171.1933 0.45

11 9 20170.7835 20170.7838 0.32

9 7 20170.7838 20170.7838 0.02

13 13 20162.2472 20162.2466 -0.63

(CH3)3
116Sn35Cl 1 0 1 3 3372.6918 3372.6915 -0.30

2 1 7 5 6728.2422 6728.2426 0.43

5 3 6728.2408 6728.2426 1.83

3 2 9 5 10091.6170 10091.6172 0.16

7 5 10091.6165 10091.6172 0.74

4 3 11 9 13455.1530 13455.1525 -0.53

9 7 13455.1527 13455.1525 -0.24

7 5 13454.1136 13454.1141 0.43

5 3 13454.1150 13454.1141 -0.96

7 7 13458.2929 13458.2927 -0.16

5 4 13 11 16818.7272 16818.7272 -0.01

11 9 16818.7270 16818.7272 0.16

9 7 16818.1127 16818.1121 -0.62

7 5 16818.1132 16818.1121 -1.20
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Table 5: continue: Torsion-rotation transition frequen-
cies (K = 0; A2 ← A1 (J =even), A1 ← A2 (J =odd)) for
different isotopologues of (CH3)3SnCl.

isotopologue J′ J 2F′ 2F νcalc/MHz νobs/MHz δν/kHz

6 5 15 13 20182.2930 20182.2935 0.44

13 11 20182.2929 20182.2935 0.54

11 9 20181.8837 20181.8840 0.25

9 7 20181.8840 20181.8840 -0.04

6.2 Further discussion of the quadrupole coupling

Comparing the quadrupole coupling constant of (CH3)3SnCl (eqQ(35Cl) =
−35.776(81) MHZ) (obtained from the program XIAM [25], see below)
with those of (CH3)3GeCl [3,4] (eqQ(35Cl) = −40.0711(14) MHZ), (CH3)3SiCl
[1] (eqQ(35Cl) = −34.81134(83) MHZ) and (CH3)3CCl [6] (eqQ(35Cl) =
−67.312(3) MHZ), it can be seen that the absolute value for (CH3)3CCl ex-
ceeds those for (CH3)3SnCl, (CH3)3GeCl and (CH3)3SiCl by almost a factor
of two. Using the model developed by Townes and Dailey [11], it is possible
to obtain information on the character of the X-Cl bonds from the exper-
imental coupling constants. This procedure is discussed in more detail in
Ref. [4] and yields 35.4 % ionic and 64.6 % single (σ) bond character for
the C-Cl bond, 19.8 % ionic, 48.5 % single (σ) and 31.7 % double (π) bond
character for the Si-Cl bond, 37.6 % ionic, 46.5 % single and 15.9 % double
bond character for the Ge-Cl bond, and 51.8 % ionic, 39.5 % single and 8.7 %
double bond character for the Sn-Cl bond [4]. These results are in line with
general knowledge about the bonding properties of C, Si and Sn: Carbon is
relatively compact and can only form single bonds in a fourfold bonding
situation. In contrast, the formation of double bonds employing back bond-
ing processes with empty 3d-orbitals is a well investigated phenomenon in
silicon chemistry. As expected, the ionic character is largest for the Sn-Cl
bond.

As already mentioned in Section 3 and displayed in Figure 4c, we observed
an anomalous K = 0 quadrupole pattern for some torsion-rotation transi-
tions, which depends also on J. For example, the two J + 1 ← J = 5 ← 4
quadrupole coupling components for K = 0 with F′ ← F = 13

2 ←
11
2 and

11
2 ←

9
2 as well as the two with 9

2 ←
7
2 and 7

2 ←
5
2 usually form accidentally

degenerate pairs in chlorine-containing (I = 3
2 ) symmetric top molecules

such as (CH3)3SnCl. We find this accidental degeneracy for A1 and E2 torsion-
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rotation transitions, but not for I1, I2, I3 and I4. This observation is consistent
with the assumption of ∆K = ±1-mixing, which can be understood from
the K = 0 and K = 1 symmetry species in Table 3. The frequency differences
between 13

2 ←
11
2 and 11

2 ←
9
2 as well as between 9

2 ←
7
2 and 7

2 ←
5
2 are in the

range of 40–450 kHz, and depend on J and on the torsional species (Table 6).
If we again assume K = 1 contributions of β = 0.1 in Eqn. 13, splittings of
this order of magnitude become possible. This can be shown by considering
the interaction of the internal rotation of the three methyl groups with the
quadrupole coupling. The appropriate totally symmetric and time-reversal
invariant quadrupole coupling Hamiltonian for this problem is

HQ = [eQ/I(2I − 1)J(J + 1)(2J − 1)(2J + 3)] × [q−+(α0α1α2)(J+J− + J−J+)
+ qzz(α0α1α2)J2

z + q−z(α0α1α2)(J+Jz + JzJ+) + q+z(α0α1α2)(J−Jz + JzJ−)

+ q−−(α0α1α2)J2
+ + q++(α0α1α2)J2

−
] × [3(I · J)2 +

3
2

(I · J) − I2
· J2] (15)

with J being the overall angular momentum, I being the nuclear angular
momentum of the chlorine nucleus (I = 3/2), Jz being the projection of the
overall angular momentum on the molecular z-axis (of symmetry A2 in
Table 1), and

J± = Jx ± iJy. (16)
The operators ±J± are of symmetry E1±, where the ± subscripts are defined
such that

c |E1±〉 = exp(∓2πi/3) |E1±〉 (17)
and

σ |E1±〉 = + |E1∓〉 . (18)

The q’s are functions of the torsional angles α0, α1 and α2, chosen to have
either A1 or E1 symmetry. Their subscripts imply transformation properties
identical to those of products JpJq+JqJp with the same subscripts. Eq. 15 shows
that not only must the two J-operators of A1 symmetry (J+J− + J−J+) and J2

z
be considered to form the complete totally symmetric Hamiltonian HQ, but
also two J-operators of E1±-symmetry, i.e., (J±Jz + JzJ±) and J2

∓
, multiplied

by appropriate q’s of E1∓ symmetry, must be included. These additional
J-operators are responsible for ∆K = ±1 and ∆K = ±2 mixing, since they
change the value of K.

To determine whether ∆K = ±1-mixing is possible for a torsion-rotation
state of given symmetry Γ we qualitatively determined the corresponding
matrix elements. As can be seen from Eqn. 15, each term in HQ can be
separated into a rotational (J, I) and a torsional (q) factor. This can also be
assumed for the appropriate basis set for this problem

|I J K F MF vt Γ〉 = |I J K F MF〉 · |vt Γ〉 , (19)
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Table 6
Observed additional K = 0 quadrupole splitting (in kHz) between the F+1← F and
F← F−1 hyperfine components (as explained in the text) for different J-transitions
and different torsional species of (CH3)3

120Sn35Cl.

J 1 2 3 4 5

F 5
2

7
2

9
2

11
2

13
2

3
2

5
2

7
2

9
2

Γtorsional

I2 82 86 68 53 40

I1 99 75 57 43

I4 361 262 165 109 74

I3 453 331 200 123 82

with |vt Γ〉 being a torsional wavefunction. Consequently, integrals for this
problem can be split up into a torsion and a rotation-quadrupole part, with
the torsion integral having one of the two forms〈

vt Γ
∣∣∣q(A1)

∣∣∣ v′t Γ′〉 , (20)

or 〈
vt Γ
∣∣∣q(E1∓)

∣∣∣ v′t Γ′〉 , (21)

where q(A1) stands for the A1 and q(E1∓) for the E1∓ symmetry q-functions,
respectively. ∆K = ±1-mixing within a given torsional state (vt Γ = v′tΓ

′),
and thus additional quadrupole splitting is only possible if the symmetrized
product of the torsional species with itself contains the symmetry species of
the q(E1∓) functions [18]: [

Γ2(vt)
]

symm
⊃ E1. (22)

Eq. 22 is only fulfilled for torsional states of E1 or I-symmetry, which is in
agreement with our experimental observations for the torsional states in
Figure 5. Furthermore, the size of the additional splitting decreases with
increasing J-value, while it increases for the different torsion-rotation tran-
sitions in the order

∆νsplitting(I2) < ∆νsplitting(I1) < ∆νsplitting(I4) < ∆νsplitting(I3), (23)

as summarized in Table 6. We assume that this order reflects the amount
of ∆K = ±1-mixing for the different torsional species, which would then
be largest for I3 and smallest for I2. This is in agreement with our findings
from the K = 0 Stark effect measurements, where the linear behavior is also
ascribed to mixing with K = 1 levels.
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6.3 Global fit for (CH3)3SnCl K=0 transitions and determination of the V3 barrier

We performed initial global fits of all six torsion-rotation transitions for
K = 0 for six different J + 1 ← J-transitions (J = 0 − 5) using the program
XIAM [25], which is suitable for molecules with up to three internal rotors
including one quadrupole nucleus. The theoretical background on which
this program is based is already discussed in the literature in several articles
[1,2,25] so that we will only review the structure of the Hamiltonian. It
consists of different contributions

H = Hrot +Htors +Hrr +Htt +Hrt +Hcd +Hnq. (24)

The first term represents the Hamiltonian of a rigid rotor consisting of a rigid
frame and three equivalent internal rotors, the second term, Htors, represents
the Hamiltonian of a Mathieu oscillator. It describes the contribution of
hindered internal rotation of the three methyl rotors. For a single rotor this
is

Htors = Fp2
1 +

V3

2
(1 − cos3α1). (25)

F may be considered as the effective rotational constant of the three equiv-
alent internal rotors. V3 is the threefold hindering potential and α1 the
torsional angle of internal rotor 1. The operator Hrr is caused by the internal
rotation and may be interpreted as a change of the location of the principal
axes system due to the angular momentum created by the internal rotation.
Htt describes the kinetic interaction between the internal rotors. The term
Hrt represents a Coriolis type interaction between the internal rotation and
the overall rotation of the whole molecule. Hcd contains the common quartic
terms due to centrifugal distortion of a symmetric top,

Hcd = −DJ J4
−DJK J2J2

z −DK J4
z , (26)

with the centrifugal distortion constants DJ, DJK, and DK. Since we restricted
these fits to K = 0-transitions, we consider only the first term of Hcd. Since
the chlorine atomic nucleus has a quadrupole moment, the quadrupole
operator Hnq is also included in Eq. 24.

Table 7 gives the observed and calculated frequencies as well as their differ-
ence resulting from the least-square fit with XIAM of the K = 0 transitions
of the main isotopologue (CH3)3

120Sn35Cl. Unc describes the experimental
uncertainty of the frequency measurement. Due to overlapping lines or
low intensity a few lines have been included in the fit with an uncertainty
slightly higher than 2 kHz. The standard deviation is σ = 129 kHz, which
is relatively high. Especially the torsional species I3 and I4 show deviations
as large as 100 to 400 kHz (Table 7). A fit without these torsional species
has a much smaller uncertainty of σ = 21 kHz. These results indicate that
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∆K = ±1-mixing effects may not be completely accounted for in the XIAM
program [25]. In the literature standard deviations up to 150 kHz are not un-
usual for least-square XIAM fits of molecules with relatively large torsional
splittings in the microwave spectrum. For p-fluorotoluene, for example, the
m = 0 and m = 1 torsion-rotation transitions (108 lines) could be fitted to
about σ = 27 kHz using XIAM [26], while the m = 3 torsion-rotation transi-
tions (66 lines) have a standard deviation of σ = 162 kHz [26]. Nevertheless,
the XIAM fits were very useful for the global analysis of the rotational spec-
trum of (CH3)3SnCl, since they helped to initially assign the large number
of torsion-rotation transitions. Furthermore, molecular parameters such as
the rotational constant B are determined to 4 kHz (see also Table 8), and the
barrier to internal rotation of the three methyl groups V3 can be determined
to 0.4 J.

Table 7: Torsion-rotation transition frequencies (K = 0)
of the main isotopologue (CH3)3

120Sn35Cl with νobs: ob-
served frequency, νcalc: calculated frequency from the
least-square fit (XIAM), δν: νobs-νcalc. Unc gives the un-
certainty of the line measurement from the experiment.

J′ J 2F′ 2F Sym νcalc/GHz δν/kHz νobs/GHz Unc/kHz

1 0 5 3 A1 3.3618942 -19.7 3.3618745 2

3 3 A1 3.3529502 -22.4 3.3529279 2

1 3 A1 3.3690493 -19.2 3.3690301 2

5 3 E2 3.3536578 8.2 3.3536660 2

3 3 E2 3.3447139 11.2 3.3447251 2

1 3 E2 3.3608130 11.9 3.3608249 2

5 3 I1 3.3245049 6.1 3.3245110 2

3 3 I1 3.3161190 22.0 3.3161410 2

1 3 I1 3.3311995 7.9 3.3312073 2

5 3 I2 3.3277103 50.0 3.3277603 2

3 3 I2 3.3193012 59.5 3.3193607 2

1 3 I2 3.3344245 58.4 3.3344829 2

5 3 I3 3.2409897 -409.0 3.2405808 2

3 3 I3 3.2336288 -395.7 3.2332330 2

1 3 I3 3.2468495 -415.3 3.2464342 2
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Table 7: continue: Torsion-rotation transition frequen-
cies (K = 0) of the main isotopologue (CH3)3

120Sn35Cl.

J′ J 2F′ 2F Sym νcalc/GHz δν/kHz νobs/GHz Unc/kHz

5 3 I4 3.2693932 -100.9 3.2692923 2

3 3 I4 3.2617329 -91.0 3.2616419 2

1 3 I4 3.2754962 -103.8 3.2753924 2

2 1 7 5 A1 6.7209724 -54.2 6.7209183 2

5 3 A1 6.7209724 -54.2 6.7209183 2

3 1 A1 6.7112619 -47.4 6.7112145 2

1 1 A1 6.7202058 -56.2 6.7201497 2

7 5 E2 6.7045024 8.2 6.7045106 2

5 3 E2 6.7045024 8.2 6.7045106 2

3 1 E2 6.6947918 14.4 6.6948063 2

3 3 E2 6.7108909 15.2 6.7109061 2

7 5 I1 6.6529203 -26.7 6.6528937 2

5 3 I1 6.6528240 69.7 6.6528937 2

5 5 I1 6.6444381 24.3 6.6444624 2

3 1 I1 6.6438027 29.0 6.6438317 2

1 1 I1 6.6522818 21.6 6.6523034 2

5 5 I2 6.6496975 105.5 6.6498030 2

3 1 I2 6.6490482 112.3 6.6491605 2

1 1 I2 6.6575354 103.7 6.6576391 2

7 5 I2 6.6581878 103.7 6.6582915 2

5 3 I2 6.6581066 102.5 6.6582091 2

7 5 I3 6.5299323 -141.2 6.5297911 2

5 3 I3 6.5293972 -59.2 6.5293380 2

5 5 I3 6.5220362 -176.1 6.5218601 2

3 1 I3 6.5218171 -152.1 6.5216651 2

7 5 I4 6.5687167 -27.2 6.5686895 2
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Table 7: continue: Torsion-rotation transition frequen-
cies (K = 0) of the main isotopologue (CH3)3

120Sn35Cl.

J′ J 2F′ 2F Sym νcalc/GHz δν/kHz νobs/GHz Unc/kHz

5 3 I4 6.5683390 -10.5 6.5683285 2

5 5 I4 6.5606787 -21.8 6.5606569 2

3 1 I4 6.5603177 -12.8 6.5603050 2

1 1 I4 6.5683514 -44.8 6.5683066 2

3 2 7 5 A1 10.0807223 -90.5 10.0806318 2

9 7 A1 10.0807223 -90.5 10.0806318 2

3 1 A1 10.0785076 -81.9 10.0784257 2

5 3 A1 10.0785076 -81.9 10.0784257 2

7 5 E2 10.0560237 2.2 10.0560259 2

9 7 E2 10.0560237 2.2 10.0560259 2

3 1 E2 10.0538091 -2.1 10.0538069 2

5 3 E2 10.0538091 -2.1 10.0538069 2

3 3 E2 10.0627530 -6.2 10.0627468 2

5 5 E2 10.0601976 6.8 10.0602043 2

7 7 E2 10.0470798 3.2 10.0470830 2

7 5 I1 9.9898437 48.4 9.9898921 2

9 7 I1 9.9899365 48.8 9.9899854 2

3 1 I1 9.9878817 51.5 9.9879332 2

5 3 I1 9.9877864 41.6 9.9878280 2

5 5 I1 9.9938456 53.2 9.9938988 2

7 7 I1 9.9813614 49.6 9.9814110 2

7 5 I2 9.9960612 138.8 9.9962000 2

9 7 I2 9.9961429 140.1 9.9962830 2

3 1 I2 9.9940807 140.2 9.9942210 2

5 3 I2 9.9939967 135.7 9.9941324 2

5 5 I2 10.0000616 144.5 10.0002061 2
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Table 7: continue: Torsion-rotation transition frequen-
cies (K = 0) of the main isotopologue (CH3)3

120Sn35Cl.

J′ J 2F′ 2F Sym νcalc/GHz δν/kHz νobs/GHz Unc/kHz

7 7 I2 9.9875710 258.3 9.9878293 2

7 5 I3 9.8515035 -268.6 9.8512349 2

9 7 I3 9.8518284 -265.0 9.8515634 2

3 1 I3 9.8500280 -263.5 9.8497646 2

5 3 I3 9.8496994 -269.5 9.8494300 2

5 5 I3 9.8553401 -170.8 9.8551693 2

7 7 I3 9.8436074 -217.3 9.8433901 3

5 5 I4 9.8972457 65.1 9.8973108 5

7 7 I4 9.8853366 69.4 9.8854060 5

9 7 I4 9.8936314 64.1 9.8936955 2

7 5 I4 9.8933746 61.4 9.8934360 2

3 1 I4 9.8917640 65.4 9.8918293 2

5 3 I4 9.8915037 59.9 9.8915635 2

4 3 11 9 A1 13.4406431 -139.4 13.4405037 2

9 7 A1 13.4406431 -139.4 13.4405037 2

7 7 A1 13.4437792 -135.3 13.4436439 2

7 5 A1 13.4396054 -142.0 13.4394634 2

5 3 A1 13.4396054 -142.0 13.4394634 2

9 9 A1 13.4316991 -138.1 13.4315610 2

5 5 A1 13.4485493 -144.4 13.4484049 2

11 9 E2 13.4077239 -12.7 13.4077113 2

9 7 E2 13.4077239 -12.7 13.4077113 2

7 7 E2 13.4108601 -9.2 13.4108510 2

7 5 E2 13.4066863 -14.2 13.4066721 2

5 3 E2 13.4066863 -14.2 13.4066721 2

9 9 E2 13.3987800 -12.3 13.3987677 2
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Table 7: continue: Torsion-rotation transition frequen-
cies (K = 0) of the main isotopologue (CH3)3

120Sn35Cl.

J′ J 2F′ 2F Sym νcalc/GHz δν/kHz νobs/GHz Unc/kHz

5 5 E2 13.4156302 -16.6 13.4156136 2

11 9 I1 13.3332861 78.3 13.3333644 2

9 7 I1 13.3332115 77.0 13.3332885 2

7 7 I1 13.3362446 82.1 13.3363267 2

9 9 I1 13.3246364 79.4 13.3247158 2

5 5 I1 13.3408922 74.8 13.3409670 2

7 5 I1 13.3322427 76.5 13.3323192 2

5 3 I1 13.3323178 75.0 13.3323928 2

11 9 I2 13.3397751 158.8 13.3399339 2

9 7 I2 13.3397073 158.9 13.3398662 2

7 7 I2 13.3427369 160.6 13.3428975 3

7 5 I2 13.3387364 157.4 13.3388938 2

5 3 I2 13.3388047 157.4 13.3389621 2

9 9 I2 13.3311354 276.7 13.3314121 3

5 5 I2 13.3473759 158.2 13.3475341 3

11 9 I3 13.1876048 -181.8 13.1874230 3

9 7 I3 13.1874099 -179.6 13.1872303 3

7 5 I3 13.1865243 -185.5 13.1863388 3

5 3 I3 13.1867198 -177.3 13.1865425 3

9 9 I4 13.2225056 106.4 13.2226120 2

5 5 I4 13.2383539 99.6 13.2384535 2

7 7 I4 13.2337665 107.7 13.2338742 2

11 9 I4 13.2309643 105.5 13.2310698 2

9 7 I4 13.2308004 104.4 13.2309048 2

7 5 I4 13.2298954 103.3 13.2299987 2

5 3 I4 13.2300599 104.6 13.2301646 2
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Table 7: continue: Torsion-rotation transition frequen-
cies (K = 0) of the main isotopologue (CH3)3

120Sn35Cl.

J′ J 2F′ 2F Sym νcalc/GHz δν/kHz νobs/GHz Unc/kHz

5 4 13 11 A1 16.8006155 -197.7 16.8004178 2

11 9 A1 16.8006155 -197.7 16.8004178 2

9 7 A1 16.8000020 -199.2 16.7998028 2

7 5 A1 16.8000020 -199.2 16.7998028 2

9 7 E2 16.7588727 -13.8 16.7588589 2

7 5 E2 16.7588727 -13.8 16.7588589 2

11 9 E2 16.7594863 -19.4 16.7594669 2

13 11 E2 16.7594863 -19.4 16.7594669 2

7 7 E2 16.7678167 -20.1 16.7677966 2

9 7 I1 16.6801049 99.9 16.6802048 2

7 5 I1 16.6801619 100.2 16.6802621 2

11 9 I1 16.6806823 100.8 16.6807831 2

13 11 I1 16.6807391 101.7 16.6808408 2

9 9 I1 16.6831380 107.5 16.6832455 2

11 11 I1 16.6720326 68.2 16.6721008 2

9 7 I2 16.6865448 159.9 16.6867046 2

7 5 I2 16.6865978 160.5 16.6867583 2

11 9 I2 16.6871226 160.6 16.6872832 2

13 11 I2 16.6871755 161.1 16.6873366 2

9 9 I2 16.6895744 165.2 16.6897396 2

9 7 I3 16.5288961 -126.4 16.5287697 2

7 5 I3 16.5290197 -126.6 16.5288931 2

11 9 I3 16.5294386 -126.8 16.5293118 2

13 11 I3 16.5295621 -126.9 16.5294352 2

9 9 I3 16.5318471 -126.4 16.5317207 2

9 9 I4 16.5765047 98.6 16.5766033 2
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Table 7: continue: Torsion-rotation transition frequen-
cies (K = 0) of the main isotopologue (CH3)3

120Sn35Cl.

J′ J 2F′ 2F Sym νcalc/GHz δν/kHz νobs/GHz Unc/kHz

9 7 I4 16.5735386 93.6 16.5736322 2

7 5 I4 16.5736463 94.6 16.5737409 2

11 9 I4 16.5740885 94.4 16.5741829 2

13 11 I4 16.5741961 95.4 16.5742915 2

6 5 15 13 A1 20.1605966 -273.8 20.1603229 2

13 11 A1 20.1605966 -273.8 20.1603229 2

13 13 A1 20.1516527 -273.5 20.1513792 2

11 9 A1 20.1601880 -274.6 20.1599134 2

9 7 A1 20.1601880 -274.6 20.1599134 2

15 13 E2 20.1112703 -28.7 20.1112416 2

13 11 E2 20.1112703 -28.7 20.1112416 2

11 9 E2 20.1108616 -26.8 20.1108348 2

9 7 E2 20.1108616 -26.8 20.1108348 2

15 13 I1 20.0307677 115.7 20.0308834 2

13 11 I1 20.0307248 115.6 20.0308403 2

11 11 I1 20.0327929 117.8 20.0329107 3

13 13 I1 20.0220182 117.4 20.0221356 3

11 9 I1 20.0303371 114.8 20.0304520 2

9 7 I1 20.0303801 114.4 20.0304946 2

15 13 I2 20.0369612 149.2 20.0371104 2

13 11 I2 20.0369205 149.6 20.0370701 2

11 11 I2 20.0389847 150.8 20.0391355 3

13 13 I2 20.0282279 152.0 20.0283799 3

11 9 I2 20.0365329 148.0 20.0366810 2

9 7 I2 20.0365737 147.7 20.0367214 2

15 13 I3 19.8746928 -86.3 19.8746065 2

33



Table 7: continue: Torsion-rotation transition frequen-
cies (K = 0) of the main isotopologue (CH3)3

120Sn35Cl.

J′ J 2F′ 2F Sym νcalc/GHz δν/kHz νobs/GHz Unc/kHz

13 11 I3 19.8746100 -87.2 19.8745228 2

11 11 I3 19.8766480 -83.7 19.8765643 3

13 13 I3 19.8660706 -79.7 19.8659909 3

11 9 I3 19.8742394 -85.9 19.8741535 2

9 7 I3 19.8743223 -87.0 19.8742353 2

11 11 I4 19.9224777 81.2 19.9225589 3

13 13 I4 19.9118692 43.0 19.9119122 2

15 13 I4 19.9205092 36.3 19.9205455 2

13 11 I4 19.9204355 36.0 19.9204715 2

11 9 I4 19.9200615 35.5 19.9200970 2

9 7 I4 19.9201353 35.6 19.9201709 2

Table 8 summarizes the molecular constants obtained from a least-square
fit of the K = 0 torsion-rotation transitions of the main isotopologue
(CH3)3

120Sn35Cl using XIAM (182 lines). As can be seen, molecular parame-
ters such as the B constant and quadrupole coupling constant eQq obtained
from the XIAM fit are quite similar to the effective data obtained from the
rigid rotor fits summarized in Table 4. The obtained internal rotation bar-
rier is V3 = 0.42372(16) kcal (148.299(54) cm−1) very close to the theoretically
predicted value of 150 cm−1. In addition, the angle determined between the
Sn-Cl bond and the internal rotor symmetry axis βC is 104.73(18) °, which is,
again, very similar to the ab initio value (BP86/def-TZVPP/ecp-46-mwb(Sn))
of 105.1 ° (Figure 2).

Based on the effective B-constants obtained for different isotopologues from
our rigid rotor fits (Table 4) we determined the Sn-Cl bond length to be r(Sn-
Cl)= 2.35191(94) Å. The ab initio-value is 2.399 Å (Figure 2). Furthermore, the
experimentally determined A-constant of 2404.56(68) MHz (Table 8) is fairly
close to the calculated value of Acalc = 2330.67 MHz. These results are a good
indication that density functional calculations including electron core po-
tentials for a heavy element such as tin give quite reliable structural results.
In this context it is interesting to draw a comparison to the related molecule
(CH3)3SiCl. Both the A and the B constant are larger (A = 3051.(68) MHz and
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Table 8
Spectroscopic constants of (CH3)3

120Sn35Cl derived from a least-square fit of the
K = 0 torsion-rotation transitions using XIAM (rotational constants A, B, and C,
centrifugal distortion constants DJ, molecular quadrupole coupling constants eQq
and barrier to internal rotation V3). F0 is the rotational constant of the methyl
group corresponding to Iα = 3.199 u ·Å2 and has been kept fixed during the fitting
procedure, N is the number of lines included in the fit, and σ gives the standard
deviation of the fit. θ describes the angle between the internal rotor axis and the
inertial a axis, which is oriented along the Sn-Cl bond. The numbers in parentheses
give uncertainties in units of the last digit (type A, k=1 [24].

quantity value quantity value

A/MHz 2404.56(68) V3/kcal 0.42372(16)

B/MHz 1677.3039(40) F0/GHz 158.0

DJ/kHz 0.133(66) θ/° 104.73(18)

eQq/MHz -35.776(81) N 182

σ/kHz 129.5

Table 9
V3-barrier heights for (CH3)3XCl-species (X = C, Si, Ge, Sn), as determined from
microwave studies.

X V3/cm−1

C close to∞ [6]

Si 577 [1]

Ge 346.8(41) [3]

Sn 148.299(54) (this work)

B = 2197.382227(66) MHz [1], respectively) than for (CH3)3SnCl, but with a
similar A − B of 853.6 MHz.

The different barrier heights for (CH3)3XCl-species (X = C, Si, Ge, Sn) are
summarized in Table 9. For the carbon species no internal rotation splittings
have been resolved, so that V3 can be assumed to be large. As expected,
the barrier height decreases significantly from Si to Ge to Sn. Because of the
large X-C bond length in (CH3)3SnCl, it can be assumed that the origin of
the remaining barrier height of V3 = 148.299(54) cm−1 is mainly due to the
Sn-C bonding character, rather than due to steric effects. The resulting low
barrier implies that, to correctly describe the internal dynamics and therefore
the top-top communication for (CH3)3SnCl, multidimensional tunneling
pathways, such as the concerted motion of three methyl groups at a time,
also have to be taken into account (Section 4.4), in contrast to (CH3)3SiCl
and (CH3)3GeCl.
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7 Conclusion

The rotational spectra of several isotopologues of (CH3)3SnCl have been
recorded using pulsed molecular beam high-resolution microwave spec-
troscopy. One rotational J+1← J-transition was found to be split into several
subgroups due to internal rotation motion of the three chemically and group-
theoretically equivalent methyl groups, as well as chlorine quadrupole cou-
pling and numerous chlorine and tin isotopes.

PI group-theoretical approaches using the group G162 have been developed
and used to support an assignment of the complex torsion-rotation substruc-
ture, which consists of six K = 0 and 11 K = 1 torsion-rotation states. We
were able to theoretically devise a scheme to differentiate between torsional
transitions by the determination of their Stark behavior.∆K = ±1-mixing ef-
fects between K = 0- and K = 1-levels seem to be the reason for two unusual
and unexpected observations for the Ii-symmetry species (i = 1 − 4): linear
Stark behavior for I1-, I2- and I3-symmetry K = 0 torsion-rotation transitions
and additional K = 0 quadrupole splittings for I1, I2, I3 and I4. The K = 1-
contributions (coefficients squared) to the K = 0-levels are estimated to be
about 1%. As a result of a global fit including 182 K = 0 torsion-rotation
transitions we were able to determine the barrier height for CH3 internal ro-
tation to be 148.299(54) cm−1. This is significantly lower than for the related
species (CH3)3SiCl and (CH3)3GeCl and can be assumed to be mainly due to
hindering from the chemical Sn-C bond. As a next step we want to perform
a quantitative study on the ∆K = ±1-mixing.

In a subsequent study we want to investigate further the interaction between
internal rotation and nuclear quadrupole coupling. Good candidates would
be the series (CH3)3GeY and (CH3)3SnY, with Y=Br and I, since both bromine
and iodine exhibit significantly stronger quadrupole coupling, so that we
hope to find additional effects due to coupling between quadrupole and
internal rotation.
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