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Zusammenfassung

In dieser Arbeit wird ein neuer theoretischer Formalisningefuhrt mit dem Ziel, die phonon-
induzierte Relaxation einer Nicht-Gleichgewichts-Veueg zu einer Gleichgewichtsvertei-
lung an einer Halbleiteroberflache numerisch zu simulie&e Nichtgleichgewichts-Vertei-
lung wird dabei durch eine optische Anregung erzeugt. Desa#ndieser Arbeit besteht in der
Kombination zweier bewahrter, herkommlicher Verfahreneinem neuen, umfassenderenden
Zugang: wahrend Halbleiteroberflachenstrukturen isitler Dichtefunktionaltheorie prazise
beschrieben werden kénnen, kommt fir dynamische PreZeddeterostrukturen die Dichte-
matrixtheorie zum Einsatz. In dieser Arbeit werden die Paxtar fir die Dichtematrixtheorie
aus den Ergebnissen von Dichtefunktionalrechnungennesti

Die Arbeit gliedert sich in zwei Teile. In Tell | werden allgeine theoretische Grund-
lagen erortert, von den Grundlagen der kanonischen Qanthg bis zur Diskussion von
Dichtefunktional- und Dichtematrixtheorie in zweiter Becher Naherung. Wahrend der Dich-
tefunktionalformalismus zur Strukturbestimmung langabbeért ist und fertige Programme
existieren, gehen die Erfordernisse an den Dichtematrixitismus beziglich der zugrunde-
liegenden Geometrie und der Anzahl der einbezogenen Béheée das gewdhnlich in diesem
Gebiet erforderliche Maf3 hinaus. Ein besonderes Augenmetkbeim Dichtematrixforma-
lismus daher auf Erweiterungen bestehender Formulierungter Ausnutzung geometrischer
Symmetrien der Halbleiterstruktur und der Gleichungergfel

In Teil [Mwird der Einsatz des entwickelten Formalismus agidpiel einer Silizium (001)
Oberflache in Z 1-Rekonstruktion diskutiert. Zunachst werden dazu Baoktir-Rechnun-
gen mit Dichtefunktionaltheorie und dem LDA-Funktionafchgefiihrt, wovon dann di€ohn-
ShamWellenfunktionen und Eigenwerte zum Einsatz bei der Bamaog von Wechselwir-
kungsmatrixelementen fur die Elektron-Phonon-Kopplumgl die optische Anregung kom-
men. Diese Matrixelemente werden fiir optistheergange von den Valenzbandern in die Lei-
tungsbander und fur die Elektron-Phonon-Prozesse haflerder Leitungsbander bestimmt,
wobei die Kopplung an Phononen mittels Deformationspatant realisiert wird. Von be-
sonderem Interesse ist dabei das Zusammenspiel von dem&bhandern und spezieller
Oberflachenbander, die von der Rekonstruktion an derflabbe herriihren und teilweise die
Bandlucke ausfullen. Im Anschluf? an die Bestimmung detridelemente wird die dynami-
sche Entwicklung mit den oben abgeleiteten Gleichungenlsnh

Den Abschlu? der Arbeit bildet ein Vergleich mit experinedlgn Daten. Hierbei wird
eine gutdJbereinstimmung erzielt, sowohl was die zeitliche Abfaligs Relaxationsprozesses
betrifft, als auch in Hinblick auf die entsprechenden Rat@ns-Zeitskalen.



Abstract

In this work a new theoretical formalism is introduced in@rdo simulate the phonon-
induced relaxation of a non-equilibrium distribution taudédprium at a semiconductor surface
numerically. The non-equilibrium distribution is effedtby an optical excitation. The ap-
proach in this thesis is to link two conventional, but apgawnethods to a new, more global
description: while semiconductor surfaces can be invatgijaccurately by density-functional
theory, the dynamical processes in semiconductor hetaobstes are successfully described
by density matrix theory. In this work, the parameters farsigy-matrix theory are determined
from the results of density-functional calculations.

This work is organized in two parts. In Palt I, the generaldamentals of the theory
are elaborated, covering the fundamentals of canonicaitations as well as the theory of
density-functional and density-matrix theory if@rder Born approximation. While the for-
malism of density functional theory for structure inveatign has been established for a long
time and many different codes exist, the requirements fositiematrix formalism concerning
the geometry and the number of implemented bands exceedula¢ possibilities of the exist-
ing code in this field. A special attention is therefore htited to the development of extensions
to existing formulations of this theory, where geometrigatl fundamental symmetries of the
structure and the equations are used.

In Part[l, the newly developed formalism is applied to acsiti (001) surface in a 2
1 reconstruction. As first step, density-functional catiohs using the LDA functional are
completed, from which th&ohn-Sharwave functions and eigenvalues are used to calculate
interaction matrix elements for the electron-phonon-diogpan the optical excitation. These
matrix elements are determined for the optical transitifbos valence to conduction bands
and for electron-phonon processes inside the conductiodshahere the coupling to phonons
is realized by a deformation potential approach. A spentarést is attributed to the interplay
of bulk and surface bands originating from the surface rettantion, which partly reach into
the band gap. From these matrix elements, the dynamicalitemolof the initial electron
distribution is calculated using the derived equations.

The thesis is completed by a comparison to experimental ddéme, a good agreement
is found, both for the temporal evolution of the electron ylation, and for the relaxation
timescales that can be extracted from the simulated data.
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Chapter 1

Introduction

The material properties of semiconductors have been ofdinigdechnological importance,
as the they are the basis of modern electronics and therefsential fotelecommunications
computer technigptoelectronicsand many other applications. While the technical develop-
ment of the past decades was mostly based on macroscopgtalbtured material, the evo-
lution has proceeded over the microstructured (integratexits in microcomputers) to the
nano-scaled materials (quantum dots, nano wires, quantelis,wmegative index materials).
This miniaturization is a great challenge to the design aimli¢ation of new devices, but it
also requires new theoretical approaches for the desamipfi the physical properties, as both
the electronic and the optical properties enter a new regindescription: While for the elec-
trons, nanostructures can lead to a confinement and thudicatidin of the quantum wave
function, the interaction of the nano-structured matdnathe light can be controlled to a so
far unreachable level, such that completely new effectdbeattesigned ([SchD6]).

Besides these technological developments, nano-staschave been in the focus of a wide
academic interest for the past years. This is not only calgékde technological impact of the
new techniques, but also by the fact that new investigatchriques have become available
is the recent years. For experimental investigation, tlalahility of pulsed coherent laser
light with a fs-period, and a high intensity at a so far untedaie frequency range (THz) has
opened new avenues of analysis, while improved scannimgetuand force-field microscopy
on the one hand and miniaturization in material conditignlike lithography) on the other
hand allow a better manufacturing of the samples. On therdiieal side, a great improve-
ment is achieved due to the still increasing computer powhkich allows the calculation of
increasingly complex systems with more and more paramebetsalso an important effort
in developing dedicated formalisms both by combining anapéidg known approaches and
deriving completely new algorithms is ventured.

As a side effect to this miniaturization challenge, alsdamts attracted to some aspects
of long established fundamental research, which can beeagtigated by improved modern
techniques, or which have an effect on nanostructuresidictimtext, some aspects of the study
of surfaces are very important for various reasons: on teesite, surfaces or at least interfaces
are a basic ingredient of nanostructures, as these ar@mebtthy assembling layers of different
materials. The ratio of interfaces to volume increasesvoug of the interface by decreasing
the structure — it is likely that surface effects are of grayimportance by miniaturization. As
an extreme example, some nanomaterials are build up by eémgtunctional molecules to a
surface. On the other side, relaxation phenomena on sechictors, e.g. as a consequence of
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1 INTRODUCTION

phonon scattering, have come into the focus, as fs-resspyectroscopy allows a resolution of
these phenomena on the genuine timesc¢ale [$ha99], whidbraydnown to have effects on
the line shape in the spectra of hano structures (e.g. quanglls). For ordinary spectroscopy,
the effect of such scattering is out of reach, and the hithregearch was only able to consider
this only on a phenomenological level. For surfaces, theifipelectronic structure (which has
a great influence on the the optical properties) can effagt particular coupling mechanisms
to phonons, forming specific modes at the surface.

Among the semiconductors, silicon has always had an oulisiguposition due to its phys-
ical properties and also its practically unlimited availigh Although it has been widely used
for various kinds of electronic devices, an accurate thamienvestigation of the band struc-
ture is quite difficult due to the non-parabolic charactethaf bandstructure, which prevents
the application of a simple, low ordds- p approach[[Kit9l]. Another consequence of the
bandstructure is the theoretical description of the optzaitation. Here, thendirect tran-
sitions which assure the transitions at a low level of energy, difecdit to handle, as they
are a second-order process involving multi-particle scaiy with phonons. In addition, a
feature of the electronic band structure of silicon whick h#racted interest for a long time
are the various surface reconstructions, in particularégenstructions of the (001) surface.
By these reconstructions, specific surface bands emerge iaind structure, partly inside the
semiconductor-bandgap, and thus influence the opticalrpii@o [GP94 /[ Hai95, HGIZ97]
and also the phonon scattering [JB99, TIM03, WKERO04].

1.1  Aim of this work

In this thesis, two focuses are discussed. As first subjepaiifl, the development of a new ap-
proach is in the center. This new approach is based on theinatidn of two long established
methods, which have, however, developed independenttyisticomprehensible from the fact
that they focus on different fields of semiconductor physks a consequence of the difficul-
ties modelling phonon relaxation in a semiconductor serfarmvironment mentioned above, it
is obvious that enhancements have to be made to existingetiead descriptions. The dynam-
ics in bulk semiconductors (as in Gallium-Arsenide [SVB4,[LFLT96,[HGB0O0al_ HGBOUb,
HGBO01,[HGBO3]) and nano-structured systems of various dgiomalities (as for quantum
dots [FWDKO3/ESKKO5] or quantum well5 TWFEKD3, WED4,[But07]) has been very suc-
cessfully investigated by using thdensity-matrix formalismKHSK96, [AM98, IKSM™99].
While the density-matrix formalism is a general framewarkding to differential equations
to describe the dynamics of a quantum system, the dimengjoremergetical properties and
transition rates figure inside these equations as quasin@ktparameters, in the form of an
electronic band structure and transition matrix elememtshfe interactions. Here, usually, as
a good approximation for many applications, simple assiomgffor the electronic band struc-
ture (parabolic bands) and for the matrix elements (rexyttiom slowly varying envelope
wave functions (SVEA) with constant microscopical matri@neents) are used, which allow,
due to further internal symmetries, often an analyticalmification of the scatter equations
[EWDKO03,[WEKO03 [WFELF04].

For surface structures, however, a description withinghbese assumptions is at least in
principle dubious — from the fact, that such a system can@othasonably interpreted as a bulk-
structure or a confined two-dimensional structure [JRMAa]pbvious characterization of en-
velope functions or confined parameter restrictions efBf$SKO/0]. As a matter of fact, re-
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Figure 1.1: Schematical Overview of the expected relaxation procegsesilicon (001) surface.

In the background, the bulk bandstructure (grey) and tH&*Psurface band (black) are shown.
While the bulk-bulk scattering (blue) yet occurs in a bulkteyn, the bulk-surface (red) and
surface surface processes (green) are directly relatetecstirface reconstruction.

cent investigations with an Indium-Phosphide model systame shown that the application of
such approximations in this context can lead to a qual@htigood description of the dynami-
cal evolution of a system (cmp. S&c13)Y[RWKD4b, RWK04aHTG4, ZBG"04,ZBFK05],
while a quantitative agreement fails in the first instandeud, a more realistic description us-
ing a density-matrix formalism can only be expected by eniptp more realistic parameters
for the relaxation equatioh [BKSKOZb, BKSKU7a]. The firsteint of this thesis is to provide
a method to implement structure calculations for surfageddmsity-functional theoryDFT)
into the density-matrix framework [RMKRD3]. Density-furanal theory is one of the leading
methods for theoretical analysis of microscopic struauranging from clusters to periodical
systems, and has proved its applicability in numerous stsitd he basic idea of our approach
is to perform structure calculations to obtain an accuréget®nic bandstructure, which is
based on the correspondif®@hn-Shamwvavefunctions and the self-energy correction by the
GW-formalism and using the resulting wavefunctions to calculate ttenmsimatrix elements
for several interactions (in this thesis, the interactiorthie dynamics are however restricted to
optical excitation and phonon-induced relaxation). As siersion, one should also think of
additional calculations for phonon modes [FP95], this, &esy, is not elaborated in this work.

The second part of this thesis consists of an applicatiomefiewly derived formalism.

To this end, phonon-induced relaxation processes arestieduas a consequence of optical
excitation for a silicon (001) surface. An overview over thassible processes, which are
related to theD9"" surface band in such a structure (cmp. $€d. 5.2), are shoWwiyid1.
While ordinary density-functional calculations for thécgin (001) 2x 1 surface are discussed
in ChaptefEb for several parameters, the calculations aféteix elements and electronic band
structure for use in the density-matrix calculation arespreéed in Chaptdl 6. The dynamical
calculation is finally done in Chapter 7, where the effectthefrelaxation processes are widely
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Figure 1.2: The various surface reconstructions of silicon (001). e Bigures, the two topmost

layers of the surface are shown. The top-level atoms arectipin green where they are all at

the same height or in red (higher level atom) and blue (loweel atom) where they form a tilted

dimer, the second level atoms are shown in yellow. The sadiad cells for the structure are
symbolized by a black rectangle.

discussed for various initial conditions. A comparisonhe few experimental findings in this
field is also discussed.

1.2 Physical aspects of the silicon (001) surface

Besides the known crystallization behaviour in the bulkeveh due to its 4-valence, silicon
condenses in a diamond structure, the silicon (001) sutasded to controversial arguments
for a long time. The usual surface reconstruction geonwetiie shown if Figl_T12 [DM0O0,
DS92,[FP95, RBKE5]: The & 1 surface is the basic unit cell of the (001) surface without
reconstruction. More realistic configurations for the olesarrface are Z 1 reconstructions,
where the bulk lattice has been dissolved at the surfacedn & the formation of a dimer. This
dimer formation is a characteristic of the diamond-likeistares and has been experimentally
confirmed since a long time. The symmetric and asymmetsiclZeconstructions differ in
the tilting of the dimer, in the symmetric case, the dimer & €n the surface, while in the
asymmetric case, an angle to the surface is found. Eneafjgtinore favorable than the:21
case are the 2 2 and 4x 2 reconstructions. These differ from thex4 case by the orientation
of the dimers: the asymmetrical:21-reconstruction consists of rows of parallelly oriented
dimers, while at the Z 2 reconstruction, the dimers are alternating, but the teighg rows
are equally oriented. At the» 2 reconstruction, finally, the dimers are alternating intthe
directions.

At room temperature (300 K), the differences in the fornramergy for the asymmet-
rical dimers are too low to allow a clear distinction of theeggominant dimer phase at the
surface[[DMOQO0]. At low temperature (below 90 K), however,isccepancy was deduced from
the experimental and theoretical findings concerning ttiagiangle: while the most favor-
able reconstruction was theoretically found to be the2dreconstruction and a definite result
was that it is energetically unfavorable to have a flat dintlee 6ymmetric Z 1 case), at this
surface, there was no experimental evidence for an asynemetonstruction. As this devia-
tion could not be explained by thermodynamical reasons,titday related to the interplay of
the measurement device (often a STM-tip with a certain gelt® the surface) and the dimer
tilting potential [SSBO4,_SS06]. As a consequence, it isgbeepted position today that at
low temperature the % 2 dimer reconstructions prevails. Still the effects of thiféedent re-
constructions for the band structure is a topic of resededg0%], which requires theoretical
techniques beyond the density functional approach, alidteg results are not coherent. In
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this thesis, due to the example character of the discusgiergalculations are performed for
an asymmetric Z 1 reconstruction.

The tilting of the dimer is dominated by a potential as iliagtd in FigCLB, where the min-
imum of the potential is shifted to a non-zero angleSuch a potential gives rise to a surface-
localized phonon mofewith a strong coupling to surface-related electronic baedpecially
the states of th®!? and DY°“" bands (cmp. Chaptéi 5). It is likely that the strong coupling
to the surface attributes an important role in a surfacated|relaxation process to this phonon
mode, especially in combination with an optical exposurthefsurface. In the present work,
however, the phonon spectrum is not calculated microsatipibut only schematically by an
approximated phonon spectrum. Thus the dimer tilting ¢&fece neglected in the phononic
relaxation.

1.3 Optical excitation and phonon induced relaxation at théndium-
Phosphide (001) surface

One approach to describe the relaxation involving surftates has been formulated by adapt-
ing the specialized density-matrix theory used for the &tion of quantum-heterostructures
to a generalized multiband system and using basically theesassumptions as in the for-
mer case. A surface structure whose electronic properteg@proximatively described by
a two-dimensional parabolic band structure has found tdedrtdium-Phosphide (100) sur-
face [HBS™86,[SB98| SBE98,|FVV™00, SEE 0Q]. A model [ZBG 04,[ZBFK0%] has been
developed for a simulation of a Two Photon Photoemissioreement [HSK 93, THET03,
TGET05].

In the first step ofl[ZBEKO5], the band structure is describgch model of four parabolic
bands, which are interpreted as two-dimensional or thieeiksional according to their char-
acter (Fig[ZIK): A bulk valence band, a bulk conduction handurface band with a lower
effective mass, intersecting the bulk conduction band anadalitional vacuum band to model
the emission process with quasi-free electrons. For evaamy fa set of wave functions is intro-
duced, for the bulk bands, these are ordinary bulk wave fnmetased on three-dimensional
Bloch waves (cmp. EqL{ZP5)), while for the two-dimensidoends (the surface and vacuum
bands), a two-dimensional Bloch description in the surfaaellel direction is combined with
an exponential decay in ttredirection (rhs of Figi_T14). To allow a simple analytic adktion

1The description in term of phonons (which are a linear appration for small elongation in a parabolic
potential, cmp. Sef23.3), might however break down fdghl{ non-parabolic potential.
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Figure 1.4: Band structure and simplified z-component of the wave fonstior the Indium-
Phosphide (100) surface.

of the matrix elements, the surface @t 0) is modelled by an abrupt decay at the surface
for the bulk bands and the surface band (which means for theldands that the effect of
surface is neglected) and by coupling to an external plane wia the formulation of trans-
mission and reflection rates for the vacuum band. For a ‘Stalichoice of parameters, the
exponential decay rates used in this model are introducedshieally by extracting a decay
factor from the presumed surface states in a correspondngitgl-functional theory calcu-
lation [ZBG"04,[ZBEKO%] for the surface band or by a reasonable choicbefpenetration
depth of free-electron states into a solid for the vacuund§ZBEKOE]. For this direct semi-
conductor, all wave functions of the bands (with a two-disienal dependency ok for the
surface and vacuum bands and a three-dimensional depgnolekdor the other bands) are
approximated by the wave functionlat= 0, as it is a common choice in hanostructure physics
of two-dimensional systems (as in quantum wells |BLt07]).

From these definitions, matrix elements for the opticaltaticin and for the relaxation (via
LO-phonons and Frohlich-coupling) can be derived. WhHile électron-phonon interaction
between the two bulk bands evaluates to standard matrixeetesB}3/°3"? which are known
from bulk parameters, the situation is more complicatedtfertwo-dimensional bands. For the
matrix elements from the surface band to the vacuum baneé,(lbety the optical interaction
is relevant, as phononic relaxation does not occur into asilé the vacuum states), also
simple expressions are found. For the transitions from tm#urface and to vacuum however,
the formulation of a coherent expression is not possibledas the given assumptions, as the
wave functions are defined for different dimensionaliti8g.interpreting the exponential decay
shapes as an envelope to an underlying three-dimensiotialMawe, analytical expressions
based on the bulk matrix elements and the decay rates cardbeatk e.g. the matrix element
for a transition from the bulk conduction band to the surfaaed reads:

1/2
Dcond/sun‘ ezﬁoq_o S iNs / peond/surf (1.1)
2V €oEphon gy — L '

Here,w o is the optical phonon frequencspnon the effective permittivity due to the Frohlich-
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Figure 1.5: Comparison of theoretical and experimental relaxatiorhat inP (100) surface. The
theoretical data are simulated with the simplified four mouwdel (Fig[Th), the experiment is
performed with a two-color-two-photon-photoemissiompefrom [TGE05].

coupling,V the unit cell volume and\s the surface state decay rate towards thePbudnalo-
gous to the models used in density-matrix thebry [ButO @ rttatrix element constapeond/surt
is given by the three dimensional overlap of the Bloch waeetHe conduction bulk and sur-
face bands:

peond/surf_ /d3 —cond( )u(s)urf(r)' (1.2)

With respect to surface theory, this is a dubious assumpétierthe decay of the states near
the surface needs not necessarily extend to multiple butkcelts. It is also obvious that the
suppression of surface effects in the bulk wave functiomslead to a strong deviation from
the realistic values even if the exponential decay of théasarstate is a good approximation.
As result, the theoretical photoemission spectrum can loelleéed time resolved by draw-
ing the population of the vacuum state on an energy axis.driEB, the relaxation simulated
with the four-band model is compared to the experimentalli®from TGE™05]. Itis obvious
that the qualitative features of the relaxation are in a gagetement: the shape and position
of the peaks and the temporal evolution are quite congru&rdiscrepancy is found in this
superficial comparison for the first timesteps (while in ekpent, the peak at lower energy,

2The following material parameters are used for this catira valence band min. 0 eV, conduction band min.
1.339eV, surface band min. 1.589eV, vacuum band min. 7 &attive massean;=—0.45 me, m$¢=0.078m,
rrgﬁ:O.Z Me, méﬁzl.o me, surface band dampinfys = 0.5nm1, vacuum band penetration depth = 2.4nm 1,
£0=9.52, £,=12.35, T=300K, Phonon energy 43meV, dipole matrix elements: \adc Q3 e nm, val./surf. 2/0.0
e nm, cond./vac.=3 e nm, surf./vac.=09 e nm . Cmp[IZBEKO5].
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corresponding to the conduction bulk band minimum, is pumoed for every timestep, it ap-
pears only after 250 fs of relaxation in the simulation), anthe relation of the heights of the
two peaks (here, in the experiment, the higher energy peakiis pronounced, while this holds
for the lower energy peak in the simulation). The biggestdi@ap in this comparison is how-
ever the fact that the same timescale in the theoretical gmefienental relaxation can only be
found by artificially augmenting the size of the wave funetaverlapDc"¥su(Eq.[T1, which
are theoretically limited by th€auchy-Schwartz-equatiprestricting the scalar product of two
wave functions to one) to a value of 4. This is far from a phgifjcreasonable choice, as the
value of this matrix element is rather expected to be faidipty one.

As a conclusion, we can state that the “classical” modellorgquantum-heterostructures
is insufficient for the description of surface structures.re@son for this is that while in a
quantum well, the band structure is accurately defined bywvapferameters (as the reduced
bulk masses of the compound materials and the thicknesg tdybrs) and a lot of information
about an electron state can be extracted from the same parar{like the envelope function
in the confinement direction), nothing is known about thetetmic structure at a surface from
pure bulk data, and even if the bandstructure could be padraea no coherent information
could be extracted from it for the electronic wave functi@m without a time-consuming
solution of the Hamiltonian. As a consequence, it appeaaddle to persecute an approach
of calculating the electronic band structure and the cpmeding wave functions by aab-
initio method, as it was proposed in SEcl 1.1 and in the followintsmdithis thesis.

1.4 Other approaches for the investigation of optical excétion or
phonon-induced relaxation

In this section, we will present two methods which have bessduo model similar processes
as presented in Selc 1.1 and 9ed 1.3. Most methods are baslemsity-functional calcu-
lations. We can however state that none of the methods institon provides a general
framework open for the inclusion of additional interac8amn a truly quantum-physical basis,
or a coherent connection of the relaxation processes toasempical temperatures (which im-
plies the unambiguousness of the final state after relayatithis doesn't put the applicability
of the presented methods for specific situations into qouiesti

1.4.1 Quasi-particle corrections to the band structure

While formally higher order correlation effects are delsed within the theoretical formulation
of density-functional theory, most practically used fuoeals (in particular the local-density
approximation, cmp. SeE_3.3) combined with #ehn-Sham-equationisck an appropriate
description of such effects. For semiconductors, whereséifience and conduction bands are
separated by the band gap, one effect of this somewhat redogaulation manifests in an
often underestimatedohn-Shanbandgap energy as a result of the DFT calculation. This is
mainly due to neglecting polarization effects, which canrieoduced as energy corrections
stemming from quasi-particles formed of an excited elecirothe conduction bands and a
missing electron (hole) in the valence bands having a highdibg due to their complemen-
tary charges (it should be mentioned that basically alltedes can form quasi-particles with
electron (or holes) in other states, however, they are nzessarily strongly bound).
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An alternative to the standard density-functional theohjolv is able to to introduce such
quasi-particle corrections has been formulated in@GNé-approach byl[Hed65]. In their ap-
proach, which is based on@reen’s function formalispthey introduce a variational principle
to formulate equations for the microscopical permittivatyd the self-energy of the electrons
in a structure. For the resulting equations, a perturbagipansion usinddyson’s equation
is derived. As an input to th&W-formalism,Kohn-Shaneigenvalues and the corresponding
eigenfunctions as a result of a density-functional cattaacan be used. The result of3W-
calculation is an adjustment of tik@hn-Sham eigenvalug® the the first order approximation
this is usually denoted &35Wp, as the correction to the eigenvalues are directly compubea
the Green'’s functiondased on the initiakohn-Sharreigenfunctions.

The GW-approach is one of the standard methods of structure and@RR02], widely
used for the calculation of optical specira[DG93, ARSIO%#] aften very accurate [RQNS].
For surface structures the application of the formalisnotsatways possible, especially if they
are metallic. The relatively high computational effort esgary for th&sW-calculation makes
it furthermore impossible to use the formalism in slab dtrees with too many layers (cmp.
Sec[G.P), so often, in such a context, it has to be decidethehi is more desirable to have
a calculation with a small slab, but an accurate band stred¢ar only a few bands (what can
make the bandstructure too unprecise for the descriptidheo$urface) or a calculation with a
big slab and an uncorrected band structure for many bands (eigs[5.H-5.7T1).

A drawback of this statical form of quasi-particle correatis that the implicit dynamical
properties of quasi-particles, especially of the enecg#lyi relevant excitons, are neglected in
favor of the computation of aa final state after long-timddxation” of the quasi-particles.
This is doubtlessly very useful for the derivation of theiogit spectra, but in the context of
this thesis, with the aim to discuss the phonon-inducedaditan on a picosecond timescale, a
discussion of the electron-phonon interaction leadingytwadhical processes is needed in the
time domain. Additionally, the dynamics might depend onitexcformation. While exciton
formation and dynamics can be discussed in the energy dessinilar to theGW-formalism
— by employing theBethe-Salpeter-equatioVRKPOE], it is likely that it interacts with the
phonon relaxation and thus must be discussed dynamicajlywéthin density-matrix theory
by an appropriate Hamiltonian. On the other hand, no metlasddeen found to implement
a phononic relaxation beyond phenomenological theory tikocombined DFT&W/Bethe-
Salpeter-approach, so an discussion of dynamics on anb#sis cannot be avoided in this
context.

In silicon, calculations on the basis of tk&V-formalism have been performed in various
contexts, different works have been published about the)(40rface[[KP95, FP95, RBKB5,
SSBO4/ Egg04, SSD6] and its reconstructions. For silicarofeyst other semiconductors), it
has been found that the corrections of the bandgap are yuasistant throughout the whole
Brillouin zone, theGW-correction falls back to a simple augmentation of all cartitun band
energies about a certain constant value. As a consequdsodgha corrections to thkohn-
Sham-stateare usuallyk-independent (or even vanish). This procedure is usualpide as
scissors-shifof the band structure. In the calculations described in @mBf we apply such a
scissors shift, as there is no known alternative methoddess full implementation of dynam-
ical quasi-particle interaction) to obtain a fairly retiisband structure from the demonstrably
incorrect result of a density functional calculation vvrithlheIocal-densityapproximatioE.

3The local-density approximation cannot generally give@atrresults for the bandstructure calculation, as some
features are unrealistic, e.g. the lack of self-interactiothe functional and the missir®/ /dn-discontinuity.




1 INTRODUCTION

1.4.2 Time-dependent density-functional theory

A different extension to density-functional theory is théegration of dynamical evolution of
the electron state into the formalism [RG94]. A time-depeh@nt of the electron distribution
can only expected in a non-equilibrium environment, thiis, approach requires the adaption
the ground state formulation in DFT towards a non-equiliribehaviour. While optical exci-
tation can be considered by dipole coupling to a classidal, filke strength of this approach lies
in the consistent dynamical calculation of electronic aattide properties: Through the elec-
tronic density distribution known at every timestep, als® $ystem of ions can be dynamically
evolved on the basis of the classical forces. By this, it ssgale to trace the lattice vibrations
without the need to apply a phonon formalism, such that timauhcs is not restricted to linear
approximations. This formalism is used in various contextg. for molecular vibrations, and
has also been applied to the time-evolution of the silicdi]GurfacellvHLP(5].

In comparison to the dynamical formalism in this thesis,dtiglence of a time-dependent
density-functional approach is based on a different |eiile the dynamical evolution in the
energy-space, based on the population of particular eledates based on a pure quantum-
dynamical description, is in the foreground in the densiigtrix formalism, the calculation of
the dynamical development of an electron distribution amdoge or less classical evolution
of the lattice is performed in TDDFT. While the integratiohquantum-coherence effects is
one of the central points in DMT, this is not directly possilth TDDFT. On the other hand,
TDDFT allows a much more detailed analysis of the naturett€tavibrations, which can be of
interest for the investigation of surface dimer vibratiols necessarily in a harmonic potential
(cmp. Fig[IP). However, the dissipation process to finedlgl the lattice vibrations into an
equilibrium distribution is still unsatisfactory for TDOF while it is an intrinsic property of
the density-matrix formalism through the bath hypothesisf. Sed4.2]3).
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Chapter 2

Time dependent quantum theory

The electronic properties of a solid state material underemuilibrium conditions have to
be described in many-particle quantum theory due to theemds and interaction of many
electrons and nuclei. In this chapter, the basic concepgsiafitum theory incorporating non-
equilibrium dynamics are presented. The basic idea of oproagh is to use a two step ap-
proach by dividing the statical contributions of the Haomiflan (which then can be calculated
using amab-initio approach, Chaptét 3) from the dynamical non-equilibriumticbutions (us-
ing density-matrix theory, Chaptgr 4).

2.1 Schibdinger picture vs. Heisenberg picture

A quantum system is described by a HamiltonifSch02 [ SW93, CTDLO7]. The Hamilto-
nian incorporates a kinetic energy tefirand a potentiaV/:

H=T+V. 2.1)

While T is generally time independent, might explicitly depend on time. The statg;(t) of
the quantum system is found by solving the fundamental tlefgendenSchibdinger equation

iﬁ%d)s(t) = Tdg(t) +Vdg(t). (2.2)
Contributions toV can usually be obtained by taking a classical potential @stidbing all
contained observables (e.g. electron density or positmguantum mechanical operators.
A physically identical formulation of a quantum system candghieved by transforming
the operators and wave functions with an unitarian opefaiorty). By applying the time-
development operator

Ut tg) = e Mo (2.3)

we obtain an alternative description, where the quantute gta = U (t,to)®s(t) is no longer
time dependent. The temporal development of the quantutarsyis now uniquely determined
by the operators. Corresponding to ®ehidinger-equatiorfZ2), the dynamical evolution of
the operators is determined by tHeisenberg-equationf motion for an operato®:

iﬁ%O: 1,0 +ifl-0. (2.4)

ot
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By now, no special assumptions about the many-particle tguasystem have been used
to develop the equations. The kinetic energy operdtaf an n-particle quantum system is
usually decomposed into a sum of single-particle kinetergy operators:

ﬁZ
T=Y-——A,. (2.5)
2 " om™

The potential energy operatdf, however, can generally not be treated in a similar way, as
all inter-particle potentials are also described by thig pathe Hamiltonian. Nevertheless, it
can be split into a decomposable part (e.g. a static extermiahckground potential) and an
interaction part:

V= zvl ) +Vint(ra,.,n), (2.6)

where thev;(r;) now only depend on the coordinate of a single particle. Funtiore, the

interaction potentiaViy; can be interpreted in terms of a statical p4f** and a dynamical
part\/,ﬂ%’ ". The idea of splitting-up the potential is to separate theésphat contribute to the
equilibrium state of the system from those which only haveetiect in the case of a non-
equilibrium electron population. The latter can be eithederstood in terms of an excitation
potential (e.g. coupling to an electromagnetic field) orlax&tion potential which tends to
restore the equilibrium state. The Schrodinger equatfdheostatical part can then be solved

by an adapted method (cmp. Chagfler 3) using the statical lkdamain

HEE= T 3w (1) + Vi, (2.7)
|

whereas in the dynamical part, the remaining dynamicalrimritons to the Hamiltonian are
treated as a perturbation to the statical part by an ap@atepaipproach (cmp. Chapfér 4):

Hdyn — Hstat_{_vdyn. (2.8)

In addition to those potential related assumptions, alsplgications are applied to the
wave functions. Corresponding to the decomposition of tagcsl potential in[(Z16), we ap-
proximate the many-particle wave functidry,..r,) by a totally antisymmetric product func-
tion, where the wave functiong(r) of the single-particle states of an effective single phatic
Hamiltonian occur. This can be expressed in terms oftater-determinant

@(ry) - @n(ry)
D(ry,...M) = — : ; (2.9)
@(rn) - @(rn)

It is obvious that this simplification is no constraint for @agtum system that only contains a
potential which can be split into single contributions degiag on a single coordinate without
interaction terms. Within the interaction contributiontbé potential, on the other hand, this
approximation has to be justified for the particular system.

2.2 Quantum field theory — canonical quantization procedure

The formalism introduced in Sdc.P.1 suffices to describeaatyun system with a fixed particle
number and a given set of quantum states. If, however, a gumastatistical discussion is
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necessary or the number of particles varies, the formalissitd be extended. The canonical
way to find a many particle description is to apply a canoniigdtl quantization procedure
to the quantum fields in the Hamiltonian, which also provites possibility to treat quasi-
particles (like excitons, phonons) or massless partidiks photons) quantum mechanically
(usually this is referred to aecond quantizatign The canonical prescript to quantize a system
is as follows:

1. From a known wave equatiaM(¢;, éi, 0&;,t) = 0 (this can be for example@chibdinger
equation an electromagnetic wave equation, a phonon dispersidragengedensity
. [BD65,Biic04] is constructed to fulfill the variational exjion

033033

W(&, &, DO&,t) = +5 9 = 2.10
@8:080 =35G8 " %08 & (220
2. A canonical momentum for the field varialgis defined by
<z

= —. 2.11
=50 R

Using this momentum, we can formulate a Hamiltonian density
H =Y Me&i— 2L (2.12)

|
and a Hamilton-Function

H— / a3 (2.13)

The field variablest; are now interpreted as field operatats which is achieved by
introducing fundamental commutation relations for thedfigberators, which correspond
to classical Poisson-bradegisson bracegor the field functions[[BD65]. The character
of the particle described biy; determines the choice of a commutaor O] = OO0 —
OO for bosons or an anticommutat®, O'] ., = OO0 + OO for fermions:

=i, = & (2.144)
[=i,5j]+=0 (2.14b)
(M;,MNj]==0 (2.14c)

By this step, the Hamilton-function is transformed into antiléon-operator. The time-
development of observables can then be evaluated usirdeisenberg-equatio@.4),
as the field operators; are now canonically in theleisenberg-picturéSec [Z11).

A usually more convenient representation of the quanturdgiehn be obtained by per-
forming a mode expansion. The field functiéit,r) and the corresponding field operat&s
depend on time and location. On the other hand, solving the déiguation [2.T10) for a field
variableé into a complete set of complex modes, the mode opera@’s andm(t) can be
defined

Zi(r,t) = Z(frlfik(f)mk+ f1(&)* (rm)) (2.152)
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ar

Figure 2.1: Example of a two dimensional hexagonal unit cell (Ilhs) angl ¢brresponding
reciprocal lattice vectors and first Brillouin zone (rhs)

Mi(r.t) = Z(ffak<rm+ F2(&" (r)my) (2.15b)

and the new commutation relations for the mode operatortharegiven by
Mem]e =&, [Mmi,m].=0, [m,ml.=0. (2.16)
The choice of the factorg!, f1, f2 and f2 depends on the character of the fiefls For a
classical real field for example, we ha\fé =1, fil =1, fr2 =i and fi2 = —i. The correct

commutator depends, as in E4S.{2.14), on the nature of ttielpafor fermions, the choice is
the anticommutator, for bosons the commutator.

2.3 Quantum physical properties of a regular solid state madrial

The quantum mechanical properties of periodical system$ealescribed on a different level
of abstraction with respect to a free systém [AM81, CzyO@}iddicity in a solid state material
can be expressed through the lattice axgs, andaz. Inside the parallelepiped spanned by
the axesa, ap, as, the unit cell of the structure is located, which is repeatethe specific
directions with a period of the corresponding lattice vec@onsequently, a lattice vector

R; € {nlal + Npap + n3a3} (2.17)

points to the identical origins of the lattice. The quantuesaiption of the periodical system
with the Schibdinger equatiorcan be entirely derived from a single unit cell. Correspogdi
to this restriction in real space, the area in the accordimgriEr (ork-) space is limited by the
reciprocal lattice{by, by, b3}, which is given by the definition

B 2Ty X ag by — 2Tag X a4 b — 2Ty X &

= = = 2.18
Y aixapay 2 axaa - axap-as (2.18)

and the reciprocal lattice vectors are then — similarly to @dL1) — defined by
Gje {nlbl +noby + n3b3}. (2.19)
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Thefirst Brillouin zonecan be constructed from the reciprocal lattice vectorsesphace which
is bound by the condition
2k -G; < G? (2.20)

for all G;. The relations between the real space krgpace representations are illustrated in
Fig.[Z1.

The periodicity of the structure implies a translationainsyetry in space by the lattice
vectorsa;, ap andaz and their multiples. This property can be expressed by duoiting a
translation operator.9g

Trf(r)=f(r+R) (2.21)

which can be defined by
Tr = et (2.22)

such that periodicity is established whéf, andH commute, and for normalization, all valid
eigenfunctions oH must also be eigenfunctions olg, to an eigenvalue with a modulus of
one.

2.3.1 Two dimensional systems

The three-dimensional definitions in EQ._(2.18) can in pplecbe formulated for a system
where phase space of the electrons is of lower dimensigriBE8E, [LU{93, Bec03, DS96].
This can be either a restricted system (like a quantum wellqprantum dot) or a naturally low
dimensional system (like a graphene-sheet). In this cérttexsurface structures have a special
status, because although the symmetrical properties@se tf a two-dimensional system, it is
in fact three-dimensional, as the third dimension extenda whole half-space. In numerical
calculations, this situation is usually described bglab approach the surface structure is
specified in three dimensions, where the directions péaralléhe surface are given in their
genuine surface symmetry and the periodicity is used foctmeesponding coordinates. The
direction perpendicular to surface is described to a cedapth by specifying a finite number
of layers and a vacuum layer.

In this thesis, to make a clear distinction between the dgioeralities of differents systems,
we introduce a two-dimensional vector

\%1
v=| w |. (2.23)
0

In the surface structures, it is assumed that the threerdiimeal lattice vectons is always
parallel to thez-direction and oriented perpendicular to the surface. thtreines the extension
of the slab perpendicular to surface, while the other veepanda, are given by the geometry
of the surface elementary cell. Although a three-dimeradi@millouin zone can be defined by
these three vectors (using EQ.(2.18)), the discussioregbliysical properties is only based on
the two reciprocal lattice vectors

_ 2map X e by — 216, X aq

g =2 = 2P 2.24
apxae axaye (2.24)

whereg, is the unit vector ire-direction.
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2.3.2 General considerations on electronic properties

A formulation of the staticaBchibdinger-equatiorfZ2) with a periodic potential allows to re-
strict the possible solutions the unimodular eigenfumdtiof the translational operator (EQ.{2.21))
[Czy00,[,AM81]. This is fulfilled by introducing the so-catléBloch-functions

(1) = € Ui (1), (2.25)

whereun (r) = up (r + R;) is a lattice-periodic function. Thie-vector is an element of the first
Brillouin zoneQ (Eg. [(Z20)) and constitutes a continuous quantum numisitiacklly to the
band indexn. It is convenient to describe the periodicity Wk (r) by a Fourier series, where
the reciprocal lattice is exploited:

Unk (1) = gunk(@é‘“- (2.26)

For obvious reasons, orthonormality of these wave funstismo longer constituted on the
whole spaceR3, but can be defined on the volume of the unit @@lk= lag x a2 -ag|. The
corresponding orthogonality relation is

/QUnkUn/k = O (2.27)
or, in terms of the Fourier representat[on 2.26,

zUnk(G)Un’k(G) - 5n7n’- (2-28)
G

Together with the representation of the electronic wav2s,at follows the orthogonality rela-
tion

/Q PricPrk = Onpy O o' - (2.29)

Also the corresponding energy eigenvalues ofSkbhibdingerequation are defined by the
two quantum numbens andk:
Enk, keQ. (2.30)

2.3.3 Vibrations (Born-Oppenheimer approximation)

In principle, the dynamics of both electrons and nuclei amedrtant for the quantum mechani-
cal description of a solid. Nevertheless, the masses ofitlorensm and the nucleM; and the
corresponding kinetic energies are fairly differemt<€ M;). The impact of the nuclear motion
on the electrons is much bigger than vice-versa, and the fuations of the nuclei are much
more localized than those of the electrons. The dynamickeohticlei can be described on a
classical basis without restricting the quantum mechéamuieacription of the electrons. This
approach is called thBorn-Oppenheimer approximatid@zy00,[SWO2]. On the other hand,
the nuclear coordinates can be decomposed into

Ri(t) =Ri| +c(t), (2.31)
0

where theci(t) denote a small deviation from the minimum position of totaérgy R;|o. A
perturbation expansion of thabrationsc;(t) is used to express the potential. Although they
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are in principle a discrete set of nuclear elongation coatgis, it is useful to interpret the vi-
brations as continuous fieldgr,t), where the index now counts the different atomic positions
in the unit cell. With this declaration, a quantization prdare (Sed._212) can be applied and
they can be described as vibrational quatianons

The potential which acts on a nucleus originates mostly f@@walomb interaction (cmp.
Sec[Z.3M). The core electrons are usually bound to thesinstich that it is better to refer
to the ions as the oscillating particles, although the sbest have practically no effect on the
mass. By a series expansion of the ion-ion potential by theatibnal fields at the ion posi-
tions, the first order of;(r,t) vanishes due to the placement of the ions near their equitibr
positions (where the total energy reaches is minimum vakweh that the first non-vanishing
order is the second. As a consequence, the forces on theredstarmined by a superposition
of Hooke’s law for the neighbouring ions, and the correspagdynamical equations yield for
the ion at positiorR; with massvi;:

MiE(r,t) = 5 DrRr ¢ (Rj+1,1). (2.32)
J

The dynamical matriDgiRj is given by the second derivatives of the potential betwheridn
at positionR; and the ion at positioR; in the elementary cell.

While the vibrational fields;(r,t) are useful for classical interpretation of the elongations
it is more convenient for quantization and calculus to idtrce the normalized complex modes

by
610 = 5(\ g S0+ g S0). (2.33a)
Ci(r,t):%( ﬁi'vlis(r,t)—MﬁiMS(r,t)). (2.33b)

Due to the translational invariance of the periodical dtrresand the homogeneity of the dif-
ferential equation{Z.31) , the normalized modes have filfille ansatz

s(r,t) =47 9g, (2.34)

whereé is the polarization vector for modeandq is a vector from the first Brillouin zone.
By inserting this into the dynamical equatiois (2.31), seeular equatiorfor the phonon
dispersion can be obtained, and by choosincgtias eigenvectors of the dynamical matrix, the
phonon dispersion can be calculated from the eigenvaluBgmft

—w?=g-D(q)e. (2.35)

The number of phonon modes can be calculated from the nunfili@rin the unit cellN
as N, where a degeneracy of some modes is usual, according tgrtiraetry of the structure.
The first 3 modes, which hawa (0) = 0, are called acoustical modes, while the oth@t 3 1),
with «y (0) # 0, are the optical modes. For a snilthe acoustical modes can be approximated
by a linear dispersion with the sonic speg@s wxcoust= Ci|q|, While optical phonons have a
more or less flat dispersion and can often be approximatedcbpstaniu,: = w.
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2.3.4 Coulomb interaction

Due to the nature of the electrons and ions in a solid statenabhs charged particles, the most
important interaction is the Coulomb interaction. Insidecdid state material, the classical
Coulomb energy for a classical charge distributgdn) is cast into several contributions which
take into account the many-particle nature of a solid [SMBX93]:

3 3/ p(r/)
Voou =3 /d /d ATeg |r—r/|

1— 3 ZIZj Z/ e ZiPcore(r) /d3 /d3 ¢ e Pcore(r) Pcore(r’)
24 4mgg |Ri — 2 4mey [Ri—r| 4r18) Ir—r’|
nucleus-nucleus potential ~ nucleus-core “electron potential Core electron-electron potential

independent of shell electronsconstant

—i—%Z/d & Zp(r /d3 /d3/ & peore(r)p(r) (2.36)

4nso!R.—ry Amey  |r—r'|

nucleus-electron potential Core electron-electron potential

Vs

/d3 /d3 /4nsopy(r)—r(y)

electron-electron potential

Thez; refer to the charges of the nuclei, which are assumed as-fia@nparticles, due to their
limited extension with respect to the valence electrgis) corresponds to the electron-related
charges, which can be delocalized in a solid. Usually, andistiescription of core electrons
and valence electrons is desirable, as the chemical ldttinding is mainly related to the va-
lence charges, while the core charges are strongly attachine nuclei. To this end, a core
chargepcore(r) is introduced for the non-valence electrons. Bwn-Oppenheimer approxi-
mation(Eq. (Z31)) is used to separate nuclear and electronicomddy inserting Eq.[(Z.31).
As a consequence, an interaction term of phonons and aleatem be derived by performing
a series expansion of the phonon modés t) using a functional derivative (cmp. SEC.BJ2.2):

0
VSNVS —l—/d I'ZC, r t 5 (I’ t)Vs. (2.37)
The overall Coulomb energy is then given by
VCouI:EO+/d3rVNuclp(r)+/d3rVCOre(r)p(r) (2.38)
Viat
' g € p(r)p(r)
3 9 [ @riv. 3 / 3,/
+/drIZc.5ci/d Cored (1 +/d o Amgy |r—r/|
electron—phonon—coupling electron-electron-coupling

whereV,_4 is the effective lattice potential including core-electiiateraction and nuclear in-
teraction. Using Eq[{B.11), the electron-phonon couptirgn can be expressed in terms of
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the following formula [SWOR]:

Veron= [ Y (a(r.0000) + 25020 (). (2.39)

The electron-phonon potentiBi(r) can in some cases be derived microscopically, but can also
be treated as parameter.
The transcription of the interaction energy contributibtmgjuantum mechanical quantities
is achieved by replacing the electron density funcidn) by the electron density operator for
a many-particle system
rn=ey o(r—rj 2.40
) IZ ( I)> ( )

where ther; are the coordinates for thé electrons. The energy expectation value is then
obtained by calculating the expectation value with Mxparticle wave functiond(2.9):
Ecoul = (P|Vcoul| P). (2.41)

The evaluation of this expression for the particular eleimém Eq. [Z3B) yields, by making
use of the orthonormality of the one-particle wave fundiqrr ):

ELat =Eo+ Z/dSrVCore(r)ai(r)(ﬂ(r), (2.42a)

Egi- Ph_ZZ/dg c(r,t)DY(r )+0 ;r )Dl( ))(p(r)(p(r), (2.42b)

& oa(am)e;re(r’)

_ 3 3,/
EE|_E|_IZ;/d r/d e o , (2.42¢)
Hartree-term

;/d?’ /d3’ Gl )fﬂ(r/)aj(r')(ﬁ(r).

4718 Ir—r’|

exchange term

While the existence of multiple electrons in the system hasignificance for thde 5 and
Eg..pn contributions, it has an effect for tHe: g interaction. Here, the term consists of two
parts: theHartree-termrefers to classical interaction of single electrons, wastheexchange
termis due to the fact that Pauli’s principle requires a totafiyisymmetric wavefunction (Eq.
@(Z9)). For a single-particle theory, all terms besidesekehange term can be described by
a local (multiplicative) interaction teri(r) in the Hamiltonian, while the latter is cast into a
non-local (integrative) expression.

2.3.5 Electron-Light coupling

In contrast to the inherent statical Coulomb interactiornthef charged particles, the coupling
to an external electromagnetic field is included by (@ }nvariance of the wave function into
the Hamiltonial [BD6Y, [AE7S,[SWIB]. The electromagnetic field is expressgthk vector

1An exact description of the particle-electromagnetic fielbraction would require a coherent solution of
electromagnetic field equations (Maxwell-equations)daghe material with the boundary conditions given by the
external field. Keeping in mind that the light pulse shoulddeia short, weak exposure, our approximations seem
tolerable.
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potentialA(r,t), which is set into Coulomb gauge [Jat99]:
0-A=0, (2.43)

and the electrostatic potenth(r,t), which can be cast to zero without loss of generality. The
vector potential enters th&chibdinger equation through the replacement of the momentum
operatom by

h h
effecting several contributions to the original equations

1

d
ih—o(r,t) = o

" <ﬁ2A—2qA(r,t)ibD+q2|A(r,t)|2> o(r,t). (2.45)
Two approximations are now used with regard to this equatkirst, due to the long wave-
length of the optical light compared to the typical size otrascopic structures, the spatial
dependence of the vector potential can be neglected,(sd) is expressed a&(t). This is
usually called thadipole approximation As a second approximation th(t)|2-contribution

in Eq. (Z45) is neglected, as the fields used in our discnssie rather small and are therefore
of minor influence due to the quadratic order.

The use of the vector potentiél(t), which is only given indirectly by the physical ob-
servables electrical and magnetical field, is often incoierg for the description of the optical
interaction. An equivalent form of the coupling based oneteetrical field can be obtained by
applying a U1)-phase transformation to the wave function in the Schlg'mhrequaticﬂ by

U(r,t) = e, (2.46)

The transformed Schrodinger equation then reads

_d R2

|ﬁa(p(r,t) = —%ﬁ A@(r,t)+grE (t)e(r,t). (2.47)
The most significant difference to Eq._{2.45), besides thergance of the electrical field
E(t) = —d/dtA(t), is the appearance of tldgpole operatord = gr. It can be shown that under
normal conditions, the two formulations {2145) ahd (P.4/8) guasi identic. To this end, if we
look at a matrix element of two arbitrary states) and|¢;), which corresponds to an optical
transition from stat¢q) to state|¢;), it can be seen that

{allr,Hl|gy) in |
Ei—E o= m(Ej_Ei)«mp!m- (2.48)

(alrlg) =
While the pulse is now sufficiently long to ensure a sharpsitam (E; — Ei = hw, wherew
denotes the frequency of the light), the two formulationsg(acting theA|?>-term in [Z45))
yield exactly the same expression, as the electrical fietdlated by derivative to the vector
potential.

2This also implies a gauge transformation of the vector piakA(t) such thai(t) = 0.
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2.3.6 Statical and dynamical system Hamiltonian

By combining the interaction terms in sectiéns 2.3.4[and8th the kinetic energy contribu-
tion, the overall Hamiltoniarf{2. 1) can be obtained. As enésd in Eq.[(Z]6), this Hamiltonian
is then divided into a statical and a dynamical part. The detapexpression for the Hamilto-
nian is given by

H =T + VE + Vphon+ VE-opt + VEI-Phon+ VEI-EI- (2.49)

In our approach, the static contribution to the Hamiltonimmquivalent to the ground state,
as we will assume that the final state after relaxation doediffer significantly from the
ground state. In the ground state discussion, we will asshat¢he system is neither perturbed
through vibrations nor by optical excitations. The Couleimigraction between the electrons,
on the other hand, is of course important, but only betweeretéctrons in the ground states,
while other electrons are not affected. Consequently, thergl-state Hamiltonian reads:

Heq=T + VeI + Veq,El-EH (2.50)

The remaining terms in EQ.{Z149) are treated in a non-dxiilin approach by second quanti-
zation of the electron and vibrational (phonon) fields. Timgle-particle description of the
ground-state theory enables us to interpret the entirengratiate Hamiltonian[{Z.50) as a
single-particle Hamiltonian usable for the quantizatioagedure (Se€.2.2):

Hnoneq: Heq + VpPhont VEI—Opt + VEI-Phon+ Vnoneq,EI—EI (2-51)

The quantization will be performed in Selc.{4.1). While théalation of the ground state will
be elaborated in Chaptér 3, the dynamical theory incorpaydahe non-equilibrium contribu-
tions (Eq.[Z5N) is discussed in Chayiikr 4.
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Chapter 3

Basic aspects of Density-Functional
Theory

Although there are known numerical approaches to find thetisok of the single particle
Hamiltonian [ZBD) in an iterative and self-consistent ythg numerical effort is considerable
and often too high. Based on the decomposition of the wavetifums by a slater determi-
nant [Z9), the electron-electron interacthdf in the Schrodinger equation, is given by two
contributions (cmp. Eq{Z.4Rc)) [Czy00]:

(P (r') & Pi(ral’)

d3r’ J 3,/ 1) '

Verah(r moz/ ,‘ 00+ gy 3 [0, @
Hartree-term eXChange—term

While the Hartree-term can be calculated with justifiabferéfdue to its dependency from the
overall electron density

f(r) = (®@lp(r) Z\(n (3.2)

the exchange term requires a numerical integration foryewere functiong(r). Apart from
the high cost through this calculation step, the scalingeipethdence of the size of the system
(number of electronic states, discretization) is bad. ltespf the highly increased computa-
tional potential in comparison to the past, the systemsdéuatoe investigated by thidartree-
Fock-approachare still very limited in size.

In 1964, Hohenberg and Kohh [HKI64] developed a differentrapph. Their basic idea
was that the ground state of a quantum system is injectiedyed to the electron densifyr).
In the Hohenberg-Kohn-Theorenthey have shown that the ground state enéigis an one-
to-one mapping of the ground state electron denfjty). The proof of this theorem is based
on the facts that different ground state energies in a ngesErate system require different
Hamiltonians and that furthermore a difference in Hamilios of the form[(Z.30) with equal
electron density can only affect the single-particle pténbecause all other contributions
rely on the density. The single particle potential, on theeothand, is not influenced by the
electronic structure and is non-ambiguous for a sy@te‘ﬂence, the task is to derive a set of

1it should however be noted that there exist a trivial exceptd that statement. The minimum value of the
energy has no physical relevance and can be chosen aipjtitagrefore the ground state energy is only fixed up to
a constant. This exception is mentioned in the original Hbleeg-Kohn theoren [HK64].
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eguations that no more rely on the exchange-term of singteclgawave functions, but on the
particle densityf (r).

3.1 \Variational principle

From the fact that the ground state energy is un-ambigubfalaws by the Hohenberg-Kohn
theorem that this also holds for the electron density. Omother hand, as the densityr) can
be chosen from a continuous configuration space, the minigfuithie ground state functional
Ecround f ()] can be found using a variational principle. The electrorsigrat this minimum
is then the ground state density. The density can howevebenchosen fully independently,
but it must reflect the fixed particle numhérof the system through

/d3rf(r) —N. (3.3)

The variation can now be performed by using the functionaivdgve (B.3) with the this
constraint by introducing Lagrange multiplicators for ttestraint conditions:

5%(,.) <EGround[f(r)] —H / dr f (r)) il 0. (3.4)

By now, no assumptions have been made with respect to thedbthe ground state energy
Ecround@nd the electron densit(r). In the spirit of a Hartree-Fock approach, it is now self-
evident to propose a partition of the energy in the followivey:

Ecround T (r)] = Ts[f(r)] + Evat[f(r)] +ER[f(r)] + Exc[f(r)]. (3.5)

Ts[f(r)] stands for the kinetic energy of the system of non-intemgcélectronsE_: denotes
the statical Lattice potential, arigi[f (r)] andExc[f(r)] represent the Hartree and exchange-
correlation energy terms (EQ.{2.42c)). The “correlatiai®notes an extension to the pure
“exchange” term based on the fact that the product wave ifum&q. [Z.9) is not exact and
doesn’t take many-particle effects into account. Sucheoions to the one-particle description
can be numerically calculated by a many-patrticle theowy. @reen’s functions [Hed65]). The
first two of those contributions can be expressed by

Lo — / Prviaf (r) (3.6)

and
B = [ v t(r) = [&r [ ,8580 f|<r ) fr</|> (37)

The electron densityf(r) can be interpreted corresponding to H.1(3.2). By this step,
implicitly assume that the electronic states can be caledlay solving a statical single particle
Schrddinger equation for the single particle state§(ir), namely

Eiq(r)=Ta(r)+Vsa(r). (3.8)

Following Eq. [Z5), the one-particle kinetic enefBy= —h?/2meA, where all statical contribu-
tions and contributions from other electrons are now coexdbiim the single-particle potential
Vs.
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3.2 Kohn-Sham equations

By executing the variations of EJ_{8.5), a set of serviceasuations can be found. This
derivation was first performed by W. Kohn and L. Sham in 19656%], who gave the name
to the resulting equations. From Eds.13.5) dndl (3.4), wetgetelation

B OEGround 5T OExc

While the conversion fronk, 4 to V4 is @ more or less trivial calculation following EgE.(3.6)
and [3F), no explicit expression for the relation betw&esnd f (r) on the one hand arfixc
and f(r) on the other hand is known in advance. Otherwise, by theti@miaf Es, under the
constraint/ drf (r) = 1, we obtain

OEs oT

=5ty KT Erm TV s (3.10)

By subtracting Eqs[(3.9) an@(3110), the kinetic enefggan be eliminated and a definite
expression foks is obtained:

OExs
Vs(r) =Miat+Vu +

3T(r )+H Us. (3.11)

The two constant Lagrange parametgrand ps cannot influence a wave function calulated
with Vs and are suppressed. By this equation, a direct connectiwebe the single particle
wave functionsg and the density-dependent Hartree potentjaland exchange-correlation
potentialdExs/d f(r) is found. The electron density, however, is related to theawanctions
by Eqg. [32). On this basis it is now possible to express acsgibistent algorithm by a con-
secutive evaluation of the electron density and the singiégle Schrodinger equatiors(B.8).
The conception of such an algorithm is shown in Eigl 3.1.

The ground state energy from these calculations is finalipdousing Eq.[(315). We find

EGround= Z Ei — /dngS(r) f (I’) + /dngLat(r) f (r) +Ex + Exc. (3-12)

By inserting Eq.[[3111), this finally results in

(r)

The Kohn-Shamequations are generally only valid for the ground state itleasd the as-
sociated lowest single-particle electron states. It isdvaw possible to calculate more states
than needed for the ground state in the single particle @®amhgér equation[(318), but as no
Coulomb and exchange interaction is taken into account in(EG1) for these states (only
the ground state density is incorporated), their value®algapproximative. In this spirit, is
also possible to use a thermal distribution functiarfni-functior) for the occupation of the
electronic states, this can be important for the investigatf temperature related effects at the
Fermi-level For excited states, generally also many-particle-effeéthigher order (beyond
the exchange-correlation functional), namely quasiglarinteractions (for examplexciton3,

are important for the determination of the energy structure

Ecround= z Ei — EH — /d3 f(r)+Exc. (3.13)




3 BAsIC ASPECTS OFDENSITY-FUNCTIONAL THEORY

Test wave functiong (r) ‘
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Figure 3.1: Flow diagram for a typical density-functional calculationn. The initial test
functions are usually chosen according to the specific géweak requirements of the sys-
tem [BKNS9I7].

3.3 Exchange-Correlation functional

While all “classical” interactions for the electrong, £, V) are implemented exactly in the
Kohn-Sham-equations, the crucial point of the theory is fdrenulation of the exchange-
correlation functionaExc. Although theexchangepart of this functional is conceptionally
based on the exchange part in Hq.}(3.1), there is no direbttaad transcription of the depen-
dency on the wave functiorg(r) to a dependency on the electron dendity).

By specific, simplifying assumptions on the electronic eystit is however possible to find
approximated expressions fBgc. In the so calledlellium modeglwhere the positive charges
are introduced as a constant homogenous background chasgessible to derive an analytic
expression for the exchange tefm [CZy0O]:

& 1
Ex :/dr(-m(snzf(r)é>f(r). (3.14)

The Ec contribution can only be solved analytically for the specasesf — 0 andf — oo,
Usually, interpolations of numerical simulations of théeirmediate densities are used for the
calculation. This approach is referred to aslteal-density approximatiofLDA).

We should mention that there are also more elaborated éxtant® the local-density ap-
proximation. In thegeneralized gradient approximati¢g@®GA), also the dependency aif (r)
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is parametrized in the simulation of the functional. For evollar physics, various functionals
are used depending on the purpose.

3.4 Structure relaxation

Although in the derivation scheme of density-functionaddty (sectiong-3]11 aid"3.2) the lattice
enters as an external statical potential, it is possibl@atoutate the classical forces on the ions
induced by both ionic and electronic forces. If the Grourdiesénergy (depending implicitly on
the ionic coordinates through the lattice and core eleqiaiantial) is interpreted as a classical
potential [Hel3¥| Fey39], the force on an ioat positionR; is defined as

Fi= —DRi (Eionic + EGround)- (3-15)

The energyEjonic is the classical potential energy of the ion-ion interatijomp. Eq.[2:36)).
Apart from the discussion in terms of the density in $ed.tB&e is also a description in terms
of a “Ground state Hamiltonian” as

EGround: <CD|HGround|cD>a (3-16)

which can be constructed using EqS.(8.11) 4nd 13.13). Withidentity, we can express the
gradient of the ground state energy as follows:

Or; Ecround=UR; (P|Hcround P) (3.17)
:((D’ (DRi HGround) ’(D> + (DRi ((DD HGroundq)> + <¢’HGround(DRi ‘CD>)

After applying the Hamilton operator {&®) and(®|, the last two terms can be combined:

= (@[ (Ur,Haround) |P) + Eground R, {P|®).

By the normation of the electronic wave functioj#®), the second term vanishes. Mroung
only theV_g-contribution has an explicit dependencyRnso we finally conclude the follow-
ing expression:

Fi= —DRiEioniC—/d3rDRiV|_atf(r). (3.18)

Note that the application of the Hamiltonian in EQ.(3.17pi8y valid for an electronic sys-

tem in an eigenstate. Therefore it is important at this pthiat the electron density entering
Eq. (3I8) is well converged towards the ground state corgtgaun. From the knowledge of

the forces, ionic moves can be parametrized, leading toaaatbn of the structure towards
the ground state equilibrium position. This is only reasi@aas an outer loop to an ground
state calculation (as in Fig_3.1). Another applicatiorhis tomputation of a “frozen phonon”
spectrum, where the ions are explicitly put into a non-dlgiilm position to evaluate their

force constants.

3.5 Pseudopotentials

As introduced in Eq.{Z.38) the core and valence electronsbeadescribed separately due to
the properties of chemical bonding. Hence, it is a conveéniery and a good approximation
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Figure 3.2: Schematic description of the pseudopotential approximafi he nuclear potential

(bottom, black, dashed) is replaced by an effective coreng@l (red), where the interaction of

core electrons incorporated. Outside a cutoff radius, tiogeptials are equal. This procedure

reduces the number of knots of a valence wave function (tlgzkbdashed: valence wave
function for nuclear potential, red: valence wave functioncore potential.

[Ham89] to drastically reduce the computational efforteéplace the potentials of the nuclei
(which form the basic background lattice potential) by afeative pseudopotentialwhere
also the effects of the core electrons are included (Eij. 372 important feature of such a
substitution is that the number of knots of a valence wavetfan is also reduced, as the core
electrons are no more considered as solutions of the umigi8chrodinger equation (this, of
course, induces an additional reduction of the numeridaftef

The derivation of such pseudo-potentialhowever, is a non-trivial task, as some require-
ments are imposed on the type of such a potential functiorart4pom the basic request that
the potential and the valence wave functions should beiirb the preliminary nuclear so-
lutions outside of a certain cutoff radius, it is also dadieahat the charge contained inside the
cutoff radius is conserved, or the integral of the valenceesanctions over the cutoff radius
should remain the same (referred to as “norm conservingdopatential”).

For the use of a pseudopotential within a density-functicadculation, the interaction of
the valence electrons can be subtracted. The transfer frerspherical symmetry of the ionic
subsystems to a Cartesian symmetry of a lattice requiréssiumore a non-local integration of
the pseudopotential which can be treated in a combined/fmmalocal descriptior [Ham89].

3.6 Calculational aspects of density-functional theory iperiodical
systems

While so far no assumptions about the nature of the underlgiaterial system are included
into the equations, another aspect of using a densityifumadt algorithm is the choice of the
numerical description of the wave functions, densities poténtials. The most significant
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feature of a solid state system is its periodicity (cmp. £€8), the wave functions can be
expressed explicitly by a form as in EQ.{2.25). The natuhalice for the basis of the wave
functions in a periodical system is therefore to expressvinee functions in terms of the lattice
periodic Bloch-wavesi (G) (Eq. (Z.26)), where

Gic(r) = 3 Unk(G)eC . (3.19)

The phase facto€"" is only relevant in the description of the wave functions,levall po-
tentials and the electron density are truly lattice pedaid can, as the Bloch-wavés(2.26),
be described by a fourier series @ Consequently all equations besides the one-particle
Schrodinger equatiof (3.8) can be entirely formulatedhwie Bloch-wavesiy (G), while the
latter can be transformed by explicit evaluation of the pHastors into

h? :
EnkUnk (r) = _ﬁ(k2+ 2iKO + A) Uni (1) + VsUnk (). (3.20)

The two great advantages of the Fourier-series repregantate now that some operators
used in this Schrodinger equation comply very well with khgpace picture, as they can be
expressed much simpler in Fourier space, e.g.trendA operators in Eq.[{3.20) become
multiplicative, and that the transformation from real spéxk space can by implemented very
efficiently by Fast-Fourier-TransformationHence it is possible to maintain the real space and
the k-space representations of the wave functions and the aengitparallel and use for all
specific potential contributions the representation thauitable. With it, the Schrodinger
equation[[3.20) is again transformed and finally yields

2

h’
EnkUnk(G) = —Tne (k + G)Z +Vrea|spacér)unk(r) + gvk-spacée — G/)unk(G/) (321)

The diagonalization of this equation can be performed bypgmapriate algorithm, usually an
iterative approach is used in this context.

For the use of the Fourier-series in a numerical computatioa choice of a cutoff con-
dition, which limits the number of frequency contributiottsthe series, is crucial. The most
coherent method is to define a cutoff eneEgyiof, SO that

2
%e (G +Kk)? < Ecutoft (3.22)
holds, e.g. only thé&-vectors satisfying the condition are considered in théeserBy this
setting, the shortest wavelength of the spatial osciltetifor the wave functions in real space
is limited homogeneously for all spatial directionsXo= /2meEcyot/N. Another great ad-
vantage of the Fourier description is clarified by the foilogvconsiderations: the number of
G-vectors inside the “energy spherel’ {{3.22)) can be estthhy the relation

3
41/ 2MeEcytoff

ng < — ) 3.23
© = "3 R|by x by - bg| (3:23)

where the range; of G-vectors in the first lattice coordinate is withfA-Ecytoft/|D1], Ecutoff/
|b1|} and similarly for the other lattice coordinates (cmp. EQI®). In the corresponding
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Figure 3.3: lllustration of the relations between the k-space and rgace representations. In

k-space, only the points fulfilling the energy conditB3) (indicated by the black circle) are

used for the expansion of the basis, while in real space, @ithts are required. The energy

condition also ensures an equidistant mesh in all diretionreal space, whereas in k-space,
not the mesh, but the extension is equidistant.

real space representation with a corresponding numberpgfosting points, the number of
necessarR-vectors is given by

E3
n, > g_——cutoft__ (3.24)
"~ "[ba]|by|[bs]
as basically all real-space points have to be used. Thet rgsolvs that the description in
k-space can help to save a considerable amount of memory.

3.7 Structure calculations for surfaces

The calculation of a surface structure according to therslatlel (Sed2.3]11) affects a breaking
of the periodicity in the surface-perpendicular directidhis is in contradiction to the Fourier-
series representation of EQ. (3.19), where an explicibperity is implied also in that direction.
This disaccord can be resolved by thgpercell approachThe basic idea of this approach is
to enlarge the slab unit cell artificially in thedirection to create a vacuum layer of a certain
depth above or below the structure. If the vacuum layer isehasufficiently thick, the bound
states in the structure (which are the only ones of interest)hdecline to zero inside the
vacuum. Consequently, no coupling (tunneling) of the etecstates can occur between several
periodical slabs, and the wave functions are entirely kxtatz-direction inside a single slab. A
direct consequence of this is that the dependency of the fuaedon on thek-vector vanishes
in the z-direction: due to the vacuum, the electron problem for theemtial Vsjan(2) in z-
direction can be solved inside the slab without taking thiogéity into account. First, we
consider the Hamiltonian in one isolated slab. As the wanetfansq(z) of this problem are
bound, a discrete enerdy spectrum, independent from a continuous wave vector ariap

is expected:
2

EQ(2) = — oD (D + Vo)A 2. (3.25)
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Figure 3.4: Schema of the supercell model.

On the other hand, for the repeated slabs, the descriptoon Eqg. [3.2D) for a Bloch wave
functionup, (z) must also be valid because of the imposed periodicity by thei€r expansion:

R/, a8 02 >

Now, as the wave functions are localized and bound to onlyobtiee potentials in the sum in
Eq. (3.26), the energy values in EJS.(3.25) 4dnd {3.26) mughd same. This is only possible
by choosingun, according to

Uni, (2) = e—ikz((z—avac) mOd\%Havac) m(2), (3.27)

whereay,c is az-coordinate of a location in the vacuum where the wave fong (z) vanishes

— hence the discontinuity of the exponential does not maftensequently, the two represen-
tations [3.2b) and(3.26) fall back to the same energy valndsepresent, up to a phase factor
which is constant on one slab, the same wave functions. &muntbre, thek,-dependency has
been factored out. As a conclusion, it can be stated thatghersell approach is an extension
to the standard density-functional approach for periddigstems. It does not require a change
of the code.

The implications of the geometry of the slab, however, negaome additional thoughts.
Besides the choice of a certain surface orientation, thees dot need to be any relation be-
tween the symmetries of the underlying bulk system and tile SThe symmetries of the slab
mirror the symmetries at surface @randy direction), which is often reconstructed and there-
fore only matches the bulk lattice symmetry by specific iatefigctors in the lattice directions.
This effect, of course, is irrelevant for the lower atom &y the slab. In the-direction,
there is obviously no symmetry at all under normal condgioAt the “back end” of the slab
(denoted as “rear surface” in FIg.B.4), no surface with mstrmiction should be modeled, but it
is intended to simulate a preferably smooth transition éolihlk material (cmp. sdc2.8.1). To
this end, chemical bondings (which arise from the cut of thecture at the back end) are not
left open (as it is the case at the surface — this allows forgébenstruction), but passivated by
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Figure 3.5: lllustration of the link between atomic positions, elecimpotential and particle

density {r in the supercell approach for a Silicon (100x2 reconstruction. The atomic posi-

tions are indicated by the yellow circles (Silicon) and bturkeles (passivating Hydrogen). The

electronic potential for four different cuts along the zsas shown in black, the partially inte-

grated electron density is depicted in red. At the surfabs)(lthe tilted dimer reconstruction is

clearly observable. In the vacuum zones left and right othb, the potential converges to the
vaccum level, while the electron density approximates.zero

geometrically placed protons=(Hydrogen ions), which counterbalance the electrical awrg
and effect a consistent fading out of the wave functions atréar side. As an example the
positions of the atoms, the potentialzidirection and the total electron distribution are shown
for a silicon (001) 2< 1 surface slab calculation of seven layers in Eigl 3.5.




Chapter 4

Density-Matrix Theory

While the density-functional theory presented in Chajpteai3 be employed to investigate the
equilibrium properties of a surface system, we will devedgations to examine the dynam-
ical properties in this Chaptelr [RKDZ, HJ98]. The approaidtubsed within density-matrix
formalism is based on a canonically quantized descriptmmp( Sec[Z]2) of the expecta-
tion values of the microscopic population and polarizaiohe non-equilibrium dynamics
is driven by those parts of the total interaction potentizd.([2.49)) which are not contained
in the ground state Hamiltonian (EQ.(2.51)). The solutiohthe ground state are evaluated
using density-functional theory, consequently, the sdaquantization here will be based on
the DFT-solutions of th&ohn-Sharmequations.

4.1 Canonical Quantization of the system variables

There are three fields occurring in the Hamiltonian whichcmedidates for a canonical field
quantization procedure (Séc. .2, [BD65, Hak73, Mah81jg ¢lectronic waveg(r), the
phonon fieldc (r,t) and the vector potentia(r,t). Nevertheless, only the first two of these
will be treated in a quantum mechanical way, whereas therlatl be kept in the classical
picture.

The global Lagrange-density’ for an interacting single-particle system with electrons
obeying the Schrodinger equation and phonons as classirations coupled to electrons is
given by

L d0— . _0 ﬁz — — — —
Z =i ﬁ(pa Qo+ Iﬁ(pa Qo— — D(PD(P — Veq®® — Vel-el,nonedPP — Vel-light P (4.1)

ijkl
2 011 01:3' ZZUJ S{(g % Zvel phor‘slfp(pa

where the phonon potentig 5 ;U ”k' S TR, q incorporates the translational operator Eq.(2.21).

By applying the generalized Lagrange formalism (£ed BI®) Schrodinger equation for the
electron fieldsp, the adjoint Schrodinger equation for the fielgsand the phonon motion
equation Eq.[{Z.32) is obtained again.

The canonical momenta (E@.(2111)) for the fields are theargby

Ty =ing (4.2a)
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1, =ihe (4.2b)
% =My o (4.20)

and we can calculate the Hamilton density (Eq._(R.12)) as

- N _
H = D¢D<p+veq<p<p+ .—Aprfp+Ve|.e| nonedP® (4.3)

+ anrwzzu”k'qy S +ZDS'(p(p.

After transforming the fields to the field operators

p— D TQPZE—NDT
s S m — Mg, (4.4)

the Hamiltonian in second quantization can be written down:
LT 3 t 3 Nt 3 t
1 [ ermam. 31K o j 3 nid o
+|22—Mi/d rngng+lzz/d U S Tr +Z/d (D'S®'D.
Now, mode expansions are applied for the three fields. Foel#wtrons, the mode expansion
consists of the ground state wave functions that solve thed8mger equation for the ground
state Hamiltonian{Z.%0) and can be obtained as discus<edapteB:
Pd(r,t) :Zei“*“ktqhk(r)ank (4.6a)
n
PN = e M gnr)ay (4.6b)
n

so that the commutation relations for those fermiarrieation andannihilation operators are
then given corresponding to EQ.(2.16):

[aﬁk,ah/k,h = Onry O k- 4.7

For the bosonic phonon modes, the expansion is slightly miatgorate. The complex modes
are the same as in Eq.{2133). The link between these modekearehl field operators is then:

s _2 Z (r)e“a'by +§q _iwqtbiq) (4.8)
ZOQq elmqth —8,(r) _imqtbiq)
In this case, the commutators apply for the phonon crebfgmd annihilator@iq:

[ a2 Pirgl- = A G- (4.9)




4.1 CANONICAL QUANTIZATION OF THE SYSTEM VARIABLES
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Figure 4.1: lllustration of the processes
treated by the Hamiltonia@I1) Besides
optical excitation, electronic redistribution
anx — al,, by phonon emissionipor ab-
sorption H,—u is considered.

optical
excitation

The time-dependence of the modes can be released by switchine Heisenberg picture and
applying a unitary transformatiofi {2.3) to the electronic @hononic modes and operators.
As a result, the operators are now time dependent, while tidemare not. By inserting these
complete mode expansions into the Hamiltonianl (4.5), tHd fiquations (the Schrodinger
equation[[ZR) for the equilibrium part and the vibratiomalve equation{2.32)) and the com-
pleteness can be used and a commonly known simplified fortmedfiamiltonian is derived:

A h
H :ZEnkaEkank_FZ Z/d3rq)nk(r)TD%/k’(r)A(t)aEkan’k'+Ve|'e|vn0”eq
n nk n'k’ S———
| S —

T neglected
Eq. electrons =Prk

electron-light coupling

"’%HQQ(biJrqbiq_" é/ )+%n%% /d3rDi§'(](r)6(r)(p(r)a;ﬂkan,k,biq (4.10)

const. energy —_pK
neglected 7 nk
1q

Eqg. phonons

phonon destruction

+ %,; % / d*rD's (1) e(r)e(r) alyay bl -

_pk/
*D, nk
I‘,*q

~
phonon creation

Two contributions in this Hamiltonian are not discussedfamnther. First, the coulomb interac-
tion between the electrons is neglected during the dyndmicdution of the non-equilibrium
system. It is known from the physical properties of quantwtetostructures that the corre-
sponding dynamical effects are rather slow, and furtheemthre deviation from the equilib-
rium is small, and for an relaxation well above the band edgeijtonic effects can be ne-
glected [Bin92| SK$9€,[HKKO3]. This behaviour can not be expected for a silicorface
structure, as excitonic effects are visible in the surfageachics [WKFERO4]. Nevertheless, in
the current formulation of our theory, we do not considerdbiglomb interaction at the surface.
The second suppressed termn{#.10) isfitug contribution inside the phonon Hamiltonian.
Although it supplies a constant contribution of2haw, to total the energy and usually affects
the lattice constant by a factor of about 0.05% due to anhaicity effects of the phonon po-
tential, it has no influence on the dynamics discussed in&2and can therefore be neglected
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for this part of the discussion.

The interaction matrix elemengg anank ' g are entirely determined by the one-particle
wave functions. The final goal of this work is the descriptimina surface structure in the
slab geometry (cmp. Selc.2ZB.1), consequently, the threersionalk-vectors occuring in
Eq. (41D)) can be replaced by two-dimensional of¢s (

With these declarations and after regrouping the last twos@f Eq. [£.1D) (whers'q
s q(r) due to an internal symmetry of E@.(2135)), the resulting Hamian is finally

H= % Ericly s + Z Reaqbl,byg + Z Z PR At)aly 8y

k Nk’

YO 2ﬂ<ﬂ</anlkan’lk/( o +bl ). (4.11)

nk ik ilg o

This Hamiltonian is furtheron used to derive the dynamigaldtion of the system, which will
be outlined in the next section.

4.2 Dynamical equations

In second quantization, all observables are expressednistef the creation and destruction
operators of the involved quantized fields, notably theteseic operators, anda,,, and the
phononic operatorbi‘; andb, . The observables that give an insight in the dynamical éisiu
of the system in our case are the electronic density (cmp3Ea))(

f0)=3 Y Gu(r)@ne(r)alay, (4.12)
nk n'k’
and the macroscopic polarization, which can be relatedetttreldynamical Maxwell-material
equations,

PI) =3 5 Buc(r) e (1) o g (4.13)
nk 'k’

with the dipole matrix elemerd™, which is bound to the momentum matrix elemef’

by Eq. [Z48). Measurable quantities are given by the egfiect values(y|O|y) of these
operators. The quantum statg) is not known, it can only be described statistically in terms
of the density operator

p= % p | ([Hk %/[k/ (4 14)

Here, the population polarizatiorplﬂf’ describe the probability to find an electron in the super-
position of the two single particle statég,;.) and|@y). Forn=n" andk = K/, this signifies
the population probability of the stat@,.), so we make the additional definition

frge = PRI (4.15)

In an unperturbed system, only these diagonal parts of theitgematrix are non-vanishing
(pure states). The expectation value of an oper@tsrthen given by

(O) =tr(pO) (4.16)
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with the trace tO = ¥;(@|O|@). For the operatora’, a_, anda’, a ., one obtains the expec-
tation values

(ahay) = fu and (al,a,,)=pi . (4.17)

As a consequence, the physically investigatable quastit@ be totally expressed in terms of
the statistical population densitidg. and py.

4.2.1 General construction scheme and hierarchy problem

The actual dynamics of a second-quantized system in Hatsgmbpresentation can be investi-
gated by evaluating the Heisenberg equations of mdfiaf.(Byithis, the dynamical evolution
of operators can be calculated [HK90, Kuh98].

To find the temporal evolution of the electronic densffy B,iwe apply Eq.[[Z]4) with
the Hamiltonian[[211) to the polarization operaéfya_,, and make use of the commutation

relations [41):
d
iR (@) = (8@ H]
= (Em — Emv) @l @y +A(1) > (pﬂ%aﬁmu, - pﬁl“’aﬂﬂan[k)

n

+ z Z <Drir£|]jia‘r1;f[l’anﬂ< (bleu + bi,rq) - Drir%war-rrﬂank (bleu + bi,q)> . (4'18)

nk Ig

This set of equations is not closed, as these dynamicalieqaatepend on the phonon-assisted
density matriceﬁ;rm%kb{_q and aﬁﬂ%kbi’q. The dynamics of these quantities can again be
found by evaluating the corresponding Heisenberg equatttbmotion [Z4):

._d
'ﬁa(agﬂamwbit—u) = [aTtﬂaTﬂﬂ’b;tfu’ H]
= (Em — B + g @l bl o +A(t) % <pﬂ[§a;§[kanﬂbﬁ_u - pnm[kuaTtﬂah[ka—@)

n

t Z z (D%artfﬂ’ank (b{_q bit—u + biu biT.,—u) o D%UIartﬂank (biT.,—fu bit—u + biu b{—ﬂ)>
nk Ig

+% DIy Bty oy By (4.19a)
nk n'l’

Iq

and
iﬁg(T b )=la.a b H]I
dt am]a'm[l’ 1,0 a'rrﬂa'mﬂ’ 1,7
(B — B — Fi0dg) @by + A Y (Pialanbio — P ahaebi )
nk

+ Z Z (D%artfu’ank (bi,u biT,fu + biu biTsu) o D%u/a;rrﬂank (biTﬁu biTﬁu T biubiTﬁu))

nk Ig
+ Zk Zk D;ék[k CURC I U WS (4.19b)
n n/ !
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Here, again, we can see that the resulting system of eqgasamot closed and couples now
to products of four operators. The dynamical equationsHerfour-order-terms would, them-
selves, couple to contributions containing even moredipes-terms. The only way to solve
this hierarchy of equations is to introduce a method to @tethe series and to obtain a closed
set of differential equations, which can possibly be salvEde order of truncation, however,
has to be justified by the plausibility of the results.

4.2.2 Correlation expansion

A reasonable approach to an infinite-order problem is to usean-field method. The idea
behind this is that usually, the higher an order gets, thdlenthe effects of the dynamical
evolution are. However, the expectation value ofNanperator product (calleN-order corre-
lation) is not independent from e.g. two-operator products, asmgdy, theN operators can
be approximatively split inttN expectation values (one operator is thus inrttean-fieldof the
others). Similarly, also products of more operators whighcntained in the original set dbf
operators can make a contribution, and basically everyilessombination of operators has
to be considered.

A general scheme to expand &horder correlation into all possible sub-correlations is
illustrated by the following equations [AS94, Fri96]: fosat of operator®);, the first 3 orders
can be separated according to

(O1) =(01)°
(0102) =(010,)° + (O1)¢(O)° (4.20)
(010203) =(010203)° + sig(21)(0102)(03)°
+8ig(2%2)(0103)¢(O2) + sig( F3) (0203)°(O1) + (01)“(02)(O3) .

The sig-operator depends on the nature of the particlemidas or bosons) and on the number
of permutations?? using appropriate commutation relations (which, in fadtedmine the
sign); for bosons, sig equals always one, for fermions, sigiien by(—1)7. Following the
prescriptions indicated in Eq§.(4120), the correlatiopagsion can be performed to any order.
For the correlationg)® on the rhs of Eq[{4.20), we can now assume that their cotiwibto
the dynamical evolution is reduced by increasing ordert $®rieasonable to neglect higher
order correlations starting from a certain order.

In the case of a system with electronic and phononic opesatdl contributions up to
second order can be calculated explicitly. For electroespoag as particle conservation is
expected, only pair of creators and annihilators are naristing, for phonons, correspond-
ing assumptions can not be made at this level, but will be basefurther assumptions in
Sec[Z4.ZB. The correlations mentioned in EQS.{4.18) [add)4re:

(an[kah,w <an[l<a'n'ﬂ<’>
(bf,) =(bf)°
(b, .Q/>=<bL by )+ (B () (4.21)
CUEw >=<anu<aw )%+ (A ) (b
<a“”<a”'“<’b'1;1 "@’>:< B '”<’b'1‘;1 "ﬂ’> <aﬂ[kaﬂ’ﬂ<’> < iq |u> <a1:U<an/[k'biTu>C<bi’u’>c

<anﬂ<an'|]<' Byg) (1) <an|]<an’ﬂ<’> < o) By
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<a1:[|<artﬂan’|]<'amu'> :<a1:[|<a;rman'[k'an'u4>c+ <ar-:|]<an’[|<’>c<ar-rman’|]<'>c_ <a1:[|<an’|]<'>c<ar-rmanﬂ’>c'

These prescriptions can now be used inside [EQS.](4.18)am@) (All contributions with more
than three operators are then neglected, so a new and cktsaftiifferential equations for the
correlation terms is obtained.

4.2.3 Bath hypothesis

While a complete evaluation of the phonon dynamics is ireg)vit is usually a good ap-
proximation for systems with weak excitation and weak cmgpunder thermal conditions to
describe the phonons by a thermal distribution functiore agsumption of thermal phonons is
valid for most calculations in nanostructured material®g2,[But07], although the quality of
the approximation can generally not be shown in detail. lloasi, the bath hypothesis should
at least lead to a good description for the bulk phonon moflesnsequence of applying this
approximation is that the phonon operators are not coresidas dynamical variables and are
not calculated in the differential equations. As a resulthef assumption of equilibrium, all
expectation values besides the phonon occupation

Nie = (0. by (4.22)

vanish, as the phonons remain in a pure state. This appliesiefly for the expectation values
of single phonon operators IiK@L% which appear numerously in E§_(4121). The distribution
function used is, due to the bosonic nature of the phonoe®8dke-distribution

(4.23)
ek’ —1

whereT is the temperature of the systeky the Boltzmann constarand haw, the phonon
energy.

By applying now the correlation expansion and the bath Hyg®is in the expectation val-
ues of the dynamical equatiorisS(4.18) and (¥.19) and imgef1T), we obtain a simplified
system of differential equations, where

d /
i P’ = (B — Earr) Y +A®) Y (PR PE — P ) (4.24)
nk
+ Zk Z (D%@Lu’%kbﬁ gt Dn[|< CUNEIN Y o)~ Dirr;ﬂ/ <aTJ21]an[I<bit7—q’> - D:;‘Q/ <a;1]an|]<bi’q/>>
nk i'g’ q q

yields for the polarization densities and
d
'ﬁa <a1JIrﬂarrf[l/biT7—u> = (Em — Emy + ) <a1TrﬂaTﬂU/bI—cq>
AW Y (Phi(@hanbl o) - P (aaubl ) @.25)
+y Z(Dmk Phie e (T) = DI B (i (T) + 1))

'k’ n|]</ 'k’ nfl’ n[|<’
+ Z Z Dn[k pm] n[|< z Z D
kWl g nk n'k’ '“1
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and
._d
'ﬁa <a'rTrﬂa'mﬂ’bi,u> = (Em — Emv — hag) <a$ﬂam[vbi,q>
+AML)S (p”m[ﬂaﬁk%u/bi,@ —pp <a,*rﬂambi7u>> (4.25b)
nk
+3S (DR i (ma(T) + 1) — D plinia(T))
nk I'g iy’ i'g’
+> > DO PR PR — > DI ph Phe
kK ia e o

for the expectation values for the phonon assisted densityices. The very last terms in
#25%) and[[4.28b) can be neglected, as the non-diagotmlzadions that occur inside these
are always zero. With these equations, all requirementmadz for a solvable problem. Nev-
ertheless, a huge quantity of variables is contained iretddferential equations: in addition
to the densitiesfy. and polarlzatlonspn[I< , all phonon assisted quantities have to be evolved
dynamically. In a system dfl bands an& k-points, the numerical effort scales with a factor of
aboutN2K?. This is usually too cumbersome foparsonal computein a system witiN ~ 10
andK > 100, as it is required for a surface slab.

4.2.4 Markov Approximation

It is well known that the effect of the phonon assisted dgnsiatrices is of minor importance
in systems with many scattering channels and weak phonawigliag. This property can be
can be exploited in the so callddiarkov approximatiodSKM94,[ButO7]. The idea behind this
approximation is that the “memory” of the phonon-assistadmijties, e. g. their dependency
on the dynamics of past, is negligible. The first assumptamttis approach is that in the
Egs. [42b), the influence of the light coupling is of minopontance an can be neglected (as
it is, for the polarization equationg_(4]24), of second oideA (t)). With it and by choosing
an initial condition of(a’;a,,,b )| = 0 att = —co, which can be justified by the fact that a
t = —o0, no deviation from the equilibrium occurs and consequealdp no phonon-assisted
density matrices, we can integrate EsS.(#.25) formally:

CUCT / /b (Eni By a0 @ZDM,Q ), (t—t) (4.26a)
S DR (N (T) +1 +zz MK ok t—t)pﬁf(t-t’))
nk ig g nknk g
(@ yanbiq) / it/ e (Emi—Eny-+icao)t <ZZDn”‘£(nm(T)+1) i (t —t') (4.26b)
nk Ig ig
S D! nig(T) t)+3 S Dy i t—t)pﬂﬁ'(t—t’)).
nk iqg 4 kW g

The “memory” of those equations is now carried by the dynanoicthe polarizationspﬂﬁk[k'.
Therefore, the next step is to neglect the dynamical effefctise interactions inside the polar-
izations in Eqs.[{4.26). This is achieved by setting allriattion terms in Eq[{4.24) to zero
(pmK =0, DMK = 0) and perform a “free” integration of the polarization dymies, which

nk;i,g —
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gives us a description of the unperturbed evolution of thanmation duringt’ of the “real”
polarizationpT' (t):

pf| (1=t = e E gl ) (4.27)
If these relations are reinserted into the phonon-assiedmical equation§ (4.P6), the tem-
poral integration can be carried out, giving an analyticahf of the dynamics, where only an
explicit dependency on the equal-time polarizatiqnjﬁ’ (t) occurs. Now, the so-found equa-
tions are again inserted into the polarization dynanfic4)to totally eliminate the phonon-
assisted quantities. The result is a system of differeetipiations depending purely on the
polarizations:

. d i ! ! !
P = (B — ) PR +A®) Y (PP PR — P ) (4.28)
nlk
i /I 1 — |],<
- DYEDY (
A2 g e Ol
A(Epge — Eng — haog) ((niq +1)px (B, v O per — pﬂlu:"(”) — Nig (Omn e — p%lkl) pﬂﬁ;[k”>

o+ A(Eie — Ense i) (1o PR (v B — PR = (Mo + 1) (8rar B — PR pn;ﬁk”)>

i _nlllkll
k"R AR g 9 g

A(Enne — Enie— eaq) ( (g + )Pl (8.0 — Piir) — Mg (3. G — Pl ) PR )

+ A(Enw — B+ ) <niu P (S G s — Bivier) — (Mig + 1) (G S v — PiY) pﬂgﬁk//» -

The integralA(w), stemming from the previous integration, can be expressedrins of a
Cauchy principle value?:

0 002+ w2 a0 alr R (W) +12(e). (4.29)
The principle value part of this equation makes only a comypldued contribution td\(w).
The effect of this in view of equatioi . {4P8) is, contrarily the other parts of the phonon
coupling, a shift of the energies with respect to the fregesgsas it can be seen in line with
the other energiegy. For quantum heterostructures tiiglaron shiftis usually expected to
be small and therefore neglectéd [But04]. For the silicdijGurface, the effect is generally
non-negligible. However, in the present formulation of theory, polaronic effects are not
discussed. Whence, the imaginary part of [Eq.(4.29) is negle and we assum® w) =
A(w) = 0 (w).

Moreover, in Eq.[[4.28), we notice that the dynamics depend®n-diagonal polarizations
in quadratic order. Usually, these contributions are alpeeted to be very small, as the order
of magnitude for non-diagonal polarizations is below tHfahe diagonal densities. Hence, we
neglect all quadratic polarization terms by setting in BZ§)

m—r n=n"’ (4.30)
| =Kk k =k”.
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Figure 4.2: The possible scattering channels of §32)

The result of these additional approximations is a much Kimeg set of equations, where
especially the number of summations is drastically reduEedthe non-diagonal polarizations
(m= m andl # ), the insertion into Eq[{4.28) yields:

d / 1 / 1 /
GiP =i {Em — En) PR+ £AW) S (PRPR PR P (4.31)
(rm + ot T + o) P
For the diagonal parts of the polarizations (densities, dbrresponding equations are even
simpler:
d .
g fm= hA ZD (PR pL) + 2 (1 — fg) — 20 35t (4.32)

In these equations, new symbdl&/°“ have been introduced. These quantities denote the
scattering rateswhich give evidence of the scattering into and out of a gtate They are

given by
rin — % Z(D“[k ( (Em — Enge — Atag) (M + 1) + 8(Emy — Enge + ﬁmq)nm) fu  (4.333)
q
::% A”m[ﬁfnk
and
rout = % %(DE}E 2(6(Emﬂ — Enk + Rtag)Nig + 8(Em — Enic — R ) (i + 1)) (1— fr)
=y ~ AR (1 fw). (4.33b)

nk

The scattering matrices are entirely expressed in termieofiensitiesf, without the non-
diagonal polarizations. The physical explanation of tha-dmgonal equation§ (4132) is ob-
vious. Scattering in this equation relies on the two contiims containing” at the end of
the rhs. The scatter-in part (wiffi") depends orfl — fy.), the more this state is populated,
the less it is possible to scatter into it. The scatter-out, pepending orf., on the contrary,
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behaves in the opposite way: the more it is populated, the mlectrons scatter out again. Fur-
thermore, scattering depends on temperature through theopkdistribution in the scattering
matrices, and, due to thg, + 1-terms (which are related to spontaneous phonon emission)
is always more probable to scatter to a state of lower endrgy to a state of higher energy.
The scattering events are always energy-conserving, aglged by the delta-distributions in
Egs. [43B): the energy differen&g, andE; of the two electronic statgsnl) and|nk) must
match the phonon enerdyu,.

The dynamics of the polarizations (Ef.(4.31)) is mainlyuaficed by the optical excita-
tion. The scatter matriceE{4133) (which are positive defjnbccur only as damping terms.
Without light field, the polarizations cannot be augmented fade out.

4.2.5 Fundamental symmetries

The most obvious symmetry in the equations is contained eénntlatrix eIementspﬂEk[k' and
DK . Due to construction, the following relations hold:

nk;ig"
pr =pis, (4.343a)
DK —Dyi (4.34b)
iq i,—q

In the framework of an electronic many-particle systemtigiarconservation is required.
For the dynamic of the electronic densities (Hg._(¥.32)j timplies implicitly, that the sum
over all densities must equal zero at all times, or its te@lpderivation must vanish:

d
& Z =Y 5 fr=0, (4.35)

Eq. (£32) can now be inserted with the scattering matr}’_(\fﬁ% and W”m[ﬁ (cmp. Egs.[[£33)),
effecting a direct condition for the involved variables:

1
=AY S (PRpRk PR + 3 5 (AR~ fudfor + Alif(L= ) ). (4:36)

The first term (proportional té\(t) is obviously zero, as the two negated contributions to the
sum are the same. From the second term, a condition for thterso@atrices can be derived, as
Eq. (436) must hold independent of the densifigs

Ak AM o, (4.37)

This result complies with a direct comparison of the explegattering rated{4.B3). Never-

theless, it has a significance a numerical compution of th#esing rates, where, if the rates

can only be calculated approximatively, a symmetrizatian lse sensible to ensure a density-
conserving relaxation.

4.2.6 Slow relaxation approximation

As it can be seen by comparing EJs._(4.31) dnd {4.32), theipai®ns pﬂ{k[k’ are exclusively
coupled to the dynamics of the densitifg in Eq. (432) through the vector potenti&(t)ﬂ

1We note that important light polarization effects can ocauthe surface. While diffraction and reflection
(Fresnel law$ are not important for a perpendicularly incident light,rehye field strength of the vector potential
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Under experimental conditions where relaxation behavipimvestigated, the system is usu-
ally excited by a very short laser pulse (00 fs). If the subsequent relaxation time can now
be estimated significantly longer:(1 ps), it is possible to separate the excitation dynamics
through the light fieldA(t) from the relaxation dynamics: A short pulse is only non-shirig
during the pulse lengthr and therefore zero for most of the time when relaxation aBeur
Consequently, the polarizations are only coupled for a ghigrt time to the densities in the
relaxation equatior {4.82) at the beginning of the relaxatOn the other hand, the relaxation
influences the polarization dynamics (Hg._(4.31)) only bynding throughrir?ﬂ andr%. For

the duration of the light pulse, this damping can be negtectes a result of these considera-
tions, the dynamical equations can be formulated for twdtilig cases:

1. The optical excitation is determined for an undampedesysising both Eq[{4.31) and
(@32) without damping ™out — 0. These equations are valid during the pulse. It is
convenient to set the pulse immediately befiore0 (but it must be assured thattat O,
the pulse has sufficiently vanished). Then, through theepuagistribution of densities
fri is provided.

2. The relaxation process is totally independent of the rizaldons pﬂ{k[k’, and therefore
described by Eq[{4.82) witA(t) = 0. The optical excitation is introduced by taking the
resulting density distribution &fl 1) as initial conditioarfthe relaxation.

By utilizing the band gap property of the semiconductor bstndcture, the optical excita-
tion can be integrated analytically.
4.2.6.1 Optical excitation

In a semiconductor, the bandgap separates the valence tbandthe conduction bands. The
population distribution is given by tHeermi-Dirac-distribution At zero temperaturel(= 0K),
this behaviour can be formulated by introducing a distidsufunction according to

f = G(EF - Enlk)a (4-38)

whereEg denotes the Fermi-level (in the band gap) &fdv) the unit-step function. This
distribution is still a good approximation at room temperatfor the real distribution. We
assume a weak excitation with low intensities, so the pajauias always close to one or zero.
If we neglect the temporal evolution of the densities andptilarizations, and insert Eq.(4138),
we obtain:

—d _
'ﬁa Py = (Emi — Env) Py +A(t) (pnmﬂwe(EO — Emi) — Py 0(Eo — Enﬂl')) (4.39)

This equation can be integrated formally:

t i 1
Phiv = / dtA(t') (Pt O(Eo — Em) — P 8(Eo — Em) )& 1E S 1) (4.40)

A(t) can be modified by a significant factor due to the differentaefon indices of the silicon material and the
vacuum. Due to the example character of this discussiom, effiects are neglected.

2|t should be noted that i (t)p-coupling, we cannot assume that the vector poteiial vanishes for both
limitst — —0 andt — c. It can be stated, however, thaft) tends to a constant = £ (at the other boundary,
it can be set to zero), an this effect is eliminated in Eqsl43d [Z3P). Still, the equivalence [012.48) holds.




4.2 DYNAMICAL EQUATIONS

For the densities (Eq_{4.B2)), the equation of motion unidese circumstances is given by
d U . '

e =A0 3 (pripiy — P P ) = 2iA (1) > O(phiv PR ). (4.42)

Here, the formal integration yields, after expanding thegmary operators:

fu =2 /t _dtA) Y (D0 + DR ) D))

M
Now, the formal solution Eq[{4.%#0) can be reinserted:
2

R / dt %(D(pm/)< (4.42)

(D(pnmﬂu/)e(EF — Emv) + O(pM ) 6(Ex —Emu / dt’A(t") e Emy—Em)(t t”))

( O(pm" )8 (Er — Enyrr) — O (P ) O (Er — Em])) D<
o)

<D(pmﬂ/)9(EF N Emu/) + D(pgfﬂ/)e EF N Erﬂ] / dt//A // Er‘r{’ En)(t/ t//))

dt”A(”) <EM./—Emu><v—t”>)>

+ (O(PR")B(Er — Em) + D(PRY" )6 (Er — Em) ) / dt’A(t")eh B Em><t'-t”>)>.

The essential investigations of this thesis are about atilaxx processes in the conduction band
of a semiconductor. Therefore, we focus on the bands foriwigic > Er holds. After joining
the complex exponentials to a cos-function, the distrdsufiunction for these excited states
reads:

2 1
== dt'A(t / dt”A(t") cos| =(Enyy — Em) (t' —t”
. ﬁz%_ (t)lpR| (t") cos{ % (B — Em)( "))

For a pair function, wherd (x) = f(—x), it is now possible to transform the two entangled
integrals into two independent integrals. After subsetyerexpanding the cos, this yields:

. t i ’ t i "
Zéﬂph\z(/ AUA)eHEE [ dr A e HE
|

+/ dt/ EI En)t / dt//A t//) ( En)t/,>

which is finally equivalent to

Z|Pnﬂ

i
Hence, after the pulse, the distribution of the populatiothie conduction band is given by

| nﬂl/
R2
Em>Er ﬁ V;

whereA () is the temporal Fourier transform of the vector potential.

frml

2
(4.43)

/ dt'A(t i (Eqry —Em)t!

2
fml (T)‘ (4.44)
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4.2.6.2 Phonon relaxation

Without considering the electron-light coupling dynantlicathe relaxation equation§(Z4132)
are independent of the polarizations:

d
p
This equation can not be solved by an analytical integrattep, so a numericaitial-value-
problemsolving algorithm (like aRunge-Kutta-methqdhas to be used. With Eq_{4145), it
is however not necessary to perform the calculation of tHarimtionspﬂ{k[k/. This is a great
reduction of computational hardware requirements, as dharipationsp’* are defined for
every pair of bands and are thus much more numerous than tiséidef,y. .
The initial conditions for the temporal evolution have to dlesen reasonable, e.g. by

using Eq.[[4.44).

frog = 200 (1~ frg) — 27 35 . (4.45)

4.3 Coupling matrix elements

The derived equations are generally valid for a two-dimamai multiband system. The spe-
cialization of the dynamical equatioris(4.44) ahd (k.45 &pecific material system is achie-
ved by the definition of the matrix elemenp§¥’ for the optical excitation andDnkl for
the phonon relaxation (cmp. Ed.{4110)). Into these matldments, the system proper-
ties enter through the single particle wave functi¢@g ), which appear as solutions of the
ground state Hamiltonia {Z0) and which are calculatéthaptefb, and through the phonon
modes[[Z:33). In this section, the final link between the tvethadsdensity-functional theory
for the ground states artknsity-matrix theoryor the dynamical evolution is drawn.

4.3.1 Electron-phonon coupling matrix elements
The electron phonon coupling is described in EQ.{4.10) byttle coupling matrix element for
a two-dimensional system

Q[k[k'_ / Pr D0 )+ DPOS, () @ () @ (1) (4.46)

The electron-phonon Potent@lo/l( r) can be derived as in EJ.{Z]138). A general property
(which holds, due to the supercell approach, for all dioew) is that it is lattice periodic, so
Di(r) = D'(r +R) for a lattice vectoR. Thus, a convenient way to express the potential is in
terms of a Fourier series (cmp. $ed2.3):

DY) = gD?/ H(G)e°. (4.47)

The phonon modes are influenced by the slab symmetry, so tieéidoal form is given by
S,(r) =5(2)€% = 35,5 (G,)€® 52, Inserting this, the Bloch wave representation EG._{2.26)

and Egs.[[4.47) into Eq_{4146), we get

D =YYy gUnlk(G)Un/lk/(G/) (DiO(G“) + Dil(G//)(q,Gz))§(Gz)) (4.48)
'Q GGGTG




4.3 COUPLING MATRIX ELEMENTS

/d?’rei(7<GH<)H(G/+"</)r+G”r+qr+GZz)

6G/+G”+Gz+lk/+q,G+[k

The spatial dependency of the electron-phonon potentiVelier, is difficult to investigate,
as an explicit calculation of the spatially dependent ebecphonon potential is laborious. In
principle, an electron phonon interaction is mainly defeed by either the dependency on the
phonon modes'(r,t) or, if the latter vanishes, by the dependence on the firstataré of the
modess (r,t). In our case, we only consider the direct dependency on tieatiee of the
mode D?) as this is expected in a non-polar material and a purelyitodigal phonon mode,
consequentlyD;1(r) is non-vectorial. FoFrohlich-coupling the other case would hold.

Furtheron, we assume that the spatial variation of thereleqgthonon potential is not too
important and neglect the spatial dependencif ). This drastical assumption that can not
be justified by the material properties. With these dedlamat the delta-condition in the matrix
element[[4.48) can be expressed much simpleG aganishes:

D =Y > gumk(cs)unqk/(e’)D%(q, G;)-8(G)Ba/+ G, 1k .G 4k (4.49)
ig GG&G

The evaluation of the Kronecker-delta reveals a momentumsawation condition for th&-

vectors. Nevertheless, there are two different cases that to be discussed. First, if the

sumk’ + g remains inside the first Brillouin zon€(2120), the scatigris truly momentum

conserving, and the conditions

K + g =k (4.50a)
G +G,=G

hold. By this, only the sums ov& andG; are left over in Eq.[{4.29).

If K’ + g points outside the first Brillouin zone, the determinatidrth® matrix elements
is more complicated. In this case, the vector is at most a3 &none of the firsG-vectors
(which are composed as a sum of the lattice vedbpesd a factor of —1,0,1}). However it
interferes in the Kronecker delta with the otl@tvectors, so, i’ +q— Gg is again in the first
Brillouin zone, the following conditions can be extractednfi the delta:

kK +q=k+Gp (4.50b)
G’ + G, =G+ Co.

This means for thesemklapp-processethat for all possibleGo-vectors, special matrix ele-
ments have to be provided. For a two-dimensidbglas it is discussed in this thesis, there are
basically eight different possible umklapp vectors.

While it is possible to calculate a set of realistic phononda®(e.g. by evaluating the
atomic forces as in SeC._8.4) and also the phonon-electropling constant®!, the compu-
tational requirements to calculate all matrix element$aimode dependency as in Hq. (4.49)
are still very high. A further simplification for the matrixeznents can be achieved by replac-
ing the explicit dependency on the slab modes by an apprasahtependency on bulk modes.
The main issue on this approach is that the special surfaggepfes of the phonons are not
included. The bulk modes can be transferred to the supéygallitting the vacuum space at
both sides and applying an adequate coordinate transfioma single mode in the bulk will
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Figure 4.3: Ihs: lllustration of the possible scattering processes: witttie Brillouin zone

(black) or over the zone boundary (blue) with an umklappae€t (red). The reduced zone

is shaded in greyrhs: lllustration of the bulk approximation. The Brillouin zowé the bulk

(colored tetrahedron) is entirely covered by repeated|8uiin zones of the slab (brick mesh),
such that allk-points of bulk modes can be represented by a slab mode.

be mapped to several modes with different= ¥ where a new pair dfi,q) is assigned

from the bulk mode by the transformation in the slab becasdtillouin zone of the bulk is
always bigger. By using the bulk mode expansion (2.34), E%) can be expressed by

/n./ ﬁ _ . .
Daék[k - \/ ZMO% Zguﬂk(e)uﬁk’(e/) |11(Q)'e|05G'+U<’+u,G+[k- (4-51)

This form of the coupling element corresponds to a macrasabgefinition in terms of

Dic€™ = /5 Vﬁ vaEg\r;“”dAV—V
PV g

i
DDefPot

(4.52)

ig

In this representation, the ener® ., describes the relative change of the ground state en-
ergy by deformation through volume chan§jé /V. This is the reason why this approach is
often denoted aBeformation potential representatiorParameters fobl, ¢, can in princi-
ple be calculated by ab-initio approaches, but are alsosaitite to experimental investiga-
tion [LB87].

4.3.2 Optical matrix elements

The electron light coupling in EqC{Z110) depends mainly lo& tnomentum matrix element
p™¥'. This matrix element can be calculated by

/n./ : _— ﬁ
prk — / &1 @ (1) D (1) (4.53)




4.4 BVALUATION OF THE SCATTER MATRICES

By inserting Eq.[[Z.26), this simplifies according to

/n./ 1 H ﬁ H ! !
oI ZET S Uni(G)unie (G) / re e 2nglK+ G
G,G’

= gunlk )(G+K)uyi(G), (4.54)

as the integral evaluates to a Kronecker-delta which as€ure G’ andk = k’. Consequently,
only diagonal excitations with momentum conservation ecambuced by this interaction (This
is, besides the classical nature of this interaction, alsmnaequence of the dipole approxima-
tion, where theA (t)-field is interpreted as spatially homogenous). Furthettemtransitions to
the equal staten(= ') cancel out in the dynamical equatiofis{4.31) dnd {4.32})usoto the
orthogonality relation[{Z.28), the matrix elements aregiby

/ h
ph = P Z GUni(G)uyk(G). (4.55)
G

4.4 Evaluation of the scatter matrices

In the scattering equationg_(4145), the scatter matr%ﬁ%, and Xﬂ”ﬁ are independent of the
dynamics, but determine the relaxation process. The sicafteonditions [[4.50) are exploited
by the elimination of the phonon wave vector sum and the dég@nwave vectotg, = k —

1 4+ Go, whereGg can now also equdl. According to Eqs[{4.33), the matrices are determined
by the following equations:

Ao _ ‘an <5(Emﬂ — Bt~ Fdag, ) (Mo, +1) + 8(Em — Ert+ Alge, e, ) (4.56)
I8¢,

-
= > ‘Dn[k ( (Em — Enk — R, )Nicg, + O (Emi — E”[k+ﬁm“‘0)(ni%0+l)>

] 186,

These equations clarify that the scattering matrices hawed vanishing entries. Only those
entries, where now the energyeonditions are fulfilled, contribute to the scattering. eTh
energy-variables in thé-function can be transformed from a td-dependency by inverting
the kernel of the delta function

~1
I(myn,k) = [Emu —Egt ﬁmq%} (4.57)

and replacing the energy-by a condition fo:

1
_ZIDH(Emniﬁ%@o)l

&(Eni — Eny = Atlg, ) 31—T,). (4.58)

Thel; are the zeros obtained by conditian {4.57). The evaluatfdhese zeros is, of course,
non- tr|V|aI, and has to be performed numerically on a discreesh ofl. Still, [; is a two-
dimensional vector, and the condition flocan be interpreted as a one-dimensional curve (or
a set of curvesL= . .(s) in the Brillouin zone, which depends on all free parametdrte
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equation, including the signH) of the phonon energy. The summation oVer Eq. (£33) is
therewith expressed by an integration over the curve:

dC o
§_> / i (4.59)

For givenm, n, k, i and +, the vectord(s) pointing to the non-vanishing elements of the
— —
scattering matriceg\ "* and A% are given by

I(S) = Cri i (9)s (4.60)

while their magnitude is set according to

«— 2
Ann%(s) = z D%(g} (G%riki (s) (niuoo +1) +Gi(9) niuoo> (4.61a)
| IQGO
N 2
A=y | o (Grvsa (M, + Gisa (9 (Mag, + 1)) (4.61b)
] Co
with the size parameters
1 dc. ..
G o.(s) = mrki g (4.62a)
M 0 (B +Rdg, )| dS
1 dcC_ ..
G (9) mrkd g (4.62b)

- |01 (Emi(s) — Fcdgg, )| dS

The mapping of the curve to the discrete supporting pointthefunderlying mesh of in
Eq. (£80) must be done using a method of interpolation (cFig.[44). Although the cal-
culation of the mapping and the interpolation is quite gostlis only required once for a
dynamical calculation run, while the multiplication of theatrix is done in every dynamical
time step. Thus, due to the high number of vanishing entrigthé matrix, it is also a big
advantage to implement a method to perform the summatiofs.ifd.45) exclusively on the
non-vanishing entries.
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Chapter 5

Density-Functional Calculations at the
Silicon (100) 2<1 surface

After presenting the basics of theory, we now proceed to gmication of the methods in-
troduced in Parfll. As first step, we thus perform densitycfiomal calculations for a spe-
cific surface system. As surface system, the silicon (00dfase is chosen for investigation
(cmp. SedT]2). At this surface, various locally identiemlonstructions appear, and according
to the size of the reconstruction unit cell, a number of agidétl surface bands occurs in the
band structure. For temperatures of about 90 K, the preduorhireconstruction is the 42
reconstruction. In our simulations, we will use the asymioét x 1 reconstruction, which is
energetically close to thex4 2 reconstruction and already contains most features.

The first step in calculating a surface structure, howesdq investigate the corresponding
bulk structure. For silicon, this is a diamond lattice wittwa-atom basis in a tetrahedral unit
cell. The main purpose of these investigations is, bestieadjustment of parameters for the
applied computer program, the derivation of a theoreticigt kattice constant. A good agree-
ment of the experimental and the theoretical lattice constia a prerequisite for a trustworthy
calculation.

The DFT calculations have been carried out with the prograck@ge hi 98nd [BKNS91],
which has a long reputation for structure calculations.ak been programmed Kortran 90
and is particularly adapted for the use in solid state sigllezomputation.

5.1 Calculations on bulk silicon

For the band structure calculation with thiei 98nd package, several steps are necessary. The
first step consists of the calculation of the pseudopotisnttamp. Sed_315) using the program

f hi pp. In the atomistic nomenclature, the silicon nucleus hasrbfops and has thus an
atomistic charge of 1&. The first ten electrons are the core electrons, they areideddy

the st, s and p? orbitals. The pseudopotential is build up on a calculatibthese ten core
electrons. Then, with the pseudopotentials, the ground stdculation can be started, where
theKohn-Sham-statefer the electrons are determined for the ground state. Agtlhdustep, a
band structure can be evaluated by using the electron gdrmih the ground state calculation

(Sec[BIPR).




Figure 5.1: The silicon diamond lattice structure. The top plane repris a (100) cut of the
structure. The bulk unit cells for the diamond structuredjrand an orthorhombic (21) cell
(blue) are indicated.

5.1.1 Ground state calculation

The calculation of the bulk structure is then achieved usipdane wave basis defined by the
cutoff radius (Eq.[(3:22)), the lattice basis (HQ.(2.1TY ds reciprocal counterpart (E@.(2119)).
The lattice basis in diamond geometry is influenced by thk latice constana, which can be
understood as a isotropic stretch factor (although it isradd at the underlying cubic supercell,
rhs. of Fig[5.R). For the ground-state calculation, a ragmesh fonkhurst-Pack-me$tof
k-points on the first Brillouin-zone is chosen in order to sidntly describe the different fea-
tures of the wave functions at differekipoints. The number d€-points is also a parameter to
these calculations. Due to the high symmetry of the diamatiidé, only a fraction of the mesh
points have to be included in the calculation, as many of tasgeometrically equivalent and
the others can be mapped by symmetry operations. The Koam®quations (Sed.(3.2)) for
this reducedk-point set are then evaluated using the iterative approashribed in Figl=3]1.
The algorithm continues looping until the ground state gyndras reached a total minimum,
which can be investigated by looking at the variation of thergy per time step. For the di-
agonalization of the Hamiltonian in the single particle ®cltinger equatiori{38), an iterative
approach\illiams-Soleror damped Joannopoulpss used which is possible for a self-adjoint
Hamiltonian. In spite of the disadvantages of such an alyoril[dependency on parameters
for solving algorithm, required orthogonalization of eigectors after each iteration step), the
numerical effort compared to a polynomial solving scalethwai more favorable dependency
on the size of the structure. The choice of good parameterthéoalgorithm decides about
the number of iterations required for convergence (or, éwviorst case, about the divergence),




5.1 CALCULATIONS ON BULK SILICON

Figure 5.2: lhs: Brillouin zone of the diamond lattice structure (black )eand of the or-

thorhombic 2«1 bulk structure (colored brick) in the same geometry. Theedzwundaries fulfill

condition@20) rhs: lllustration of the diamond structure inside a cubic lagticThe edge of
the cubic superstructure (a) is used as lattice constanttferdiamond structure.

these parameters depend mainly on the particular lattigetste.

Additionally to the diamond-lattice bulk calculationsgthilicon bulk is calculated within
another superstructure. With regard to the futurd Zurface-structure calculations, itis useful
for comparison to perform a computation in the same surfacengtry. To this end, a single
orthorhombic (001) X 1 cell (containing eight atoms) is investigated. A silicadkstructure,
the diamond unit cell (red) and the orthorhombic unit celli¢) are presented in Fig_5.1. The
corresponding first Brillouin zones for thevectors, given by condition EJ._{Z120), are shown
for those two geometries in Fid_(5.2). The orthorhombid, aghich is bigger in real space
(Fig.[51), supplies a smaller Brillouin zone in the recigabspace (lhs of Fig[{3.2)). Some
high symmetry points and lines are indicated in the two 8uilth zones.

The check on the dependency of the diamond bulk calculatipnestain computational
parameters is summarized in Figs.]5.3 5.4. The coursetiohao investigate the bulk
lattice minima and the total energy minima with respect ® density of thek-point mesh
and the cutoff energy (Eq{3122)) is as follows: first, samgphalues are chosen for the lat-
tice constant and the cutoff energy around the estimatedhmim value. For the mesh, only
a few choices are possible for the discretization (like 4x 4 or 8x 8 x 8). Calculations
are then performed for all combinations of the values fdidatminimum, the cutoff energy
and the mesh, allowing to extract ground state energy vdtoes these. The most evident
conclusion from these calculations if FI[g.15.3 is that a mafsth x 4 x 4 is sufficient for this
bulk description, as there is no apparent difference to ipee discretized computations. The
second conclusion from this Figure is that the energy minmnmustill influenced by the cutoff
energy, though the energy change is smallQ.05 Ry between 8 Ry and 20 Ry cutoff). A
convergence is however seen for the highest cutoff enerdre&ig.[5.3, the lattice minima
and corresponding ground state energies of [Eig. 5.3 areegloThese minima are found by
fitting the previously calculated lattice-energy curveswd thermodynamical state equation
(Murnaghan equatiop from which the minimum can be derived analytically. Thischieved
using the progranmmur n, which is also a part of thehi nd package. Both ground state energy
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Figure 5.3: Determination of the lattice constant minimum with resgedhe cohesive energy

per atom and investigation of someconvergence criterigferdiamond bulk lattice. The differ-

ent markers signify a difference of the cutoff energies.t@ritis, the calculations are performed

with a mesh of} x 4 x 4, on the rhs, foi8 x 8 x 8. No significant changes are found between the
two pictures

and lattice constant finally converge at a cutoff radius of2Qvhile the ground state energy
shrinks monotonously, the lattice constant has a non+4wontis behaviour. In contrast to the
variational principles used to derive the Kohn-Sham-dqunat no equivalent approach holds
for thek-point sets, so a global minimum can not be found in any casedogasing the density
of the mesh.

5.1.2 Band structure calculation

The band structure of the two bulk geometries can be themleééd using a second run of
the f hi nd program. A band structure run typically needs only pointssome symmetry
lines with a relatively high discretization with respectth@ discretization needed to perform
a converging ground state calculation. The execution obaryt state calculation on a mesh
containing all necessary points for the band structurecisefore a waste of computer resource
requirements. An easy way to avoid this relatively high diszation is to insert an electron
density from another calculation with low discretizatidnui high enough to assure a proper
convergence) into band structure calculationwhere only the&k-points which are to be shown
in the band structure are included. The electron densithigrun is not changed during the
iterations, so the only task of the program is to diagonalmeHamiltonian at the chosda
points, without any self-consistent iterations. A justfion of this procedure is that the results
for the electron density for a converged calculation is ngnificantly changed by applying
a denser mesh with motepoints. This technique is particularly useful if condoatiband
states are calculated, as these are irrelevant for the@iedensity and the ground state energy.
Another advantage is the fact that there are no restrictdnmit thek-points chosen in the
second run. Consequently, it is possible to calculate a musesubsets d€-points in parallel
within totally independent calculations. This featurel\wé used extensively in Chapfdr 6.
The band structures for the two bulk geometries are showngrfd3. For the diamond
lattice (Ihs), a true three-dimensional path through thiddsiin zone is taken. The nature of
silicon as semiconductor is pointed out by the bandgap ketiwree valence bands:the lowest
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Figure 5.4: Convergence test for the cutoff energy. The minimum buikdatonstant (black)
and the associated cohesive energy per atom (red) are géiioeda fit with a murnaghan state
equation, as shown in Fig3.3.

four bands) and the conduction bands (the higher bandspwAimperatures, only the valence
bands are populated. Itis clearly visible that the band gamply indirect, the maximum of the
highest valence band is located at anotkgroint as the minimum of the lowest conduction
band. Consequently, for an optical excitation with band ejagrgy & 1.1 eV), a scattering of
the photon via an auxiliary phonon is necessary. A direcit&tion, as it is described by the
optical Hamiltonian[(Z.45) of (Z.47), is only possible fouch higher energies{(2.5 eV).

For the orthorhombic bulk structure (rhs of Hig.15.5), théhpa oriented at the surface ge-
ometry. To this end, only thig andky parts of the vector are non-zero. In this two-dimensional
cut of the Brillouin-zone, the indirect band gap of the diamidattice is not visible any more.
The selection rules on the participating electron stateweler, still forbid optical transitions
by these channdls Furthermore, the number of bands has increased accomlitige taug-
mentation of the number of atoms in the unit cell, while, oa tither hand, the bands in the
band structure are related by a folding at the symmetry llifldss is clearly an effect of the
reduced Brillouin zone with respect to the diamond lattidete that no new physical effects
can be expected by just augmenting the bulk unit cell. A caispa to surface structures can
be achieved by also varying the-coordinate of the orthorhombic bulk cell. This allows to
evaluate a range of possible energies for a spekificint and band in the surface geometry,
on which the surface band structure can be mapped lateroapg@lication of this technique is
shown in Figs[BJ6=511.

1This can be seen by reminding that the wave functions of tesare not changed by switching only the geom-
etry. Thus, a wave functiog’ un (r) in the diamond structure is replaced by a wave funcibieo"u, ¢ ) (r)
in orthorhombical symmetry, whefe, is the constant lattice vector difference originating frtva reducing of the

zone and, while nonzero, constitutes a new band. While kdiog momentum matrix elements (SEC.4131%),
annihilates all matrix elements which are not non-zero tteefio the diamond lattice.
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Figure 5.5: Bulk band structure for the ground states and the lowest gotidn states for silicon.

On the |hs, the band structure along the high symmetry lifi¢seodiamond unit cell is shown.

On the rhs, the bandstructure along & 2 (100) unit cell (for k = 0) is depicted. The indirect
band gap in the Ihs picture is no more visible in the rhs.

5.2 Supercell calculations for the %1 surface

After discussing the bulk structure, we will now investigahe 2x 1 reconstruction of a
silicon (100) surface by the supercell approach. In contrast to the atpositions of the bulk
cells, which are determined by the underlying symmetry grwhich only leaves the lattice
constant as an open parameter), the geometrical strudtarguoface reconstruction is given in
a orthorhombical cell with a two-dimensional symmetry. Bi@mic positions are not precisely
known beforehand, and at surface, huge deviations fromditregponding bulk positions can
be expected. The atomic positions are however determingtebinteratomic forces on the
ions, which can be calculated using the method introducegein3.#. Nevertheless, the use
of this technique is numerically much costlier than the gaurl calculations, as not only the
lattice structure is much bigger for a reasonable slab syéihich increases both the number
of bands by the number of atoms and the number of plane w&e®¢tors) by the energy
condition [3:2R) in the discretization), but also an addiéil loop over the ground state mini-
mization has to be implemented (cmp. Eigl3.1). In this sedoaf, the atomic positions can
be modified and slowly converge to the equilibrium positiseq Sed._314). While this method
is applicable by a physical point of view to find the positimisll atoms of the structure, the
algorithm is often numerically instable if the number of degs of freedom is too high, and
also the need of CPU time is highly influenced by that fact. <eguiently, it is usually required
to constrict the motion of atoms to those which are close éaréitonstructed surface and are
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Figure 5.6: Band structure, atomic structure and Brillouin zone of kayer supercell.

therefore subjected to perform big changes. The decisibowfmany atoms should be moved,
is based on the calculation and analysis of the force cotsstanall atoms and can be assisted
by test calculations.

In the case of a silicon (100):21 surface, the most important effect of surface reconstruc-
tion is the formation of dilted dimer It is obvious that this requires a huge deformation of the
first atomic layers with respect to the bulk. In our calcaas, the three first layers are allowed
to move. One measure for the quality of the Density Functioakulation in this context is
the comparison of the experimental to the calculated dimglea In silicon, thep-orbitals of
the dimer atoms cause the appearance of the new surface bahith partly reach energet-
ically into the band gap. A consequence of this is that thdtipasof the atoms is not only
influenced by known program parameters (cutoff energy)jshatso highly dependent on the
occupation of the surface states, which is, due to the retlbaed gap, much more sensitive to
temperature changes than the bulk material. filad code allows a temperature dependent
population of the conduction band states.

5.2.1 Ground state calculation

The procedure to calculate the electronic band structuse dmin the case of the bulk, two
steps: First, the energy is minimized, the electron derisityalculated and supplementally
the structure is optimized by moving some atoms, all this raiatively low discretization of

thek-point mesh. The initial electron density is generated fedomic orbitals of the valence
electrons, these are stronger bound to the core atoms astérte the convergence of the
Kohn-Shanwave functions towards the ground state, including thestiat the surface bands.
A structure optimization step can be applied after convergeof the ground state energy for
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Figure 5.7: Band structure, atomic structure and Brillouin zone dflayer supercell.

given atomic positions, whereby a damped dynamical forcagan @damped verlet algorithin

is exploited. After the moving, the formerly gained eleatensity is reused and taken as an
initial condition for the new ground state energy minimiaat The parameters governing the
atomic move (the “mass”, the “damping” and the “timestepdyé to be adapted in order to
assure find the global minimum. All in all, the density-fuootl calculations for the supercell
with structure relaxation are much more elaborate thanherbulk and the convergence de-
pends on numerous parameters, however, the convergemncgatiahs for the bulk give hints
about the cutoff energy and the lattice constant to use.

Ground state calculations have been realized for diffaretuff energies ranging from 8 Ry

no. of layers

[°] 7 10 15 22 30 40
= 8.0 | 18.369 17.092 17.071 * 17.071 18.175
X, 10.0| 18.369 18.184 18.156 18.150 18.160 18.143
5 12.0| 18.369 18.231 18.218 * 18.192 18.187
@ 14.0| 18.369 18.123 18.212 * 18.100 18.095
g 16.0| 18.369 18.096 18.212 * 18.071 18.069
% 18.0| 18.369 18.110 18.212 * 18.086 *
© 20.0|18.369 18.124 18.212 * 18.098 18.096

Table 5.1: The dimer tilting angle in dependency of the number of lagadscutoff energy. For
the starred table entries, data is incomplete.
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Figure 5.8: Band structure, atomic structure and Brillouin zone dfsalayer supercell.

to 20 Ry and for a different number of layers ranging from 7 @ #he temperature for the
occupation of the states has been fixed at 300 K, and four ctindubands is included into
this calculation, which is necessary to allow a statistdtiatribution for this temperature. In
Figs.[5.8ES.TN, the resulting structures of these calicuiatfor a cutoff energy of 10 Ry are
depicted in the middle. The extension of the unit cell, idahg the vacuum of the supercell,
is indicated by the red brick, the yellow spheres repredeaisilicon ions, whereas the blue
spheres symbolize the passivating hydrogen atoms at theidacof the slab (bottom). The
tilted dimer and the reconstruction of the first layers isadeobservable on top of the struc-
tures. The corresponding Brillouin zones in reciprocakspand their size with respect to the

no. of layers
[eV] 7 10 15 22 30 40
= 8.0 |-64.999 -88.629 -127.866 * -246.168 -324.935
X, 10.0| -65.265 -88.982 -128.509 -183.845 -247.087 -326.141
5 12.0 | -65.434 -89.203 -128.671 * -247.654 -326.879
Q 140 -65.531 -89.328 -128.842 * -247.965 -327.283
ﬁ 16.0 | -65.581 -89.391 -128.926 * -248.110 -327.470
g 18.0 | -65.605 -89.419 -128.962 * -248.169 -327.544
© 20.0| -65.618 -89.434 -128.978 * -248.195 -327.575

Table 5.2: The ground state energy in dependency of the number of lapdrsutoff energy. For
the starred table entries, data is incomplete.
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Figure 5.9: Band structure, atomic structure and Brillouin zone dtZlayer supercell.

bulk Brillouin zone are shown on the rhs of the pictures. Tdlation between the dimer tilt-
ing angle and the cutoff energy and the number of layers isnsho table[5]l. Obviously,
the changes with respect to the cutoff energy are quitenifgignt, whereas the variation de-
pending on the layer number has slightly more effect. As aenaf fact, both the need of
CPU time and of hard disk space for the storage of the eldctiave functions (which are
not problematic for single band structure runs) for a big banofk-points (up to 1089, cmp.
Chapteib), which will be needed in later steps of our catmna are increasing fast with the
cutoff energy (as the number @-vectors is increased approximately by a faotoEfétzoﬁ,
cmp Eq. [3:22B)). We conclude therefore that for the giveoueses, it is a minor limitation
to the surface properties to use a cutoff energy of 10 Ry, evtiez dimer angle has yet the
right magnitude, but the other parameters are not fully eqged. In tabl€5l2, the ground state
energies for the different cutoff energies and number oédsyare indicated. Although only
each row of the table can be compared, it can be seen that ¢halladifference is below one
percent of the total value of a row. This error seems tolerabliew of the increase in CPU
efficiency. A final decision about the cutoff energy, howewsuld only be investigated by
performing parallelly all subsequent steps of calculafimndifferent cutoff energies, which
requires storing most intermediate data from densitytfonal calculation runs. The storage
system is therefore the limiting factor of the entire cahtians, and at the time the simulations
where started, only a single calculation could be estaddigin the hard disk.
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Figure 5.10: Band structure, atomic structure and Brillouin zone @@&layer supercell.

5.2.2 Band structure calculation

In contrast to the time consuming structure relaxatiorattens for the ground state, the band
structure calculations for a supercell structure are natengomplex than the band structure
calculations for the bulk. However, as we intend to descailggeat portion of the conduction
bands where phononic relaxation processes take placeathe sumber of conduction bands
as of valence bands is calculated in the band structure renn £he bulk case, the electron
density is not updated and inserted from a beforehand adisira@ ground state calculation.
Of course, in addition to this, the modified atomic positifmosn the structure relaxation have
to be considered in place of the idealized starting posti@s the electron density is now
oriented at the new, more realistic positions. Due to themgll approach (and in contrast to
the rhs pictures in FigE.8[6-5]11, where the volume of tbirecal lattice vectors is shown),
the Brillouin zone is now truly two dimensional (cmp. SEcl)3as the third dimension does
not imply a new continuous quantum number. The path in thBoBim zone (which is the
same as introduced for the<2 orthorhombic bulk cell in Se€8.1) is oriented at the boxfe
the irreducible part of the surface Brillouin zone. Thedueible part of the zone is in principle
half of the whole zone (e.gk, > 0), this is related to the inversion symmetry along xhez-
plane. From the time reversal invariance of the Schrodiegeation, an additional inversion
symmetry at the -point can be extracted, which holds at least for the energgnealues
(whereas the wave functions are complex conjugated — tHiewsever no limitation to the
later steps of our calculatkﬂ]) Consequently, the irreducible part of the Brillouin zose i

2The main reason for this property is the fact that the paaésith the Schrodinger equation are real and thus,
the energies are not influenced by complex conjugation oétjuation — but thé&-vectors are transformed tek.
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Figure 5.11: Band structure, atomic structure and Brillouin zone afGlayer supercell.

represented by only a quarter of the original zone, like e pf Q wherek, > 0 andk, > 0
(asindicated in Fid.213). The symmetry path in the Brililomone is indicated by the red points
and lines in the rhs pictures of Figs. %.6-3.11.

The band structures of calculations for structures with@, 115, 22, 30 and 40 layers

are shown on the |lhs of Figs_H.6-3.11. In the background @ddlpictures, the projection
of the bulk states obtained from the orthorhombical bulkdbsimucture (Figi’s]5) by varying
the k, component (cmp. SeC.5.1) is drawn. By this, a direct corspardf the bands in the
surface structure to the bulk bands is possible. It is glealbservable how the size of the
structure influences the number of resulting bands in treutalion. By increasing the number
of layers, the continuouk,-dispersion in the bulk is replaced by discrete energy egjers
of the particular bands. While for seven layers in [igl 5t 68 single bands are clearly
separated and there exists a wide energy spacing betweendlgy values, as it is similarly
the case in a nano-confined system (like a quantum well stejctand also big areas of the
bulk bands are not covered by the slab bands, the situatouites different for 40 layers. Here,
in Fig.[5.11, the slab bands are a fairly good approximaticthe bulk, all regions of the bulk
band structure are represented in the slab band structulleatasome places, the slab bands
are even sufficiently dense to prevent a clear distinctiothefseparate bands. At the same
time the number of bands has increased to 332. The processneftion from a tonfined
system to a bulk like systerhis illustrated in the intermediate figur€sSb[Z,19.8.15.9 BI.
Of course, a clear classification is impossible, as it dep@mach on the actual problem which
surface properties are outstanding and most importanthleuiater dynamical investigations
in Chaptefl’ show that bulk properties are much better appaied by slabs of 30 layers and
more than with less than 20 layers.
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In all of the figures, however, the main difference to the thdkds is concordantly given
by two additional bands which reach into the band gap betwakamce and conduction bands
(at 0 eV). These bands are related to the dimer surface reaotisn of the slabs, so it is
evident that no corresponding feature can be contained imelulk description of the band
structure. These two bands are classified#sand D" surface bands, which are related
to the dangling bonds of thg-orbitals of the dimer atoms at the surface. While B band
is a valence band and reaches deeply into the zones wheraillthédnds exist (it is only
clearly inside the band gap betweX¥n- M — X'), the D" band is a conduction band and
only touches the bulk af — X'. These bands are found in any of the calculations, the pasiti
is only slightly changed throughout the augmentation oflélyer number. A certain difficulty
lies in the fact that for the calculations with lower layemmier (7-15 layers), the trend of
the surface bands is definitely distinguishable from thé bainds in the regions where they
overlap. This, however, is an artificial feature due to tmeittd number of bulk bands in
those calculations and is therefore not visible in the hidgager calculations (22-40 layers).
A non-ambiguous assignment of the calculated eigenvaludiset bands is only possible by
geometrical investigation of the symmetry of the assodiaiectron state, e. g. by projection
on the surface orbitals [Egg05]. This part of the study haseen accomplished in this thesis:
the dynamical investigations in Chaplér 7 are uniquelyredee on the conduction bands, and
the involvedDY"" surface band is much better separatable from the bulk bhadstthieD"P.

In Fig.[512, the location and extension of thE° and DY°"" surface states is exemplarily
shown for ak-point on theX — M-line, where the surface bands are well defined and separated
from the bulk bands. The square modulys.(r)|? of the wave functions is shown for any of
the slab calculations with different slab layers. For anyhef two wave functions show, two
isosurfaces are plotted: one at an electron density d02* (solid fill), whereas the maximum
is at 3- 1074, and the other at an electron density ofl®> (hollow fill). By the solid filled
isosurfaces, it can be seen that the orientation of the wawetibns is still influenced by the
p-orbitals of the dimer atoms; thB"? band is built up from the highest level dimer atoms
(red), while theD9"" band is related to the lower level dimer atoms (green). Thiempert
of the wave functions is located in the first three layers efgtabs. Furthermore, the optical
appearance of the surface wave functions is fairly simiterdll different calculations with
different layers, even at the seven layer calculation, thmrieatures of the electron distribution
are reproduced. Nevertheless, in the seven layer calon)atie a certain electron density of
the surface states still reaches the backside atoms ofaheyadt at ten layers, the decrease of
the surface state leads to a total vanishing of the statee afixth layer.

We can conclude from these considerations that seven layeis fact sufficient to investi-
gate principle features which stem from the surface recoctsdn (like the surface reconstruc-
tion, dimer tilting angle, dispersion of the surface bandthe extension of the surface states)
and also most properties of the bulk. If however an accureseription of the band structure
with a dense discretization of the bands on the energy ssadgjuired for subsequent calcula-
tions, the slab has to be expanded to at least 20 to 30 layethislcase, we can also expect
that the bulk band structure and the interplay of bulk anébserstates is mapped sufficiently
precise by the supercell band structure. These obsersatidnich are purely empiric at this
level of examination, will be confirmed be the dynamical a&tions in Chaptdrl7, where the
interaction of bulk and surface is a part of the discussion.
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Figure 5.12: Location of the P (red) and D'"" (green) surface states ak =

(8.20nnT1,8.20NnnTt). At this point on theX — M-line, the surface bands are clearly sepa-

rated from the bulk bands (see band structures in EIgHSIANS.The isosurfaces are plotted at

an electron density &f- 104 (solid) and at2- 10~ (hollow). The p-orbital shape of the surface

states is obvious. No significant difference is visible e éxtension of the surface states in the
slabs (7 — 40 layers)




Chapter 6

Calculation of Matrix elements

After solving the quantum mechanical ground state problensilicon (100) % 1 surface prob-
lem, we will now proceed to the dynamical properties of thergn induced relaxation pro-
cesses of the conduction band. The link between the twoidse(@FT and DMT, Chaptdi 4)
is essentially based on the implementation of the bandtsteiand the matrix elemenf{s{4149)
and [4.5B) which enter in the scattering equati@ns{4.45).

In this chapter, the numerical requirements and the praegdd calculate these matrix
elements from the density-functional theoretical resaft€hapteb is presented. For the
evaluation of dynamical equations like EQ.(4.45), the bstngcture and matrix elements must
be present on a mesh covering the irreducible part of thdoBiil zone, as it is important
for a realistic dynamical calculation that principally &latures of the band structure enter
the equations. For the evaluation of the phonon scatteniogegses (to fulfill the scattering
conditions in Eqs[{4.33)), it is moreover required to havegular, equidistant mesh in bdth
andk, directions. The calculation of matrix elements is achiewetivo steps: first, the mesh
is set up and the band structure is calculated on that mesmggsh contains generally much
more points than in a simple band structure calculation oynansetry path as in SeE.5.2.2).
In a second step, all energy eigenvalues and wave functitmsoband structure are collected
together, and the matrix elemenfs (4.49) dnd {4.53) are ateddfrom these wave functions.
The matrix element values and the merged energy eigenvatadbhen stored in a separate file,
so the evaluation of the dynamical equations can then bautsetotally independent of the
previous calculations by reading from this file. Though tleifiility of this approach is very
high, as it also allows many dynamical calculations witliedént initial conditions at the same
time, the main disadvantage is the huge amount of hard disgst space (up to 100 GB for the
calculations in this work) which has to be kept accessibli#¢mperations (and as the matrix
elements can not be considered as intermediate resultatéqtiite costly to calculate (for the
thickest slab in the highest discretization the accumdIl&®U time amounts to 14,000 hours),
they should be even stored on a file system with a backupytilitvhence, the need of disk
space is momentaneously the primary limiting factor of thele approach.

6.1 Band structure calculations for matrix elements

The main issue in performing band structure calculatiorikérsupercell approach on a regular
and relatively dense mesh (up 401000 points in the reduced part of the Brillouin zone) is
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Figure 6.1: Selection of the mesh for thkepoint sampling of the Brillouin zone. Only the points

in the irreducible part of the Brillouin zone of silicon (0p2 x 1 (bright colors) is computed,

while the rest of the sampling points is geometrically egignt (pale colors). The different

strides (red, green and blue points) refer to several lee¢lapproximation fromb x 5 effec-

tive points to17 x 17 effective points. The lower discretized meshes are a patiehigher
discretized meshes.

that the memory requirements of these mesh points and theslelly not allow a calculation
within a single run (where all mesh points are computed irstimae time). Although it is con-
ceptually no problem to split the calculations into seveuals (as in the band structure mode,
the differentk-points are considered as totally independent on each eticerp. Sec[5]1),
the special requirements of our problem for the choice aitidlization of thek-points exceed
the capabilities of the tools included in the thai nd program package, and consequently,
extensions are needed at this point.

As a consequence, all program parts from this point of inyagon on have to be devel-
oped from scratch. It is obvious that for debugging and tateonvergence tests very different
discretizations for the Brillouin zone mesh are needede@afly because the scaling relation
of CPU-time requirements to the numberkepoints is of at leasO(N(k)?). By choosing a
well factorizable mesh discretization, it is possible te usesh points of lower discretization
density also in a mesh of higher discretization: if, for epdan the discretization is chosen
according to powers of two, the points of a eight-times-diszation are all contained in a 16-
times-discretization and those are contained in a 32-tdigsetization. The Brillouin zone
can be entirely described by its irreducible part, but ittdtide assured that high symmetry
points and -lines are represented in the discretizationtpoas they might play a crucial role
in relaxation processes. In FIg.b.1, a discretization Hierdilicon 2<1 unit cell which fulfills
these requirements is shown: theX, M andX’ points are all mesh points. The discretiza-
tion in this plot is 32x 32, but by symmetry, the irreducible part of the first Brillowzone
is covered by a discretization of X717. Lower discretizations with 55 (8 x 8) and 9x 9
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Figure 6.2: Distribution of the different strides (Fif_8.1) on mulg&dband structure calculation

runs. While the first stride (lhs, the 25 riepoints in Fig[€.1) usually can be achieved in a single

run, the subsequent strides are split as indicated by thekidaiges (middle and rhs, green and

red points). By this selection of points, the runs for thedowdiscretizations are independent
from the higher discretized runs.

(16 x 16) points are also comprised: in the picture, we have the paints (5x 5), the green
points (9x 9) and the red points (1 17).

Another gain in flexibility can be reached by intelligentligiibuting the mesh points to the
particular band structure runs. The total number of runeseary is limited by the available
memory, however, the relation between numbek-@bints and memory consumption is non-
trivial. In addition, as the computation speeds up for rurith Wessk-points, it can make
sense to take more runs, if a lot of machines are accessilhe #ame time. In the current
implementation, the number &fpoints is estimated by the numberlepoints in the previous
band structure run, which is usuallyﬂM’he easiest way to share tkgoints on the particular
runs would be to just count the points along the rows and cotuand put an equal number
of them in each run parameter file. This, on the other handatgeat disadvantage: every
discretization level of the matrix elements would depenah thie worst case — on all band
structure runs, as the points can appear anywhere in theleuwsefup. Not only this is quite
unflexible (at least as long the debugging phase of new cadésfs, but also, it would require
that the highest discretization is known in advance (it camécessary to enhance the density
of points due to numerical instabilities), and, at last,a@k&raction of matrix elements will be a
much costlier process, as, even if only dapoint of a whole run is needed, the whole wave-
function information of the run will have to be read in. As ansequence, another method
comes to exercise in this context: &Hpoints of a specific discretization level are grouped
together in subsequent runs, calddes In Fig.[6.1, the lowest level is symbolized by the
blue points. In Figl8]2, these 25 points form the first runfanlhs. The next stride, the green
points of Fig[G.ll, then consists of 56 points. In [Eig] 6.2ddhe), this is indicated, where the
“missing” points are the 2&-points from the first stride. The 56 points are distributedwo

1in the 40-layer calculation, however, this exceeds the agerfs capacity, yet the band structure run has to be
split in two runs of 20 points.
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runs of 28, which is signified by the black edges. The competeof points of the second
stride is then obtained by combining the points from the firsd the second stride. For the
third stride, the procedure is similar, now, the first and $keond stride are missing in the
corresponding picture (rhs of Fig.6.2), and 208 points axe shared by 6 runs (34 or 35 per
run). In the calculations there is also a final discretizat®vel of 64x 64, or 33x 33 in the
reduced Brillouin zone, which owns then a total of 800 poamd distributes them on 20 runs
of 40 points.

The major task of this application is thus to the control & &pproved hi nd program —
no interference with the intrinsic band structure caldatet is required. This functionality can
be satisfied by modifying the parameter files for fheé nd run and starting the several runs.
As this comprises basically copying of directories andradtgtext files, the natural choice of
the programming environment for this part of the project &gapt oriented language, which
also brings along the big advantage of being very flexiblegpliaation. In our case, this
is achieved by using the interpreter langugmya hon [VROE], which has also wide spread
abilities in numerical computation (which are of use for #etup of atomic coordinates and
k-points). The setup of a calculation is then accomplishetvinsteps: by a first script, the
standard parameters are read in from a sample band strgetatgation (as the calculation on
a symmetry path in SeC.5.2.2). The several strides are nyadethe script, whereas the dis-
cretization level is provided as an input parameter. Theoréral file is written for each stride
(which is used lateron for the matrix element calculati@gm}his file, besides some information
on the discretization level, the several runs of the striae eventually the lower discretized
strides which have to be included for the complete set ofimnatements are referenced. Fi-
nally a run directory is created for every run, in which thenstard parameter files from the
standard run are inserted and ipoint set for the run is adapted. A second script then allows
to start the runs belonging to a specific stride selectivglyelading the corresponding control
file and inserting the specific runs into the queueing sys#slhTuns are then executed totally
independent from the others in their run directory. It is impiple also possible to augment
the discretization level after the runs of the lower levetsiaitialized, as in the hierarchy of
the control files, the files for the lower discretizations @b contain any information about the
higher levels (so each stride is “self consistent”), butairse the higher discretizations need
to know about their predecessor, as they depend on some jpbitite lower discretized strides
(Fig.[62).

6.2 Aspects of the matrix element calculations

By here, the raw wave functiongy (r) and the electron dispersidfy, have been computed
on a regular mesh in a predefined discretization (cmp.[S8E. IB. this section, the principles
of calculation of the electron-optical matrix elemeptﬂ‘ #.53) and electron-phonon matrix

elementsDﬂEk’Ekiﬁ*@O (£.29) are elucidated. It is obvious from the definitionst titie compu-
tation of electron-optical matrix elements is a lot lesstlyahan the electron-phonon matrix
elements: although the former depend on a pair of baratsdr’, they are based on only one
k-vector, while the latter also comprise a dependency on ansdevector (cmp. Sed4.3.2
and Sec[4.311). While the eigenvalues belonging to difftebands at the saniepoint are
always contained in the same bandstructure run (as thisirgramsic feature of the plane wave

density functional algorithm, Sdc.B.6), the differ&rpoints belonging to a band, according to
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Sec[®&.1, are not necessarily. Although is is possible tateran algorithm where subsequently
all combinations of pairs of the different wave function dilare read in and thus a complete
covering of all matrix elements is reached in the end, suchlgorithm is difficult to handle
(as it has also to account for the different strides) and theaficess is normally a very slow
process, especially for data on storage systems. It is noorenient to pursue a slightly more
elaborate technique by using the computer system’s scditebtory (or temporary storage
directory). Such an explicit scratch directory is avaiéabh most computing clusters and is
generally optimized for access speed by a fast network aiome This scratch directory can
at this point be used to rearrange the wave function datd nifra of a stride and save them in
direct access mode, which allows to access all entries ifiléh@dependently of each other by
an indefd. Through this direct access, this intermediate storageditebe used like a classical
array in the RAM memory, and allows therefore a much more Blexihandling of the wave
functions.

A further difficulty in the evaluation dk-k’ matrix elements is the fact that through the cut-
off of the underlyingG-vectors by the cutoff energy (Eq.(3122)), the variety & @rvectors
differs for thek-points. As a consequence, he order of @wectors in the plane-wave im-
plementation of hi nd is also different for eachk-point. As for the electron-phonon matrix
elements, also umklapp processes are considered{EQ))(4t4&n not be avoided to map the
condensed set @-vectors which is saved in the wave functions file to an expdrait, where
the G-vectors are ordered by their location along the three d#iosis of reciprocal space to
enable the direct access to a specificly oriented wave véetike all vectors not represented
in the condensed set are set to zero). When performing axeddrnent calculation, it suffices
to do this expansion for only one of the to wave functionshasather one can be multiplied in
situ. For umklapp processes in the form[of{4.48), @weectors of one of the two wave func-
tions has to be increased or decreased by reciprocal la#tterGg in the umklapp-direction.
Due to the expanded wave vectors, this is nothing more theumtitreasing or decreasing the
index for a specific dimension in th&-vector table for the wave function.

While the calculation momentum matrix element for the et@toptical coupling can be
implemented without further complications, as all necasgarameters (as reciprocal lattice
vectors) are contained in the wave function file, the situafor the electron-phonon matrix
elements is more complex. In the simplified form of the matiements which will be used
here, matrix elementﬁﬂﬁQ as in Eq.[[431) consist of two parts: first a phonon mode depen

dent part, /ﬁD‘lq . e'0 and the principally phonon independent electron matrirnelat part

56 Yo Unk(G)Uyi (G')de/+1w+g64k- N the current implementation, only the second part is
actually done in the matrix element calculation. Besidesféitt, that the parametei‘o*'l and

wq are not extracted from calculations, but by heuristicabpaaters, the pure matrix elements
in bulk approximation can be used be multiple phonon modesiothing mode specific en-
ters the calculation. It is in principle feasible to perfophonon mode calculations for the
given silicon structure, in this case, a more generdépendency of the modes as [0 (4.49)
would be necessary, and hence, the matrix elements wouddtbde calculated with an addi-
tional explicitz-dependency of the mod§s; S 5 6, Unk(G) Ui (G') g (G2) 8¢/ 4Gyt K +0,G+k-

It should however be noted that both the CPU time and the hiakdrdquirements for this
enhanced matrix element calculation are momentaneousBeding the possibilities.

2Yet, as the employed computer system in based on an 32dtiit@cture, it is necessary to use multiple direct
access files, as the total size of all wave functions exce¥dsyges for some configurations.
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Figure 6.3: Calculation of optical (Ihs) and phonon-electron matrixerlents (rhs). Due to

symmetry relations (Eq§4.34), only the black-filled circles do actually have to be coneplut

While the optical matrix elements are only defined for déifem and fy the phonon-electron

matrix elements have to be calculated for all pairs df and r,k’. Itis obvious from this sketch
that the number of electron-phonon matrix elements canegthuge.

As the wave function output from thiehi nd package is only available in the intrinsic
Fortran 90file format and there is no standard representation of thimdbin alternative pro-
gramming languages, the most convenient way is to implethentatrix element calculation
program in the same Fortran 90 dialect asfthé nd code. The calculation is achieved in two
phases: first, after parsing the stride control files for tiffergnt discretization strides (where
the control file for the highest discretization is given asia-time parameter and the lower
discretization control files are then read recursively fritva former as a link in the control
file), the necessary band structure matrix element filesesre in and immediately reordered
and rewritten into the direct access scratch file. The eneiggnvalues are also reordered, but
can be kept in memory. In the second phase, all combinatiowa\e functions are iterated by
two nested loops, the momentum matrix elements are cadcufat every combination of two
bands using Eq[{4.b5) and the electron-phonon matrix elevadso for every combination of
k-points. Due to the symmetry relatiods{4.34), basicallly anhalf of the elements has to be
computed, for the momentum matrix elements, this can beemehted by only considering
matrix elements wittm > n’, for the electron-phonon matrix elements, this is slighmtigre
complicated, but can be achieved by computing the elementalifk andk’ if n > r/, but
only thek >= K’ for n=n'. This technique is illustrated in Fig.—6.3. While for the mem
tum matrix elements, all bands can be considered becausertifgutational effort is relatively
limited, it is crucial for the electron-phonon matrix elem® to preselect a subrange of the
available bands, because, again, both time and disk spadd tv® exceeded otherwise. With
regard to the relaxation processes in the conduction bahdéshvare the topic of this thesis,
the usual selection are a few bands at the conduction batmhb¢including theD9*" band)
which cover the energy range sensitive to optical excitaiiba given laser frequency (cmp.
SedZ.1). Hence their number depends on the number of layéhng islab, as this influences
the number and the energetical spacing of the bands (cmmt& .

During the looping, the matrix elements are immediatelyttemi into the output file. To
allow a further investigation of the results in a platfornmdgrogramming environmental in-
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dependent way, the output file is used in tret cdf format [Uni36], which is accessible in
numerous programming languages and can be used indepearfdiet system architecture.
Not only the matrix elements and the total band structuraved in the file, but basically all
information that is important for the future handling in ghgnamical evaluation, as lattice vec-
tors, symmetry operations &rpoint positions. By this, only one file will be necessanetan
to accomplish the dynamical evaluation.

6.3 Investigation of optical and electron phonon matrix elenents

Having accomplished the numerical calculation of the mattements, we now proceed to
the examination of the results. Although a general invasittg of all matrix elements is, due
to their generally huge number, impossible, some exempaladycumulative comparisons can
be however accomplished. The purpose of this analysis fasgtto check the influence of
the discretization and the number of layers in the band tstreccalculations. It is obvious
that this is only one aspect of the convergence behavioureofratrix elements, a final study
has to include the characteristics of the dynamical relamatvhich is induced by the matrix
elements. A side effect is that the optical matrix elememats loe related to macroscopical
quantities like the optical absorption coefficient. Thig, tesults can in principle be compared
to experimental findings, this is however inhibited by thet finat excitonic interactions are
very significant for optical absorption, and cannot be netgl& in the spectra, as it is the case
in our theory (which has the focus not on the optical specifd)ence, the comparison has to
appear on a qualitative level.

6.3.1 Dipole matrix elements

While our theory is on the evaluation Af- p-coupling (Sed_2.315), the equivalent formulation
in terms ofd - E-coupling (Eq. [2Z.218)), better adapted to macroscopicalyais of data. The
dipole matrix elementd are investigated in two ways. The linear macroscopic alieorpoef-
ficient a(w) can be related to the macroscopical polarization {4.13)tlaadhcident electrical

field by
a(w) =Cq D<%> (6.1)

Herec, is a constant. The Fourier transform of the macroscopicirization can be derived
by solving Eq.[[4.39) for the microscopical polarizationsFourier space, whereby a spectral
distribution function with Lorentzian shape is found, wheeieuristical damping factor is
introduced into the differential equatidn_(4139):

/ y y
a(w) =C dnkQD 2 — _|_ — , (62)
a%%‘ | V24 (BEe )2 2y (BicEi )2

whereep is the polarization vector of the light fielH(t). w can be interpreted as the vari-
able frequency of the incident light. The second term in theepthesis can be neglected,
as it is only relevant for negative frequencies (which cgpond to induced emission). The
linear absorption spectrum based on this elementary etedptical interaction is therefore a
superposition of Lorentzian peaks with a weight accordimghe transition matrix elements.
However, for a realistic spectrum, more effects have to esidered in the equations: Apart
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Figure 6.4: DFT-LDA Absorption spectra plot for a polarization of thecident field along
the x-direction for silicon (0012 x 1-supercell calculations of various numbers of layers for a
discretization of32 x 32 points in the Brillouin zone and for Silicon bulk (diamondiusture.
The normalization is according to the size of the unit cefi.the top level figure, the spectra
are shown for the range 0-5 eV. For energies greater than caV,4he spectra are not reliable
for the slab data, as the number of points depends on the nuofile®nsidered bands in the
band structures (cmp. FigE_$6-5111). At the bottom, awutor 0.5-1.3 eV is shown. The
peaks represent the energetical positionk-gioints to allow a comparison of the transitions for
different slab calculations. In this part of the spectrumlyotransitions from the valence bands
to the D'®".band are present, thus the intensity of the spectrum deegeaith increasing layer

number.
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Figure 6.5: Analogous DFT-LDA absorption spectra (as in Hig.16.4) foragsization of the

incident field along the y-direction. While the shape of thec$ra is similar to Fig[GH, the

different extension of the unit cell in y-direction restifts different normalization of the spectra
with respect to the bulk spectrum. In the detailed plotstfbn}, bigger differences occur.
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Figure 6.6: DFT-LDA absorption spectra plot for a polarization of theident field along the x-

direction for silicon (001 x 1-supercell calculations of various discretizations of Brdlouin

zone for a layer number of 7 and for silicon bulk (diamondustare. The normalzation is

according to the size of the unit cell. Only slight differes@ppear between the different plots,

also the position of the peaks for the transitions into thdame band (cmp. Fig_6l4) are more
or less invariant.
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Figure 6.7: Distribution of the optical absorption over the Brillouioze. The sum of all relevant

transition dipole matrix elements (all transition from eate to bulk bands) are shown for a

polarization of the incident light in x-direction (top) ard y-direction (bottom) for a supercell

of 7 layers (left) and 40 layers (right) are shown. No siguifitdifferences occur between the 7
and 40 layer plots.

from a homogenouscissors shifbf the band gap in the band structure (cmp. §ec11.4.1), also
the appearance of additional excitonic peaks (as a resuheoformation of excitons at the
band edge) is expected. In this presented spectra, thepquade and excitonic effects are
not discussed at all, thus the energies in the spectra caenmimpared directly to measured
data. Nevertheless, some effects of the silicon dimer seinfaconstruction on the spectra can
be discussed at this level.

In Fig.[6:4 and Fig._&l5, the absorption spectra are plotiechtident light polarized along
the x and they-direction, respectively, for calculations with a diffatenumber of slab layers
for a k-point discretization mesh of 88 (5x 5 in the reduced zone). The bulk spectrum is
indicated as a reference by the light-blue lines. In thegopllpictures of Fid_6l4 and Fig. 5.5,
an overall spectrum up to 5 eV is shown. Only slight diffeeshare obvious for the spectra
with a higher number of layers (the blue, yellow and mageantsl|for the 22, 30 and 40 layer
calculations), so a convergence of the spectra is achiereal lyer number of above 22. For
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lower layer number, however, the differences are more afsviand some of the peaks which
also appear in the other calculations are shifted to highlemeer energies, so we can conclude
that below 22 layers, the calculations are not inspiringfidemce. This convergence with
respect to the layer number is found independently forxtrendy-polarized light. Although
the spectra are similar for the two polarizations, the giierof the excitation is on average
about 2 times larger in thg-direction. In the bottom pictures, a cutout of this spettrs
shown for an energy range of 0.5 - 1.3 eV. In this range, thexaa contributions in the bulk
spectrum, as the direct optical transitions which are dised here only appear above 1.6 eV.
The effects in these pictures are consequently uniquelyciedl by the surface reconstruction,
in the first order, the transitions from valence band bulkestéo theD%"" surface band are the
cause. An obvious fact is that the relative strength of tlastace band transitions is reduced
with increasing layer number. This is a consequence of tvigg number of bulk bands with
respect to the surface banB¥® andD"", or, in other words, by increasing the structure into
the bulk (cmp. FigdBlB-512), the influence of the surfacdeicreased. As in the case of the
full spectrum, it appears that the number of considérgmbints is sufficiently high and thus
the positions of the peaks are quite stable above a layer@uafi22, while big differences are
visible for the lower layer calculations. However, with i@asing layer number, still particular
additionalk-points and the related peaks are occuring in the specti, dbntribution to the
shape of the curves is limited.

In Fig.[66, the absorption spectra of calculations with gona¢ layer number of 7, but
different discretizations ranging from>88 to 64x 64 are shown. While in the 88 (or
5x 5 in the reduced Brillouin zone, cmp. to Fig.36.1) plot, theveuis highly influenced by
singular peaks (top, black lines), the curve is much moressimior the higher discretizations.
Nevertheless, the shape of the curve is not changed by artdgoeetization. This behaviour is
also visible in the cutout range picture at the bottom of[E1: the total size of the single peaks
decreases by increasing the discretization size, but #ygesbf the curve remains unchanged.
In conclusion we state that obviously, all important feasuof the optical absorption within
our approximations are reproduced by a relatively low d@iization, whereas the number of
layers in the supercell influences the shape of the spectnaintha position of the peaks much
more. A qualitative comparison to the bulk spectra alsoaksva high accordance to the higher
layer calculations, with exception of the low energy tréioss (< 2.5 eV), where the surface
bands come to play.

A different form of investigation is illustrated by Fig._6.Row, the plotted matrix elements
are not chosen by the energetical selection through thedrery of the incident light, but by
the location inside the first Brillouin zone. For each poifttlee discretization (where the
highest available discretization of 6464 is selected), the square modulus of all dipole matrix
elementdk going from valence to bulk (e.gn is a valence band and is a conduction band
or vice versa), in the light polarization direction, is susamn Although no specific conclusions
about the excitation of particular electron states in thedkgtructure can be made by this con-
struction, the main destination of the transitions of antedight excitation can be read out
from these images. Two parameters are varied inside these plirst, the number of layers
in the supercell structure which is the origin of the dipolatrix elements is changed, and sec-
ond, the polarization direction is selectedxiandy-directions. While only slight changes are
visible by the variation of the layer number in the picturest(@nd right row of Fig[[&l7), the
orientation of the absorption maxima in the Brillouin zoaeompletely altered by the change
of orientation of the polarization vector: while feipolarized light, absorption is mainly found
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Figure 6.8: Size of the matrix element of electronic Bloch wave funstja®r . (r )uyg (1) for

intraband transitions on the symmetry pdth- X — M — X —T (cmp. Fig[52[5M6-5.11) from
a statek to a statek’ inside the I°"" surface band (top) and inside the lowest bulk-like band
(bottom) for a seven layer slab (lhs) and a forty layer slafsjr At the upper left side of the
plots, the matrix elements of umklapp processes are shohabibck-like structures in the 40
layer slab picture for the surface band can be identified @sztnes in the band structure where
the surface band enters into the bulk (Hig.8.11) and caneatlbarly identified. Similarly, the
the first bulk band for the 40 layer slab is obviously build mmnf several states of different
symmetry.

along theky-direction, it is found along th&-direction forky-polarized light. Obviously, most
features of the spatial distribution are yet contained édipole matrix elements of the super-
cell calculations with low number of layers (7), but in alkea, the matrix elements are highly
inhomogeneous with respect to the polarization direction.

6.3.2 Phonon matrix elements

In contrast to the optical transition matrix elements, medilink to a macroscopical quantity
exists for the electron-phonon coupling. Furthermore,rthmber of electron-phonon matrix
elements is not diagonal with respect to thpoint (Fig.[6.B). Consequently, the high number
of parametersn, ', k, k', i) makes it impossible to draw the relations between the peters

in a simple graphical representation. Thus, only some el@amfransitions will be discussed
here. As the electron-phonon coupling is represented byparts (Sec[[612), where only
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Figure 6.9: Size of the matrix element of electronic Bloch wave funstja®r . (r )uyg (1) for

interband transitions on the symmetry pfith X — M — X —T (cmp. Fig[5R[5M-5.11) from a

statek of the surface band to a stalé of the lowest bulk-like band (top) for a seven layer slab

(Ihs) and a forty layer slab (rhs) and the corresponding wapkl processes (bottom). As in the

case of intraband scattering (Fig_5.8), the attributiorstdites to the bands is not definite for the
40 layer calculation, thus a block structure occurs in thetpies.

the second part is gained from the electronic wave functinrte current implementation,
the discussion will be limited to the matrix element of theattonic Bloch wave functions

[ Bt (ruywe (r) (Eq. [EBL)). Those matrix elements have to be treatedreliffly for the
direct scattering and the different umklapp processes ([EHQD)). Yet, the full discussion of
two two-dimensional wave vectoksandk’ already exceeds the possibilities of commonly used
graphical representions in printed form (as still anothmrdinate is needed to represent the
dependency), we simplify this by discussing only thandk’ points on the symmetry path
introduced in Se€. 5.2 (Fig.5.2).

Two bands and two situations are presented in [Eig$. 6.8 3hdI6.Fig.[6.8, the square
modulus of size of the matrix elements of the intraband ttiams (wheren =) for the surface
band and for the first bulk band are shown. By evaluation ofita&ix elements, a basic result
for these intraband transitions is that foe= [/, the matrix elements must yield one, as in and
out states are identical. Additionally, due to the symmefrthe matrix elements (Selc.6.2),
only one half of these matrix elements has to be calculatetheaother half can be mapped to
the same points. Thus, the matrix elements for one of tha eigturing umklapp-processes
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with Go = b1 are plotted in the upper-left half of these intraband pEﬂJrThe matrix elements
are plotted for the calculation with a seven layer slab amdhfe calculation with the 40 layer
slab. In Fig[G.B, for the seven layer slab, the matrix eldmerpress a smooth dependency
with a well defined maximum of one at the diagonal both for tindage band and for the bulk
band, as it is expected from the analytical evaluation. lergam range ofk — k’| of about
20% of " — X, depending on the location &f around the diagonal, the matrix elements are still
above 9. This complies with estimations which have been done fantum dots[[Ahn0d6].
For the 40 layer calculation, however, the plots are not i&fie for transitions originating
from ak point between th& andT points, a block-like hole inside the plot occurs, where
the size of the matrix elements is not smoothly connecteldadst of the plot. This hole can
however be understood by looking at the band structure if5dd: At thek-points where the
hole occurs, the surface band enters the region of the bulétsband can not be distinguished
any more by energetical comparison. Although it could havée possible to identify the
surface states by projection on the surface atom orbitais,hias not been implemented in
the current calculations (as the affiliation to specific ls®hds no significance to the later
dynamical calculations), and thus the states representditkitop-rhs picture of Fig._8.8 are
not all states with a surface geometry as in Eig.15.12, but sibulk geometry. Consequently,
the matrix elements for those wrongly identified statesoif on the diagonal, appear much
smaller. For the first bulk band (bottom-rhs picture), théddviour is even more pronounced,
here, inside the bulk bands, the affiliation of the statedfferdnt bands is purely arbitrary, so
the significance of this picture is quite reduced — a sensitaeparison can only be done at or
near the diagonal inside one block. As a consequence, thisdfiinvestigation of particular
bands is only sensible if the states in the bands can becldaritified and affiliated — as it is
the case for the seven layer calculation. Another resuliedd analysis is that for the intraband
scattering, the umklapp processes are negligible, asgizeiris at least an order of magnitude
below the corresponding normal scattering processes.

In the top of Fig[€&B, a similar discussion is led for the ibnd scattering between the
surface band and the first bulk band. Now, the upper left Halfeomatrix transitions is impor-
tant, the bands are not diagonak£ '), and the evaluation for the umklapp processes is shown
at bottom of Fig[Gl9. Both integral and maximum size for tlenmal scattering processes
is smaller than in the intraband case7(@aximum cmp. to D maximum), furthermore, the
scattering at the diagonal is not prioritized, but occutsveen selected points on the symmetry
lines. The umklapp processes, however, are much more s@mifivith respect to intraband
scattering and in relation to normal scattering. For therimalements of the 40 layer slab,
the same limitations as in the intraband-case apply, tharimag of a linear structure in the
scattering pattern leads to the assumption that the wawidmat a singlek-point is out of
the common symmetry of the othkfpoints. Again, the investigation is more or less useless
for the 40 layer slab, as a coherent comparison of the sicaftisrimpossible.

However, we should note that the matrix elements analyzesl dre only one component
of the real scattering treated in the dynamical equatibi&j4 The energy conditionE{4157)
which are contained in the scattering matrides_{4.33), lwat theq-dependent form factor of
the electron-phonon coupling{4151), can have a greatteffethe strength of the scattering.
Especially for the intraband processes, scattering ishhigiprobable for smally, as either

31t should be noted that the classification of in and out siatpsrely academic, as this only influences the phase
of the matrix elements and is therefore irrelevant for theasg modulus of the matrix elements in the relaxation
equations. For the umklapp processes, the correct assigmoeld be(nk) as out state an(h'k’) as in state.
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the form factor vanishes at= 0 (acoustical phonons), or the energy condition makeseseatt
ing impossible (optical phonongi —o # 0). At those points, on the other hand, the matrix
elements are close to one (HIg.16.8).




Chapter 7

Relaxation dynamics at the
Silicon 2x 1 (100) surface

After the presentation of the numerical implementation tnelresults of the calculations of
the interaction matrix elements and the band structuresyomemove on to the discussion of
the final step in our calculations: the supercell struct@®thb be integrated into the dynamical
equations[(4.45) by embedding the matrix elements, the sancture and the phonon disper-
sion into the equations of motion, with the final goal to siatelthe relaxation processes in the
conduction band. First, we will give and idea of some aspettbe involved programming
methods. The main task, the calculation of the band straietnd the matrix elements has been
completed in Chaptéi 6, so the remaining open questionsbang ¢he implementation of the
scatter matrices (SeE.#.4) and the subsequent dynamiglalaéon. Then, some results of
a testing procedure using an isotropic standard systemasighparabolic band and constant
matrix elements, without externally considering a stregtiare realized. The main purpose
of this step is to check the homogeneity of the relaxatiorcgss, as the proposed approach
from Sec[4} is a great source of errors. Finally we predentésults of the relaxation in
the silicon 2x 1 (100) surface supercell for different initial conditiortee general relaxation
behaviour for a high-frequency excitation is simulated l§yaaussian energy distribution of the
initial population at the upper limits of the investigatednd structure, and, finally, a realis-
tic scattering process is computed by implementing exptal optical excitation conditions.
The relaxation timescales from this process are then ficalflgpared to the experimental val-
ues.

7.1 Implementation of the dynamical evaluation

As indicated in Sed_44, a big gain in efficiency can be oletiby evaluating the delta con-
ditions of the energy condition§(4]57) before the starthef dynamical relaxation loop. It
is therefore consequent to organize the program code in ass:pfirst, the initialization is
performed, where mainly the scattering matrices are bgilthut also the initial conditions
are set up. The second step comprises then the computatitve pbpulation dynamics up
to a predefined time step. The initialization procedure aqaishes several tasks: first, some
parameters are read in from a separate file. Parameterg asafaple the system bath temper-
ature, the maximum timestep and the timestep discretizafilenames for the matrix element




7 RELAXATION DYNAMICS AT THE SILICON 2x1 (100)SURFACE

file and output file, information for the initial distributip and, due to the reduced bulk mode
model (cmp. Sed—4.3.1), also the bulk phonon mode dispefgiothe form of sonic speed
and optical phonon frequency) and deformation potenti@gseferred to in the parameter file.
Then, the band structure of the system is read in, wherelgfatination related to the actual
structure (including the discretization level) is exteatfrom the matrix element file. Now,
from this band structure information, we can proceed to trestruction of the scattering ma-
trices: first, the inversion of the energy dispersion by treoping [4.6D) is exploited, this is
achieved by basically evaluating the energy conditiondy.@ith the bulk phonon energies
w(qg) atg = k — k' + Gy, for all combinations of, k andr/, k. Due to the various scattering
processes, the whole Brillouin zone of the system has to bsidered at this point, it doesn't
suffice to use the reduced part. Therefore, an zone unfoliisgo be performed for the band
structure. The zeros of the mappitig) are identified by a sign change of the corner points of
the involved mesh, and also the path lengiliscevaluated from the actual zero points between
the mesh points (but on the mesh edges) by using a lineapatédion of the corner point
differences (cmp Fid—4l4). For every combinationnpfc andr’, k/, the zeros, path lengths
and strength factor§ ;. (s) (Eq. ([Z52h)) for all different umklapp processes, phonauies
and for all identical points in the unfolded Brillouin zonénys, the zone is refolded at this
point) are added cumulatively for thew, and the—w, branch separately. Finally, for the
meshes of the underlying mesh discretization where zerasroithe matrix elements are read
in from the matrix element file (it is, however, not possilberéad the whole matrix element
file at one time due to the limitations of computer memory, alsd not all matrix elements are
finally needed), and the scattering equations can be assdrabtording to Eq[{4.6lla) from
the different contributions of the Bose distributiog(T) and the size parameters.

As only a small fraction of the elements of the scatteringrinatre non-vanishing, a spe-
cially dedicated matrix structure can help to reduce theamigal effort by preventing the mul-
tiplication of all zero elements in the evaluation of thetsming equationd{4.45). The special
requirement of the matrix is that the non-zero elements eadidiributed totally randomly on
all elements. An obvious choice to meet this requirementsis ealledindex-oriented matrix
representation Only the non-zero matrix elements are stored, and eacheafi thith its own
column index. An additional row index references the staftsach row in the column index
list. A matrix multiplication with a vector can then be parfted by adding all components
of the vector referenced by elements of the column indexfdiseach row separately. The
results of each addition row are then composed to the regulgctor. This approach is surely
faster as full multiplication of all matrix elements, as dpas the rate of non-zero elements
to total elements is low, and it surely consumes a lot less ongrfthe quantification of the
memory consumption is highly influenced by the employed asempsystem, as additionally
to the size of the floating point numbers for matrix elemetits, size of the index variables
play a crucial role). The main issue of this technique shdwldever also come to mention:
While it is possible (by the row index) to directly access adfic row, it is very costly to find a
particular element of the matrix, as in the worst case, dllroo indices in a specific row have
to be checked for equality with the required column, esgigcifthe element is zero and no
column index exists. Thus, the effort to read out a speciémeht is of the order of the num-
ber of columns in the matrix (and the order to randomly readthelements is about (humber
of rows)x (number of columng). Furthermore, elements can only be added row-by-row,
is extremely costly to add elements later, after all rowseha@en completed, as basically all
indices have to be recalculated and the later entries hake tmpied. As a consequence, a
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symmetrization step according to EQ.(4.37), which hasemdw highly improve the numeri-
cal stability of the calculation, is quite costly and onlyspible by completely rebuilding new,
symmetrized matrices. Although the computation of thetsdayy matrices is a singular step,
it can take a considerable portion of the whole computaiioe bf the dynamics — so, if only
a few timesteps have to be calculated, it can even take Idhgarthe dynamical calculation.
Nevertheless, it is inevitable for this kind of simulati@s, otherwise, the scattering rates would
have to be derived from the band structure in every time stéth, basically the same effort
that is applied once in our algorithm (and furthermore, tlarix element file would have to be
reloaded after every time step). This is an elementaryrdiffee to the common application of
these scattering equatios(4.45) on spatially homogesymiesms with parabolic band approx-
imation, where the scattering rates can be simplified aicaliyt and the resulting equations are
sufficiently simple to evaluate them in every time step.

The initialization step is completed by the composition lud fnitial population. There
are two principle modes implemented in the program: oneipiigssis to set the population
from different features of the band structure, like the gpesr thek-vector. This can for
example be done to test special features of dynamical tabaxexplicitly, for example, all
states above a certain energy can be populated or all statekecpopulated by a Gaussian
distribution with the peak at a certain energy. The secondearise based on the principles
of optical excitation discussed in SEC.Z4.2.6.1. In this eydbe optical field is assumed as a
harmonic wave of frequencg with an amplitude modulated by a Gaussian shape of width
1, the total amplitude, the frequency and the pulse width ef@aussian are defined in the
input parameter file. Then, the states are populated by imgpBg. [£.4%), where the Fourier
transform of the field is again given by a Gaussian distridsufunction centered at the optical
frequency, and the required momentum matrix elements acefrem the matrix element file.

After initialization, the numerical computation of the dymical evolution is performed.
For the implementation of this initial value problenRange-Kutta methoadf order four [SBOD]
is used with a constant timestep. Although no convergeneekchnd variable timestep con-
trol can be easily included in this algorithm, the convermgenrder is generally sufficient for
this kind of calculation. As all statical information is culated in the scattering matrices
A and X, the required steps to evaluate a timestep in the relaxatioiation [[4.455) are two
matrix multiplications of the dynamical population vectath the scattering matrices in index-
oriented representation, then two vector-vector additenmd finally a vector-vector multiplica-
tion. These operations can be implemented highly effigiearl most computers and are often
optimized versions can be found in special libraries.

The results of the dynamical evaluation are written intodbtout file in by copying pre-
defined timesteps of the population. Additionally, the batrdcture information, the shape
and symmetry of the Brillouin zone and other information i imto this file. By this, a direct
interpretation of the results from the data in this single fd possible. For this part of the
project, the programming langua@s+ is used. The main advantage of tligject-oriented
framework is that, while excellent interfaces to the eletagnsystem services exist on the one
hand, a high level of abstraction can be used to define newtyjzda (like the index-oriented
scattering matrices) and polymorphal structures (likéeditly implemented initial condi-

1A realistic implementation would require a Gaussian shapede wave for thé(t) field and the integral of
this expression for the vector potentia(t) (cmp. Sec[Z3]5). However, this integral can be approx@chaly
At) = —%E(t), if the lengtht of the pulse is fairly bigger then/t. Then, the shape of the vector potential is
also Gaussian.
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Figure 7.1: Isotropic parabolic band structure of the test system foriscittization of x 5

points (Ihs) and5 x 25 points (rhs). All dimensions are unitless, the energy ardetktension

of the “Brillouin zone” are normed to one at the boundary. @il forth of the Brillouin zone is
shown.

tions). Furthermore, the language is highly standardizetithere exist goo@++-compilers
for nearly any system architecture. For the output filesniiec df format is used [Uni36], as
it yet is the case for the matrix element file. Thus, in priteiphe calculation of thematrix el-
ements, the evaluation of the dynamics and the investigatiohe results could be performed
on different system architectures. This feature is howeetused in the calculations of the
present thesis.

7.2 Relaxation in a test system

Although the relaxation program collection has been desigor the use with externally ob-
tained matrix elements from two dimensional structurds, useful to implement a test routine
for a highly simplified standard system to check the functiiy of the relaxation mechanism.
A convenient test system is an isotropic parabolic singledbsystem (Figl_711). A big ad-
vantage of this system is, apart from the simple applidgbdf a parabolic function, that a
band minimum is genuinely contained and no discontinuityhim function or its derivatives

has to be handled. Additionally, parabolic band structaesthe most widely used model
system in the world of semiconductor physics (although,cnfrse, this model is not of use in
the case of silicon), it can be applied, for example, in tirmahsional (multi-) quantum well

structures([But07].

Within this test setup, no realistic physical units arectéa to the variables, the Brillouin
zone boundaries and the energy maximum are set to a valuesofTdre same applies to the
electron-phonon coupling, where the coupling parambtand the electron matrix elements
are set to one (this is, at last, a quite unphysical assunjpti& single optical phonon mode
with an energy ohw = 0.15 governs the relaxation. With respect to the Silicon (1D8)1
structure, the same geometrical arrangement is used,getid, only a quarter of the total
Brillouin zone is sampled, while the rest of the Brillouinreois mapped on this reduced part
by thex, y and inversion symmetries, which naturally exist in an @it radial symmetric
system. It should be mentioned that these symmetries arexhaustive for this system, as
for the description, a single radial coordinate would seffilNevertheless, the discussion of
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the isotropic system in a Cartesian system enables us tosgisnisotropic initial conditions
(although cylindrical coordinates might be more apprdpriar this kind of discussion). By
these test conditions, however, we can check some of therésaof the relaxation program
which are relevant for the later realistic relaxations unpleysical conditions. To illustrate
the convergence of the program, two different parametersliacussed within this test inves-
tigation: the Brillouin zone discretization is chosen dfeatient levels of 5< 5 and 25x 25
points, and two initial conditions are arranged: first anriguic distribution which is located
with a Gaussian shape around an energy of 0.4 is relaxed ¢l the isotropicity of the relax-
ation mechanism, and second, an anisotropic distributionralk = (0.75,0.75) is chosen to
illustrate the relaxation into an isotropic final state.

7.2.1 Isotropic relaxation

The relaxation behaviour for a relaxation with isotropittiai condition is shown in Fig$. 7.2
and[ZB. Though the discretization is very low in Figl 7.2 ibotropicity is quite well main-
tained throughout the whole relaxation process — both aetieegy scale (lhs), where devia-
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/

timesteps

Figure 7.3: Relaxation in the test system for an isotropic initial cdiwi and a discretization of
25 x 25 points. While no anisotropic behaviour is found on the epecple (Ihs), weak phonon
replica peaks can be observed in the Brillouin zone plot)(rhs

tions are visible in the different cut direction for the datants (where the red curve is related
to points inky-direction and the blue curve for points on diagonal, while black curve con-
tains all points), but these are related to the discretimaind on the Brillouin-zone distribution
(rhs), where single points are pronounced due to the magdaffithe discretization of energy.
Nevertheless, the discretization in Hig.17.2 is too low toumately describe all features of the
relaxation process, as can be seen by comparing t¢_Flg. hik in the 5x 5-discretization,
the relaxation is mostly terminated alreadyt at 30.0, significant changes are still visible for
later timesteps in the 26 25-discretization. In Fid_73, the isotropicity is eveeaier pro-
nounced. It can be observed that the relaxation of a paatictate takes place in several steps,
which are separated by the energy of the optical phonon. Béfisviour is expressed in the
occurrence of concentrical distribution peaks is the 8uith zone picture (rhs), usually re-
ferred to agphonon replica In the present Figule—1.3, those rings are only weakly prooed
atk = (0.5,0.5) andk = (0.25,0.25). Att = 1.0, a step has formed in the population distri-
bution at an energy of a phonon energy. This is a typical dehan a relaxation by purely
optical phonons in Markovian (energy conserving) scattegnvironment: below the phonon
energy, the electron states can no more relax, as the mini@laxation jump is in steps of the
phonon energyhw. Only through the slight weakening of the energy conseswationdition
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Figure 7.4: Relaxation in the test system for an anisotropic initial dition and a discretization
of 5 x 5 points.

(Eqg. (£5Y)) due to discretization and the non-zero tempezathe scattering to lower states
by intermediate scattering into an higher energy state $sipte att = 5000. This is a good
illustration of the limits of the Markovian approximatioonip. Sed"4.2]4), as this is clearly a
consequence of the energy conservation, which originates {£.29). The timescales for the
relaxation are not reliable in this case. For our invesiigabf silicon (001) however, these
considerations are not relevant, as scattering also iesoacoustical phonons which do not
allow for a similar bottleneck-behaviour.

7.2.2 Anisotropic relaxation

While the stability of the implementation with respect totiepical relaxation was investigated
in Sec[[Z.Z11, we now address the case of a highly anisotmojti@ condition. As the entire
system is isotropic, also the final state after relaxatiosukh show no signs of anisotropic-
ity. The initial condition distribution is chosen as a bi«@aian function irk-space, the initial
peak is located &t = (0.75,0.75). In Figs.[Z4 an@ 715, the relaxations of those distribigtion
is shown for discretizations of 65 and 25< 25. For both discretizations, a mostly isotropic
distribution after a relaxation time of 1.0, and in both cagbe later step are very similar to
the steps of the isotropic relaxation (Figs]7.2 7.3)s &tows us to draw two conclusions
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Figure 7.5: Relaxation in the test system for an isotropic initial cdiwi and a discretization of
25x 25points.

from these simulations: first, the relaxation implemenptatillows the calculation of a relax-
ation process who is insensitive to the initial conditioot(taking into account, of course, the
overall electron density, which depends from the initiahdition), and second, in contrast to
the timescales (Selc._7.P.1), the restitution of the isatitypis independent from discretization
in the given range. However, while at the<%-discretization, the resolution of the distribu-
tion function is too low to feature all details of the relarat much more can be seen in the
25x 25 case. The phonon replica, which show up as concentricdé¢siin Sed_7.2]1, are now
expected to be more concentrated around the initial pedleekh at a timestep ofLat the rhs
of Fig.[Z3, two single peak-formed phonon replica can beepkesl outside the concentrical
isotropic distribution. The process of establishing tlodrigpicity can be understood by assum-
ing that while the initial distribution can be quite anisigic, the system will tend to a more
isotropic state by every timestep. On the energy scale {lrigolZ.4 andZF), the anisotropic-
ity is indicated by the very different distributions kg-direction (blue) and diagonaky( = ky)
direction (red), and the discontinuity of the total distition (black). The “new” states at lower
energy, which are increasingly populated, however, atis@Hopic — no difference occurs from
the three curves. In other words, for the given initial céiodi, we can state that isotropicity is
accomplished when the initial distribution states are authsignificant population.

The isotropic relaxation afteér= 1.0 comprises basically the same features as discussed in
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7.3 Relaxation in silicon for a Gaussian initial condition

After investigating the principle applicability of the exation equations under simplified con-
ditions, we can now proceed to the simulation of a distrdoutiinder realistic conditions in
the silicon (001) surface system. The most realistic dituiathat can be investigated by our
program is, of course, the simulation using initial corudis of optical excitation (EqL{4.14)).
Nevertheless, the optical initial condition has only a viémyited range of population at se-
lected points of the band structure, which makes the iryatstin of relaxation quite difficult.
Thus, as first approach, we choose a different initial céomdiby an energetical “gauss-pulse”
(as in the test system in S&c.712.1), while we will discussafbtical excitation in SeE1.4.

The matrix elements and the band structures that have béaratad in Chaptef]l6 are
read into the dynamic file, whereby only the electron-phonmatrix elements are relevant
for the relaxation. For the phonons, a simplified two-mod®at is used (cmp. SeC. 4.B.1)
which comprises one acoustical and one optical mode [Ed). The modes are chosen in
order to interpolate the phonon spectrum from literatuTR,[PV81 [ GdGPBY1, LB&7] with
heuristical parameters. The dependency on the kutieordinate is neglected. The acoustical
mode is approximated by a linear dispersion with a sonicapee

wi® = clal, (7.1)

whereas the optical mode has a constant dispersion:

o™ = a. (7.2)

Parameters for the corresponding deformation potentadstso be found in literature IMCEH78,
BPC84|vdW8Bl, LB87]. The functional form of this dependersdyowever quite complex. For
the acoustical mode, the electron-phonon coupling in[EBZIlM)‘l(q) is expressed in terms of
a longitudinal mode: _ _

Di(g) = D'a. (7.3)

This is justified by the fact that in bulk semiconductors, ¢bapling to the longitudinal modes
is much stronger than to all other modeés [YC96, SW02]. If tmsl the dispersiorf{4.1) is




7 RELAXATION DYNAMICS AT THE SILICON 2x1 (100)SURFACE

D%"" band bulk bands
X1036
X’ 20 X'
415 i
[%2]
p 10
y
r o
T Yxlo-e T
X X 4
o ! l ‘ 3
8 2 2
_ L
r T
T X T X
X ) "
[%2]
by .3
3
- 5 100 f$
T — ks § :
r X r X 8200
£

500 f$

500 fs
]
- >
5 2 o

-
b

190 pf;

0 05 1 15 2 25
enérgy (V]

- >
H;%

!
b

Figure 7.7: Relaxation dynamics of a supercell with 7 layers and a diszagon of 8x8 points
in the complete Brillouin zone for an initial condition with Gaussian peak 4.7 eV above
conduction band minimum.
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Figure 7.9: Relaxation dynamics of a supercell with 40 layers and a @isation of8 x 8
points in the complete Brillouin zone for an initial conditi with a Gaussian peak 47 eV
above conduction band minimum.
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reinserted into Eq[{4.51), we find an overall dependency Qj’m for the overall matrix el-

ementDﬂEk[k;;u [YC9§]. For the optical mode, however, the coupling conls[ﬁﬂ(q) can not be

approximated in a similar manner, as an optical mode aldades an oscillation inside the
unit cell. Apart from the fact that the coupling to this kinflascillation is much stronger, the
only possible and reasonable approximation is a constantjependent coupling, as the dif-
ference of elongation of the single atom coordinates in tiieaell (which, at last, determines
the coupling strength at this level of approximation) istquinchanging throughout the whole
Brillouin zone. As also the phonon ener@y{7.2) is indepebdéa, the matrix elemenb
for the optical mode from Eq[{4.b1) is completely constamttee Brillouin zone in this ap-
proximation. The employed values are taken from [[B87] d8id /] and yield a sonic speed
of 6.1 meV/nm and a total deformation matrix elemddft’;, = D3V | /[g] with a D3 of

7.37 eVnnt/2 for the acoustical phonons and a phonon energy@§DeV with a deformation
matrix element oD% = D' =40.0 eV for the optical phonons.

With these parameters for the phonons, we can now investigatdynamical evolution of
the system. The initial condition is defined by a Gaussiaagat an energy of 1.7 eV above the
conduction band minimum. In Fig&_1.7=7.10, the dynamicthisf initialization is illustrated
for slabs of 7 and 40 layers and flerdiscretizations of & 8 and 32« 32 for selected timesteps,
including the initial population. At the Ihs, the populatidistribution over the Brillouin zone
is depicted for théd9°"" band, while in the middle, the population is resolved on thergy
scale, with the corresponding band structures of the reteegions of the conduction bands
plotted at the top level. On the rhs, finally, the populatiaresshown energy and time resolved,
basically, this corresponds to a combination of the othetupes in this figure.

The choice of the initial condition as a Gaussian peak atehergy makes it possible to
discuss the relaxation process in different phases, astilegnergy and the width of the gauss-
pulse are selected in order to assure a practically exeéwesigitation of bulk states, because the
maximum energy of thB9"" surface state is located energetically below. In all FIgaZZ10,
this is visible from the fact that the initial population dretBrillouin zone is negligible low in
the surface band~( 1036, left hand row of the |hs pictures) and the extension of thagsian
can be regarded in the energy resolved plot (middle row).t@imperature for the phonon bath
(cmp. Sed4.2]3) is fixed at 90 K.

The classification of the relaxation process into phasesrne th the following way: in the
first phase which lasts until ca. 200 fs, the relaxation oalyches bulk bands. Nevertheless,
the relaxation is not homogenous, the initial peak is dsgeito a much wider (approx.x9
distribution below the initial peak energy, but still aboee surface band maximum. The
extension of this first-phase distribution varies only Islig within the different figures, and
seems to be mostly independent from slab thickness ancttiation. Although obviously the
relaxation timescales are very sensitive to the differessiple channels (and the emergence of
peaks implies that some channels are more probable tharshttiés bulk-related relaxation
is in average on a time scale ©f100 fs.

After 200 fs, the second phase of the relaxation begins. KusD%"" band is also in-
volved in the process. At 500 fs, the relaxation clearlytsjitito two distinct timescales: On the
one hand, the relaxation inside the bulk slows down witheesip the first phase and merges
with a relaxation from bulk to surface band. On the other hanelaxation inside the surface
band evolves. This surface-bound relaxation is on a mutarfasescale: at 1.0 ps, the surface
band minimum is already entirely relaxed to a Fermi-likerdsition function. This behaviour
is at best visible in Fid._718 (middle row), where the rangewarlap of surface and bulk bands
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is limited to higher energies. In Fids. V.7 dndl 7.9, howeatvean now be clearly stated that the
discretization is insufficient: the final state of the rekéo@ has no shape as in the equilibrium
(Fermi-distribution Eq. [B:1)). In Fig[.”ZI0, the Fermi-shape is shadowed byétpalations of
the bulk-like bands, which reach down to 0.05 eV above thfasaband minimum. The effect
of the two-timescale relaxation is at most pronounced in[E@ at 1.0 ps: at the minimum of
the lowest bulk band (0.3 eV), additionally to the peak atdlidace minimum, a second peak
has formed with a Fermi-like shape (while other peaks reraginigher energies). Here, we
can definitely conclude that the relaxation from bulk bandimum to surface is much slower
than parts of the relaxation inside the bulk: apart from alkfrection which is transferred
from bulk to surface band at a higher energy, relaxationsiénbulk and surface are quasily
independent and thus form their separated local distdghtftinctions. The relaxation down to
the “total” equilibrium state acts then on the slower tinsdsdwhich is obviously of the same
order as the slowest processes in bulk relaxation), sudhatieD.O ps, relaxation is more or
less completed. In Fig_7110, this process is not clearljohds Here, the final population of
electrons in the surface band reaches energetically upetbutk bands, especially the bulk
band minimum is completely populated (1.0) at 1.0 ps, so nihdu interaction between the
bands is necessary for the relaxation at the bulk band miminamd no separated distributions
form. As we will see in Se€ 7.4, this so callBduli-blockinghas not only visible effects as in
this case, but also influences the relaxation behavioureatuhface band minimum.

Within the Brillouin zone, the relaxation does not happeraihomogenous manner. In
Figs.[Z8 and_Z10 on the lhs, it can be seen that while thelaiigu is initially more or less
concentrated at the center of the reduced Brillouin zone gtfape of the distribution reflects
the band structure at the energy of initial excitation) hifts to the edges (500 fs) and finally
proceeds to th€-point (or thel-X-line, respectively). The surface band is not significantly
populated until 500 fs, but is then strongly populated infihal state. While this principal
evidence is yet visible in FigE._1.7 ahd]7.9, the resolutibthia discretization is too low to
allow an accurate interpretation. However, the picturemfthe first timesteps in Figs.¥.8 and
[ZT0 differ significantly. Hence, we can conclude that nundfdands in the seven layer slab
is insufficient to sample the bulk band structure in the negliresolution, while a convergence
with respect to this sampling is achieved with a higher layenber (see Appendx_d.2 for a
summary of all calculations). A second effect of a thickabsk a volume-surface effect with
respect to the final population of the surface band: as théaal of the number of states in the
surface band decreases with respect to the total numbete$ $h the bulk bands and also more
states are populated initially due to the higher number afiban the bulk, a higher fraction
of the surface band is populated in the final state. This caextracted from the fact that the
extension of the population (red zone) is much bigger in[E0D (Ihs) than in Fid. 718, and also
the “pseudo-Fermi energywhich is defined as the energy at which the Fermi-like distion
function of the final population of the conduction bands i8.&tshifts from 0.15 eV in Fid. 7.8
(middle row) to 0.3 eV in Fig—Z10. This effect is only parfiysical, it should be expected
that in a realistic materical, the absorption limits the thepf penetration into the bulk and
consequently the population of the bulk bands also decseaith increasing slab thickness.
The modelling of light absorption [MahbB0, HSQ3,ILSS 97,IMP00] is, however, beyond the
scope of this thesis, especially as the usual penetratipth @é light in silicon ¢~ 1 pm) is of
a much bigger order as the depth of our calculated supefeell®.0 nm).

An overview of the relaxation process including all so fasatdissed features can be ob-
served on the rhs pictures of FigSJZ.7-Y.10. While at O fsndrrow energetical range of the
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Figure 7.11: Momentum matrix transitions in the range 0.9-1.25 eV fofedént slabs and

k-discretizations. The black curve indicates the shape®frdquency distribution (the Fourier

transform) of the optical pulse. While for the transitiorttoé low discretizedq x 8) calculations

only a few single peaks within the range of the pulse appéartiansitions quasily form a

continuum in the high discretize@4 x 64) calculations. Note that in contrast to Fids-H.2436.6,

the spectra are only normed on tlkepoint number in order to avoid the surface-volume effect
which applies to transitions to the surface band.

initial population around the excitation energy of 1.7 eWisible, the population is spread
over a wider range at 200 fs, and then populatestheline relatively fast from 500 fs on.
Later, the populations of the higher states all relax to tirgmum.

7.4 Relaxation after optical excitation

In this section, we will now finally examine a relaxation ag #ilicon (001) 2< 1 surface with
initial conditions from optical excitation determined ngiEq. [£.4%). Following the experi-
mental boundary conditions described [in [WKFIR04], the tierepy of the optical excitation
is chosen as 1.69 eV with an amplitude of Gaussian shape ofadiaiu of 50 fs. Due to
the known deficiencies of the DFT-LDA-bandstructure, whigfknown to underestimate the
bandgap energy, a so called scissors-shift is applied texbitation frequency by decreasing
the frequency by a certain value (cmp. $€c1.4.1). The jeatiéin for this scissors shift is
the known fact that in silicon, the bandgap energy of the BF calculation is reduced for
all k-points by the same value with respect to a real band steycivliich can be investigated
by experiments or calculations with quasi-particle caroes (for example the GW method)
[Egg0%]. The value of this necessary shift is fixed to 0.62 g\¢aimparison of the calculated
indirect bulk bandgap energy from SEC15.1 to the experiatémdirect bandgap value.

In a realistic system, mechanisms exist to depopulate thdumtion band states, e. g. by
recombination with valence band holes. INTWKFR04], a caty process via excitonic states
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Figure 7.12: Initial distribution within the Brillouin zone for 7, 22 andO0 layer slabs and

for discretizations 0B x 8, 32x 32 and 64 x 64. While the8 x 8 discretization is obviously

insufficient to describe the distribution, good agreemangsfound for all slabs with the higher
discretizations. Nevertheless, an accurate accordanoalisfound for64 x 64 k-points.

64%x64

in the bandgap is assumed, which acts on a slower, but forguherattering relevant timescale.
In our relaxation model, no electron hole recombinationassidered, the electrons initially
inserted in the conduction bands have to relax to the coimuband minimum. On the other
hand we have seen in SEC.]7.3 hoRaauli-blockingmechanism can exclude some states at the
conduction band minimum from taking part in the relaxatignaimics. In order to investigate
the phonon-inducedimescales involving the states at the conduction bandmini, we have

to guarantee that the population at the minimum remainsTdig can be achieved by limiting
the total conduction band population through applying &ceahtly weak optical pulse, which

is also an implicit requirement of th@ow relaxation approximatio(Sec[4.2J6) within linear
optics in order to neglect the polarization dynamics.

The initial distribution after optical excitation is highkensitive to the discretization and
the slab thickness of the underlying calculation. In ordecdver the different aspects of the
optical excitation inx-direction (Fig[&.#) and iry-direction (Fig[€.b), the polarization of the
incident light is chosen along the diagonal=fy). In Fig.[Z1I1, a cutout of the spectrum
around the light frequency is shown. The Fourier transfofth@initial pulse, which can, due
to its form as plane wave with a Gaussian envelope functiercast into a Gaussian in energy
space with a variance of 0.075 eV, is symbolized by the blackec To allow a consistent
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comparison, the different spectra of slabs with 7 (red), @2dn) and 40 (blue) layers and
discretizations with & 8 (dashed) and 64 64 (solid) are now only normed on the number
of k-points, in contrast to the figures in SEC.8.3.1. The reasothfs is that excitation with
a pulse of that energy always ends in the surface band, asext dulk transition exists in
silicon below the direct bandgap of 2.4 eV. The weight of thdace band with respect to the
bulk bands, however, falls with increasing total number afids (cmp[C6.3]11), as the surface
band remains a single band in all calculations. Consequehé number of transitions should
be independent of the number of layers in the slab calculatio

While the form and the position of the peaks for thex684 layer calculations is very
similar for the 22 and 40 layer calculation, the differenttiethe 8x 8-discretized calculations
are significant. Here, the peaks appears really as singulatwres, while in the 64 64
discretization, the peaks are at reproduceable positiod®merge from a continuum. Again,
we conclude that the 8 8 discretization is insufficient to describe the system @rdquired
accuracy. Also layer number is however an important pararador the convergence of the
spectrum structure, as in the 7 layer calculation, the he§the peaks differs from the 22
and 40 layer calculations even at the 6864 discretization. On the other hand, for 8464
points, all peaks are principally found in the 7 layer slalewdation, which is not the case in
lower discretizations. In Fi§._Z]12, the distribution oéfinitial population within the Brillouin
zone is shown. At a discretization of<88, the differences of the distributions are obvious,
especially as their size differs by an order of magnitude32x 32, similar peaks are found
for the 22 and 40 layer calculations, while the 7-layer dalbon has a completely different
peak structure. At 64 64 k-points, the distributions look quite similar for all slabs high
discretization is obviously required for an adequate rggmi of the excitation process.

After initialization by the optical excitation, the relai@n calculations are performed for
two different bath temperatures (cmp. 9ec.4.2.3) of thieegysThe experimental investigation
in [WKERO4] is effected at a temperature of 90 K. A similar ekment has been performed
at room temperature_[TT03]. Our simulations are thus peréat at temperatures of 90 K
and 300 K, and a few examples of the numerous calculationdifferent layer numbers and
discretizations are presented on the following pages.

7.4.1 Relaxation for optical excitation at 90 K

The relaxation for different slabs of the optical initialnchtions are shown in FigE_7Z1{3-7115.
The frequency of the light after the application of the smissshift is at 1.07 eV, whereas
the unadjusted bandgap extracted from the band structioelatons (Sec_5]2) is at 0.56.
A pronounced peak at 0.45 eV is visible for all slabs, thiskpearresponds to an optical
excitation from the valence band top to th&°"" surface band. Single additional peaks exist
for all calculations. While the surface band (the leftmaeatdbin the top picture of the middle
row) is very similar for all slabs, the bulk is representedabyarying number of bands: At the
seven layer slab, only a single bulk band covers the energyera which excitation occurs.
At the 22 layer slab, the number of relevant bulk bands irsgedo 7, and at the 40 layer
slab, about 15 bands can be found between 0.0 and 0.6 eV abogtaation band minimum.
Consequently, the average spacing between the bands rfaoge6.6 eV for the 7 layers to
0.04 eV for the 40 layer slab. This value has a significancéhforelaxation process, as a bulk-
like relaxation can be expected when the average energgraliffe between twk-points of
two neighboring bands is of the same order as the averaggyediffierence of twdk-points of
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Figure 7.13: Relaxation dynamics for a slab of 7 layers at a discretizatid 32 x 32 points

in the complete Brillouin zone and for a temperature of 90 t€raén excitation with a opti-

cal 1.69 eV pulse. Only two bands reach into the consideredggnregion (middle row, top

level). The energy resolved population (middle row) is éased by a factor of 25 with respect

to Figs.[ZJEZID. The bottleneck formation at the bulk barigimum (0.25 eV) can be clearly
observed.
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respect to Figd_7ZIF=710. Now, a few bands are present imettpeired region. The bottleneck
and the bulk band minimum shift towards a lower energy (0)8 eV
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in the complete Brillouin zone and for a temperature of 90 t€r&n optical excitation with a

1.69 eV pulse. The energy resolved population (middle rew)dreased by a factor of 25 with

respect to Figd_71F=710. The bands are now in an averagardie of ca. 0.05 eV. The bulk
band minimum with the bottleneck has shifted to 0.05 eV.
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the same band. Otherwise, intraband relaxation insideghesband might be privileged with
respect to interband relaxation. Furthermore, the indgrpff optical and acoustical phonons
is dependent on the energies of the states, if the statemargetically close, a scattering by
optical phonons might be impossible, while scattering waustical phonons occurs — on a
slower time scale.

After the optical pulse, a structure with pronounced peakeft. While in Fig.[Z1B, a
Gaussian envelope function which limits the single peaésembling to the optical envelope
function, around the maximum at 0.45 eV is observable, th&ibution is more focused on a
single, narrow peak at 0.45 eV in the thicker slabs (Higs] arid7.Tb). The strong transition
at 0.45 eV is obviously not accurately described in the séaxgar slab calculation, as it extends
on multiple states with different energy. Furthermore,ltoation of the initial peak within the
Brillouin zone (lhs of FigCZI3) differs significantly frote positions of peaks of the other
slabs.

In consecution of the initial excitation, the relaxatioarss. As in the case of relaxation
of a Gaussian initial condition, the distribution is broadd in a first phase. Nevertheless, a
clear decoupling of bulk- and surface relaxation cannot leepsed: due to excitation into
the surface band (cmp. Fig._7112), the bulk band(s) are ptgailafter the surface band, and a
fraction of the population directly relaxes inside the auegf band to the surface band minimum.
Thus, a peak forms at the minimum quasi immediately (20-38ftesr excitation). During
relaxation, the shape of the distribution remains a pdakdtructure, consequently, only some
of the states at a given energy are involved in the relaxatikhis is plausible, as scattering
depends on th&-vectors and the matrix element between the in and out stated50 fs
(7 layer calculation, Fid_Z13) - 500 fs (40 layer calcwati Fig.[ZIb), a peak forms at the
particular bulk band minimum of the band structure — in casttto the calculations in Séc.17.3,
these peaks do not interfere with the final equilibrium distion for the calculations with a
thicker slab. This is a consequence of the very low excitadiistribution.

Inside the Brillouin zone, the initial distribution relaxeot immediately to the surface
band minimum, but by a sequence of processes. Initiallyptak lies on a line parallel to the
[ — X-direction, at the seven layer slab (Fig—1.13, lhs), theimar is close to the left edge
(T — X '-line), while at the 22 and 40 layer slabs (Figs_Y.14@End] ), the peak is found at
the right edge. In the first steps of relaxation (0 fs-30 f3)effects can be observed: On one
hand, the population extends parallel to the X, on the other hand, a part of the population
is transferred to the bulk bands, where, for energeticaams (as the gap between bulk and
surface band shrinks), the population is very low for the yétaslab and temporarily even
higher than in the surface band for the 40 layer slab (at 30Adilitionally, at 30 fs, a part of
the population is trapped in a local minimum of the band s$tngcat the>_(/—point. At the later
steps of the relaxation, these local peaks of populatiomawetransfered to the surface band
minimum without the occurrence of new local minima pattémthe plots.

7.4.2 Relaxation for optical excitation at 300 K

The beginning of the relaxation at a temperature of 300 Ksithted in Figd_716-7118 cannot
be distinguished from the beginning of the 90 K-relaxati®a¢[Z.411. However, as soon as the
distribution reaches the surface band minimum and formgmiHike shape, the effect of the
higher temperature becomes obvious by the existence of & fooger tail of the population
distribution, which reaches up to 0.15 eV. For the sevee+l@galculation (Figl_Z.16, middle
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Figure 7.16: Relaxation dynamics for a slab of 7 layers at a discretizatid 32 x 32 points

in the complete Brillouin zone and for a temperature of 300ft€raan optical excitation with

a 1.69 eV pulse. Only two bands reach into the consideredggnegion (middle row, top

level). The energy resolved population (middle row) is éased by a factor of 25 with respect

to Figs.[ZJEZID. The bottleneck formation at the bulk barigimum (0.25 eV) can be clearly
observed.
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Figure 7.17: Relaxation dynamics for a slab of 22 layers at a discretoatyf 32 x 32 points

in the complete Brillouin zone and for a temperature of 300fi€raan optical excitation with a

1.69 eV pulse. The energy resolved population (middle rew)dreased by a factor of 25 with

respect to Figd_7ZIF=710. Now, a few bands are present imettpeired region. The bottleneck
and the bulk band minimum shift towards a lower energy (0)8 eV
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in the complete Brillouin zone and for a temperature of 300fi€raan optical excitation with a
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respect to Figd_71F=710. The bands are now in an averagardie of ca. 0.05 eV. The bulk
band minimum with the bottleneck has shifted to 0.05 eV.
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Figure 7.19: Integrated logarithmic plot of the integrated populatioveo the energy scale for 7
layers at 90 K and 300 K.

column), also the later steps of relaxation are fairly samib the 90 K calculation apart from
this obvious deviation and a faster relaxation timescdilis {5 an expected effect at a higher
relaxation temperature), especially the population atilik band minimum (at 1 ps) is still
significant. For the 40 layer calculation (Fig._4.18), hoerethe bulk band minimum is pop-
ulated by the final distribution, as it was the case in the Gaunsnitial condition (Sed73),
and, as a consequence, no distinguishable population farthe minimum. The effect of this
behaviour on the timescales in contrast to the 90 K case witlibcussed in Sec._7.%.4. In the
Brillouin zone distribution (Ihs of Fid_7.18), it is clari that also the bulk band minimum is
finally populated at th€ point, while at the 7 and 22 layer calculations (Ihs of Figg&G7and
[Z11), only a broadening of the population at the surfacel lmaimimum is visible. All in all,
the relaxation at 300 K occurs on a significant faster timesca

7.4.3 Phonon relaxation bottleneck

The formation of a particular non-equilibrium distributiat the specific bulk band minima in
the calculations for the different slabs in Slec.1.4.1 lead bottleneck effect, as a part of the
population is formally trapped in the bulk band minimum st@dmp. Sed._713) and can only
leave it on a much longer timescale. While the fast timesfal¢he relaxation to the surface
band minimum appears very similar for all slabs (cmp. E€E4Y. the timescale related to the
bottleneck depends on the thickness of the slab. Due to tig/ferm of the distribution (mid-
dle column of Fig§ 713 arild 7J15) and the high number of ireaistates, a definite comparison
of the populations is not possible. To facilitate the corguar, an alternative presentation is
now chosen for the distributions: In FigsS_A19-T.21, thergy-integrated population distribu-
tion for selected timesteps are shown on a logarithmic goalg, 22 and 40 layer slabs and for
temperatures of 90 K and 300 K, respectively. The integnaisoperformed by energetically
broadening the discrete states with a Gaussian of 0.01 esfwar and subsequently summing
all obtained peaks, this corresponds approximatively tesickering the density of stategE)
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Figure 7.20: Integrated logarithmic plot of the integrated populatioven the energy scale for
22 layers at 90 K and 300 K.
in the distribution function:
1:integratec(E) = / dEg(En[k)f(E) = % fn|]<5(E - Enlk)- (7-4)
n

In principle, the shape of the integrated distributionsti@r different slabs can be described
in the same manner as it was done for the Higsl[Z.13-7.18 nite distribution (red curves)
relaxes through some intermediate states (at 2 ps, greeasjunto the equilibrium distribu-
tion and the additional bottleneck states (10 ps, blue &ymetil finally, only the equilibrium
distribution is left over. However, the number, form andsgth of the different states differs
significantly: While at the seven layer slab (Hig.1.19), mitleneck states appears at 10 ps
and the relaxation is quasily equilibrated at this timestepobserve two (22 layers, FIg.7120)
or three (40 layers, Fi§._ZP1) distinguishable bottlenstektes at the other slabs. In all cases,
the bottleneck states have evolved from the intermediatesbf the 2 ps-timesteps. Corre-
sponding to the decrease of the gap between surface and &tk rhinima with increasing
slab thickness, the bottleneck states are shifted verg ¢the surface band minimum (0 eV)
for the 40 layer slab, such that a small final population resmai the lowest bottleneck state.
An explication of this strong layer dependency of bottldntrmation and breakup is the in-
terplay of acoustical and optical phonons within the refimxaprocess: While at seven layers
(Fig.[Z.19), the energy gap of the intermediate state attileb@nd minimum (ca. 0.25 eV)
at 2 ps (green curve) and the surface band minimum is still Bipteuof the optical phonon
energy (0.057 eV), this is not the case at the 22 and 40 Iaymnlaﬁon. Consequently, for
the thicker slabs, a growing fraction of the population masstax by acoustical phonon cou-
pling (by which also very small energy differences can belowa) using a smaller coupling
deformation potential (cmp. Sé€c.17.3), which accumulatiéls thve higher number of scattering
steps to overcome an energy distance in contrast to opticeign scattering to a much slower

2Relaxation cannot occur directly from the bulk band miniminsurface band minimum for several reasons:
On the one hand, the matrix element of two Bloch-states iskias for different bands at the saf@oints (cmp.
sed©.3.P), on the other hand, at least acoustical phongaliegus zero for a vanishing.
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Figure 7.21: Integrated logarithmic plot of the integrated populatioven the energy scale for
40 layers at 90 K and 300 K.

relaxation timescale. A discussion of the resulting tinaéss will be elaborated in Sdc._714.4.
Although the employed phonon model is partly heuristic aigtilly simplified (cmp. Sed.713),
the main bulk features are doubtlessly included in form efltimiting cases for high-energy
optical phonons and low energy acoustical phonons. Onegquestion, which is unfortunately
beyond the possibilities of theode presented in this thesis, is the influence of surface-bound
phonon modes, in special the so-called dimer-tilting-maudgch are also suspected to induce
a polaronic effect at high excitation and induce a dynamargynrenormalization on the band
structure (Sed.11.2).

The relaxations at 300 K (lhs of Figs_7l[9-4.21) exhibit sosignificant differences to
the 90 K-pictures: The final state extends to a much higherggnga. 0.18 e\E, and the
relaxation is much faster. At 7 layers, (Fig._4.19), the fistake is already almost reached at
2 ps, at the other slabs, the 10 ps curve is indistinguishatie the equilibrium distribution.
All bottleneck states of the 90 K distributions interferettwthe equilibrium distribution at
300 K, and the quite low final population of the surface bandimim states together with
the broadness of the distribution obviously inhibit an éfit formation of bottleneck states.
Additionally, the higher temperature usually enables ptaster relaxation channels, as high-
energy phonon modes are more probable through the Fertribdi®on (cmp. Sed4.2 3).

7.4.4 Time constants

In this section, we will discuss the timescales that can hedofrom the calculations in
Sec[7H. The extraction of time constants in a quantitatie@ner is not a clearly defined
procedure, as, as we have seen within the discussion of llbatien processes in Ses.]7.3,
[Z73 and"Z.4]2, the time of relaxation depends on numeracters, especially the initial
condition has a crucial importance. In experiments, uguatly the decay rate of a signal
can be analyzed, and normally, in the Two-color-two-phgibotoemission-experiments as in

3Note that in this integrated representation, the shapeefittal state needs not to correspond to a Fermi-
distribution on the energy scale.
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Figure 7.22: Population of the B°*" surface band minimum for slabs of 7, 22, 30 and 40
layers for a bath temperature of 90 K. The time axis is lodpmiic. The numerically extracted

timescales are indicated by the dashed lines.

[TTO3,WKERUO4], the signal corresponds to a specific elecstate, as here, the minimum of
the D9 band. Consequently, to allow a comparison to the expetisnéme population of the
minimum surface band state is a convenient choice as a datafor the determination of the
relaxation timescale. It is not possible to extract the Bjpeeasons for an accelerated or de-
layed relaxation from such a single-scale investigatian.this kind of examination, particular
processes and selected states involved in the specifiatelaxvould have to be investigated.
With the given representation, an interpretation is onlggilgle in an overall approach.

In Figs.[ZZP an@Z.23, the temporal evolution of B"™ minimum state is drawn for a
temperature of 90 K and 300 K. Due to a logarithmic time axiss possible to investigate
the relaxation on several decades of picoseconds. At tloelatibns at 90 K, the relaxation
is still not completely equilibrated at 1000 ps (for a forgyér slab), while at 300 K, the
final state is reached after 10 ps of relaxation. The big ddgrecy on the slab thickness that

[ps] No of layers exp.
7 10 15 22 30 40 | value
90 K long | 247 6.91 237 9.62 41.73 58.4722¢
short| 0.83 0.78 0.98 0.93 0.94 1.001.5"
300 K long | 0.47 0.16 0.23 152 183 1.70 19C¢
short| 0.094 0.096 0.12 0.097 0.094 0.086 5°
AWKFERU4]

bIn [WKERD4], this is the overall relaxation time

CICT03]

Table 7.1: Numeric values for the relaxation timescales extractedhftbhe calculations and
comparison to experimental values.
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Figure 7.23: Population of the B°*" surface band minimum for slabs of 7, 22, 30 and 40
layers for a bath temperature of 300 K. The time axis is ladpnic. The numerically extracted
timescales are indicated by the dashed lines.

is expected as a consequence of the results found in[Sed. cad.now be quantified: At
90 K, for seven layers, the relaxation is finished at 10 psh witreasing layer number, also
the relaxation takes longer. Numerical values for the timestants are now extracted from
these population evolution functions by fitting parts of thection with an exponential. It is
obvious that especially for the fast short term time scélis, it a quite ambiguous task, as in
the beginning of relaxation, the shape of the function is-exponential. Therefore, to impose
a certain clarity, the timescale is not fit at the beginningeddixation, but after an initialization
time, when the relaxation function has approximated to goe&ntial shape. The long-term
timescale is much easier to find, as here, the asymptotiovlmeheof the system towards the
equilibrium state is investigated and the asymptotic diatuof a Boltzmanrike system at
low population density always approaches to an exponetiedy. In FiglLZ22 arld 7.P3, the
fitted timeconstants are indicated by the dashed lines. eAfbil 90 K, there is an excellent
agreement of the fit-exponentials to the population digtigim at a certain specific range, the
agreement is worse for the 300 K relaxation.

The resulting values of the relaxation are resumed in Talleaidd a logarithmic plot of
these timescales is realized in Higl7.1 (Ihs). The releresults of the experimerit [WKFRD4]
are shown on the (rhs) of the same figure. In this publicatitmee timescales have been found:
a surface-surface scattering timescale of 1.5 ps, a bufkemiscattering timescale of 220 ps,
and an exciton formation timescale of 5 ps. While the first twe related to phononic pro-
cesses and thus can be compared to our simulations, thetithiedcale involves processes
neglected by our dynamical equations. From our data anddimparison to experiment, two
conclusions can be drawn: First, while the qualitative sifacation of the relaxation processes
is feasible, the quantitative interpretation is only reléafor the short-term timescale, as the
strong dependency on the layer number with an monotone ggotrénd implies that the reso-
lution of the band structure points in the energy space {tbege distance between two bands)
is still too low to resolve the phonon relaxation processimecurate way. Due to the nature of
the band structure and the location of the bottleneck-p&#s[7.41), it is likely that the short
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Figure 7.24:1hs: Graphical representation of the relaxation timescaledx[[@1). The triangles
refer to the long term timescales, the circles to the shoreticales, the red symbols are at a tem-
perature of 90 K, while the blue symbols are for the calcolatiat 300 Krhs: the interpretation

of experimentally observed results. Fram [WKERO04].

time scale is associated to relaxation via optical phonatde the long time scale is bound
to acoustical phonon processes. The short timescale porrds very well to the experimental
findings (as the accuracy of the experimental resolutioWVKIFROZ] is also limited for this
kind of timescale, and the number given from the experimemather the overall duration of
the fast relaxation than the exponential growth factor)e lmg timescale differs still by a fac-
tor of 3.5 from the experiment. Other open questions abauptionon relaxation timescales
are the effect of surface-related phonon processes, thesoaever expected to effectuate a
rather fast relaxation and the influence of quasi-partiot@olaronic effects on the optical and
electron-phonon matrix elements, which are currently extgd, as well as the discussion of
other, perhaps more realistic surface reconstructions.

The second conclusion concerns the calculations at 300 ke, Hee experimental results
[TTOJ] imply a relaxation on two timescales of basically g@me magnitude as in the 90 K-
case, while we find in our simulations a much faster relaratind practically no slow relax-
ation timescale. A possible explanation of this discregansahat at this temperature level,
the approximations made for our model system are no londiet. \Eespecially the broadening
of the distribution function with respect to the 90 K functibas a significant effect on the
relaxation dynamics of the bottleneck states, as, as it weasissed in Se€7.4.3, these states
are neither particularly populated, nor do they play a speoie in the relaxation process at
300 K: At room temperature, the lower bottleneck states apulated within 10 ps for sta-
tistical reasons, while the higher bottleneck states aveably depopulated fast through new
deexcitation channels. At last, this effect is a consega@hthe focusing on the phonon relax-
ation inside the conduction band, which ends up in a moressru@physical final distribution
with a fixed number of electrons inside the conduction barftis Tould only be resolved by
also considering recombination processes to allow a degatigu of the conduction band, e.g.
by excitonic scattering, or by spontaneous emission of.liBly such a depopulation, which is
expected on a 5 ps timescale, the bottleneck states wouldngportance as intermediate, slow
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scattering states, and it is likely that the timescalescbel reproduced. The extremely high
numerical effort to calculate a dynamical excitonic inti@n in a consistent way (using den-
sity matrix theory) makes it however actually very diffictdtimplement such a recombination
interaction in the given system.

Nevertheless, as the 90 K calculation leads to a fairly gapdeanent of theoretical and
experimental data, we can conclude that we have shown assfetapplication of the whole
approach, although some of the approximations are quitidrd he strength of this method
of combining Density Functionaland Density Matrix Theonyis that other interactions (like
excitons or optical recombination) can in principle be édeed in the dynamical equations,
and also some of the approximations have only been madedb eehigh level of simplicity
in this first-approach work. Therefore, it seems that theéckasf the underlying processes
are already understood and can be explained by the integblagoustical and optical bulk
phonons, while a higher level of accuracy can only be reatlyetdking the electron-phonon
interactions more precisely (e.g. by applying a surfacerph spectrum from an integrated
ab-initio calculation) and additional scattering meckamninto account.

7.4.5 Relaxation in real space

While the discussion of the relaxation process of the opiigdal condition in Sec[Z}4 has
been elaborated mostly on the distribution of the poputatio thek and energy space, the
guestion about the initial and final distributions in reahep has been left open so far. By
performing a sum over the square modulus all conduction led@ctronic wave functions,
weighted by their specific population factor from the retéo@ dynamics calculation, a dy-
namical picture of the non-equilibrium electron distribatin the real space can be calculated.

In Figs.[ZZb an@_Z.26, the real space distribution of forgeratures of 90 K and 300 K
is drawn for selected timesteps. As a basic result, thegratation of the relaxation processes
introduced in Sed_7.4.1 afd 7}K.2 is confirmed: Initiallyf€)) the electrons populate states
that are complete inside tH2#°"" band, and consequently, the electron distribution is elgtir
located in the within the first layers (on the Ihs in Figs.Va26l[7.25). Then, when relaxation
proceeds (50 fs-2 ps), a fraction of the population is trenesf to bulk states and the electron
population reaches down to deeper parts of the structunehiing the back-end atoms. The
gravity of the population remains however centered at sarfas the biggest part of the pop-
ulation obviously scatters intraband. After 2 ps, the 90 kg (EZ3) and 300 K (Fig—7.26)
pictures start to differ significantly: while at 90 K, the kut depopulated quasi entirely at
10 ps (there still remains a population, which is below threghold of the isosurface) and the
electron distribution shifts back to surface along with plogulation of the surface minimum
state, a part of the population remains in bulk for the 300 rifiution. This is the effect of
the broader Fermi-distribution at the higher temperatwigich also leads to a population of
the bulk band minimum in equilibrium. At 90 K, very small difences are still observable
between 10 ps and 200 ps, here the slow relaxation timesoale<into play, while all other
effects are rather determined by the faster relaxation.
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Chapter 8

Conclusion and outlook

From the application of the combined density-functional dansity-matrix theory formalism,
we have seen in ChaptEr 7 that a fairly good agreement of @aryhto the experiment is
obtained. Both the qualitative picture of the relaxatioradw/o-timescale process, where the
relaxation is influenced by intraband surface scatteringtie fast timescale and by bulk-
surface scattering via acoustical phonons, and a goodspamelence of the fast time-scale
is found. The divergence of the longer timescale betweeoryhand experiment needs not
necessarily to be a principal problem of the theory, as ttemgtdependency of the number of
layers implies that bulk effects are not sufficiently coesatl in the calculation and an even
bigger slab structure is needed to obtain a converged aiadble2long-term timescale. Under
the given conditions (90 K), also the negligence of the sarfshonon modes appears to be a
constraint of secondary order, as the speed of the intfacgivand-scattering is quite similar
to the experimental value.

For 300 K, the results are not so coherent. While no big difiee is seen experimen-
tally to the measurements at 90 K, all timescales are mucérfasour simulation. While the
provenience of the faster timescales in theory can be utmdeltsas an effect of the broader
Fermi-distribution(which inhibits scattering to energetically low states)l éime higher proba-
bility in the of the optical phonon due to tigose-distributionthe discrepancy to experiment
is probably based on the same effects: the formation Fegrani-distributiondistribution is a
direct consequence of neglecting the recombination of ectimh band electrons with the (in
this thesis not investigated) holes in the valence bandWIKFRO04], a scattering channel via
a surface exciton is described. While at 90 K, the recomlminatan be neglected due to the
sharp Fermi-distribution, this cannot be expected at 30énid,the complete dynamical picture
would only be seen by depopulating tB&“"-surface-minimum state. The simplified phonon
spectrum can lead to similar effect in this context: while approximated the total spectrum
by two pure bulk modes, a detailed view might be importanttier bulk-surface processes at
room temperature, as many phonon modes of the slab are fydbesated between modes of
our two-mode model and are then activated by the higher teatype.

All in all, the combination of density-functional and desinatrix theory is successful
even with the given assumptions, as, in contrast to the alpproaches (Sec.1.3, [ZBFK05])
the results are physically reliable. A big advantage of itmet and energy resolved simulation
is the big number of analyses that can be effected on the hugetity of information that
can be won from the timesteps, i.a. a time, energy lamnesolved interpretation (cmp. e.g.
Figs.[Z.IH-7.15) and even a retransformation to real spagessible. This allows especially a
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detailed investigation of the different phases of a sdatjgorocess from the initial to the final
distribution.

In addition to the reapplication of an identical theory t@#er material or to a different
surface reconstruction (e.g. ax4& reconstruction for the silicon (001) surface), there are
several possible avenues that a potential enhancemeris ddory can take:

* The implementation of a realistic surface phonon specitonoid be achieved by using
the frozen-phonorcalculation capabilities of théhi nd-code or other codes. In the
same step, the calculation of corresponding deformatioenpials could be done. While
the technical implementation could be reached @g@am c code has the ability to
cope with numerous phonon modes and deformation poténtiaésnumerical effort is
considerable for a structure of this size (40 layer slab).

« The consideration of quantum-correlation effects by dyically evolving the polariza-
tions (Eq. [41Ib)). If this is understood to allow inducedigsion of light, it requires a
complete dynamical treatment of the valence band (holerdic®. The polarizations
can also be coupled to higher order phonon relaxation psesesUnfortunately, the
numerical effort is very high.

» The integration of electron-electron interaction in theamical part of the approach,
at least for an excitonic interaction, would probably allawdeeper investigation of the
final relaxation, as in the silicon (001) case, this is sutgzkto interact with phonon
relaxation [WKERO4]. This is only useful in combination vian implementation of
hole dynamics, but it would introduce a genuine relaxati@thanism from conduction
to valence bands. However, the high number of summatiorcésdin this interaction
provokes an unbearable effort, such that this could be aafippmed cumulatively.

« Dynamical treatment of phonon modes (in contrast to th@loag to a bath) is in princi-
ple a possible extension to the dynamical equations. Inilibers(001) surface structure,
the implementation of such a mechanism would probably giveinsights, as the dimer
surface phonon mode is suspected to perform a hot, nonaquih vibration at high op-
tical excitations. Again, the high complexity of the retdtdynamical equations would
require to focus on single modes (as the expected dimargtifttiode at silicon (001)).
Another point of this technique is the unresolved thernagilan behaviour (as the dy-
namical evolution of the modes is primarily energy conseyyi

» One could also think of approaches with a electron-poraiependent phonon poten-
tial. The density-matrix formalism is capable to cope witHamiltonian depending on
higher (> 1) order terms of the electronic polarizations, but the etgubresulting equa-
tions are accordingly complex with multiple sums on the osdaf the polarizations,
such that it is not likely that a analogous system of equat@@m be successfully derived
for a rather complex surface structure problem. Anothenapeestion is the deduction
of the interaction term in the dynamical Hamiltonian (HGGS®), as currently, no the-
ory exists to derive or model these interactions or at leastrhulate them by structure
investigation methods (e.g. density-functional theory).

« The phonon potential and the electron-phonon interaatimmd also be described by
a non-linear interaction of the phonons (e.g. dependingigheh orders of,). Of




course, even if this is more question of principle about thglieability of the (linear)
phonon mode theory, this could help to describe non-linffacts for the vibrations,
which is especially of interest for highly excited phonondes, e.g. for a dimer-tilting
mode. While the parametrization of such a potential usifigzen phonorcalculation
seems possible, the resulting equations are probably),dgatoo complex to be treated
with an arguable resource consumption.

As a final conclusion, we hope that we have convinced the reafdihe high potential
lying in this combination of theories and yet in the presdntesults. To move on, however,
it should be mentioned that, in addition to the time for inmpémtation and testing, any of the
points above requires at least a doubling of the computatipawer and of the disk space
consumption, at the current state of the art, the accuntutates for a single run (of all steps)
in the highest discretization amounts to ca. 6 months of @Rid-and requires more than
100 GB of always accessible disk space.
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Appendix A

Summary of the employed physical
constants and parameters

symbol value description
a 10.21 bohr theoretical lattice constant
a 10.26 bohr experimental lattice constant
Egap 0.65 eV DFT-LDA indirect bandgap energy of Si
Egap 1.17 eV experimental indirect bandgap energy of Si
0.52 eV scissors shift
Ecut 10 Ry plane-wave cutoff energy
haw°P 57 meV optical phonon energy (Si)
hc 6.1 meV/nm sonic speed (Si)
Dopt 40 eV optical deformation potential (Si)
Dacou | 7.37 eVA/nm acoustical deformation potential (Si)
hoy 1.69 eV optical excitation frequency (experimental)
hay 1.07 eV optical excitation frequency (adjusted by scissors shift)
T 50 fs optical pulse duration
v two-dimensional vector
% three-dimensional vector
Ri real-space lattice vectors
Gi reciprocal space lattice vectors
O imaginary part
& Cauchy principal value
Enx [eV] energy eigenvalue
fr [1/nm?] microscopical electron density
pr¥ [1/nm?) microscopical polarization
pTx [kgm] momentum matrix element
dmK [em] dipole matrix element
D [eV] electron-phonon coupling element
A(t) [Vs/nm] electromagnetic vector potential (Coulomb gauge)
E(t) [VIinm] electrical field (Coulomb gauge)
P(t) [V/inm] macroscopical polarization
a(w) [ optical absorption coefficient




A SUMMARY OF THE EMPLOYED PHYSICAL CONSTANTS AND PARAMETERS




Appendix B

Tools for calculus

B.1 Equilibrium distributions

The equilibrium state of a quantum system is determinedyrdaty to the nature of the in-
volved patrticles agermionsor bosons by the Fermi-Dirac-distributionor the Bose-Einstein-
distribution resp. Examples for fermions are the electrons, the holassemiconductor and
most elementary nuclear particles, while bosons are modiyaction particles as photons,
phonons and others. The two distributions are given by

1 _ o
fi = Ex Fermi-Dirac-distribution (B.1)
l+efsT
1 . L
n = E Bose-Einstein-distribution (B.2)
1—eksT

wherekE; is the energy of the quantum stat&g the Boltzmann constant affdthe temperature.
The chemical potential is a normation constant determinethé total number of particles
described by a distributiofy or nj for a given quantum system with the sta{éis} of energies
E;. It can be interpreted as the energy necessary to add amattiete to the system, and thus,
it only makes sense in systems where the particles have a mass

B.2 Functional Derivative

The functional derivative is an extension to the derivativath respect to variables. At the
place of variables, its arguments are functions and it atfsioctionals.

B.2.1 Definitions
The derivatived /0=(x) of a functionalF[=(x)] is given by

SFEW] _ , FIE®) +a8ly—x) ~FIZ(Y)
EECR a | (3
For a functional of the form
FEM] = [y =) ®4)
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this expression can be simplified to

J(HEW) +asy-xZ 1=+ o(a?) - [diE)

I|m a
_ 0f (—(X))
= 057()() (B.5)
For a functional of the form
~ [yt ) ©6)

this yields

7}

: dy(fF(E' () +ad (y—x)-= f(EY)+0(a%) - [ dyf(Z'(y))

—555(x) JELEE g;no/ o= /
=— / dyd(y— x)%% f(Z'(y)) + boundary term

9 9HEX)

% 3209 (B.7)

B.2.2 Series expansion of functionals

Similar to theTaylor expansion series functionalF [=(y)] can be expanded into a series of
the function=(x), if the =(x) is assumed to be small. The basic derivation is in line with th
definition of the Taylor expansion:

FI=(x)] = ‘ +/dx_

3 / () [ o= .
= (X) =0
(B.8)
For an expansion of a functional of form

FIE0.Z 0] = [ dyfEW).Z ) ®9)

the expansion up to first order yields:

JEAENERYETE

By reintegration and negligence of the boundary term of #@sd term in the parentheses,
we finally obtain:
e

The expressions for functionals of vectorial fields can bésdd accordingly.

(B.10)

_F (B.11)

+/.dx_ df
==0
='=0

——o
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B.3 Lagrange Formalism for higher (infinite) order

The Lagrange equations for a fieldare derived by applying a variational principle to the imtégf the Lagrange density’ over a reference
volumeQ, which is also denoted as tlaetion integral

0= 6/d4x.$ /d“ —5 s 97 55,2+ 0L 50ttt S S S 0L 55.0,0,5]. (B.12)
= z aall i =+ Z z (90|10, 1101, = z z |Zlaallalz 5= 00,0, = . .

=1li,=1 i1=1li,=1

By performing some partial integrations (note that= = 0,0=), this can be evaluated to

[ oa 0% L ke _ 0.7 _
/ d a_ z 0|1 aall_ + Z Z dllélzm + kZ( Ilzllzzl lkZ 0|1d|2 d|km:| 6_ (813)
+ ax[ 3 0(ZL62)+ 5 (Y 0L _60,5)- 5 au(y 0 Lez)+ ] (B.14)
Q i1=1 aail: i1=1 ir=1 aailaizz ir=1 i1=1 (9(9

Although in Eg. [B-I4) only the very first terms of the pariigiegration procedure are given, essentially all partsdbanot figure in Eq.[(B.13)
can be brought into a “divergence-kind” form similar to tleents in Eq. [[BIM). If we impose now that all variations of fied and its

derivations derivations at least to order 1 vanish on the boundary of the integradgl{ ...d;, ,=|sq = 0), we can make use @aul?’ law, and

(B:13) vanishes completely.
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Eq. (BI3) must be valid independently for 8, consequently theagrange equations
must hold:

03 4 07

—. B.1
AL S TR R

For the usually used field equations, only the first two of #rens on the rhs of this equation
are employed, as the corresponding Lagrange densiiet not contain field derivatives of

a higher order than 1. Nevertheless, for our consideraijphsnons in a periodic solid state
material), higher derivatives are used.




Appendix C

Summary of the computer programs
and results from the dynamical

calculation

C.1 Program structure

Ground state run
Pseudopotentials fhi98start
fhi 98pp fhi 98nmd
start.inp coord. out
fort.11 L
fort.12 i np. nod fort.71
i fort.11
fort.12

Band structure on symmetry line

fhig8start
f hi 98nmd
start.inp coor d. out
i np. nod fort.71
fort.11
fort.12
fort.72

Matrix element run control
scanset up
scanstart

band structure run
no. of discretizations (4)

scaninfo. 1

scani nfo. 4
Scan_00??/ (28dirs.)

Band structure for matrix elements

fhi98start
f hi 98md
start.inp coord. out
i np. nod fort.71
fort.11
fort.12
fort.72

Matrix elements
matrix

scaninfo. 1 mat ri x. 8x8. nc
start.inp
fort.71

Dynamic calculation
dynami ¢

matri x. 8x8. nc dynam c. dat a
phonon parameters

\

Band structure for matrix elements

fhi98start
f hi 98md
start.inp coord. out
i np. nod fort.71
fort.11
fort.12
fort.72

Matrix elements
matrix

fort.71 (mult)

scani nfo. 4

nmat ri x. 64x64. nc
start.inp

Dynamic calculation
dynanmi ¢

matrix. 64x64. nc

dynam c. dat a
phonon parameters




C SUMMARY OF PROGRAMS& RESULTS

Description
progr am name
input file(s) output file(s)
input parameters

On the previous page, the programs used for the entire inguitation are illustrated with
their dependency. For each program, an overview of the mpdibutput files is given (see top).
For the programs that have been developed from scratchnvtits thesis, the description tag
is in boldface and the program name is underlined.

C.2 Summary of the computational results

On the following pages, an exhaustive collection of the ltesar the simulation of the relax-
ation processes from the optical initial conditions is shoWwhe plots are similar to Figs.7]13-
[Z18 for temperatures of 90 K and 300 K.




C.2 SUMMARY OF THE COMPUTATIONAL RESULTS
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