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Vertex Correctionsin Localized and Extended Systems

Andrew J. Morrig,! Martin Stankovskf, Kris T. Delaney,? Patrick Rinke? P. Garcia-Gonzalegzand R. W. GodbY

IDepartment of Physics, University of York, Heslington,KYé0©10 5DD, United Kingdom
2Department of Physics, University of Illinois at Urbana#®hpaign, Urbana, IL 61801, USA
3Fritz-Haber-Institut der Max-Planck-Gesellschaft, Feeyweg 4-6, D-14195 Berlin-Dahlem, Germany
4Depar’[mento de Fisica Fundamental, U.N.E.D., Apartad4dQ E-28080 Madrid, Spain
(Dated: February 6, 2008)

Within many-body perturbation theory we apply vertex coti@ns to various closed-shell atoms and to jel-
lium, using a local approximation for the vertex consisteithh starting the many-body perturbation theory from
a DFT-LDA Green'’s function. The vertex appears in two placés the screened Coulomb interactid, and
in the self-energyz — and we obtain a systematic discrimination of these twaceffly turning the vertex i
on and off. We also make comparisons to standad results within the usual random-phase approximation
(RPA), which omits the vertex from both. When a vertex isueld for closed-shell atoms, both ground-state
and excited-state properties demonstrate little impr@mrover standar@W. For jellium we observe marked
improvement in the quasiparticle band width when the veigercluded only inW, whereas turning on the
vertex inX leads to an unphysical quasiparticle dispersion and warktion. A simple analysis suggests why
implementation of the vertex only W is a valid way to improve quasiparticle energy calculatjomkile the
vertex inZ is unphysical, and points the way to development of improxextices forab initio electronic struc-
ture calculations.

PACS numbers: 71.45.Gm, 31.25.Eb, 31.25.Jf, 71.10.Ca

I. INTRODUCTION r(12;3) =56(12)9(13)
02(12) ¢ 46)G(75)r (67;3 d(4567), (4
Many-body perturbation theory (MBPT) is a leading + 5G(45) (46)G(79)r(67;3)d(4567), (4)

method for computing excited-state electronic properities
solid-state physiés®3. Within many-body perturbation the-
ory, Hedin'sGW method is the most widely used approxima-

tion for the self-energy:. The exact one-body Green's func- space, spin and time variables and the integral sign stands

tion, G (which contains information about ground and excited- : . : .
: . : for summation or integration of all of these where appropri-
state properties of the system) can be written, using a Dyso{gte (I denotest; +  wheren is a positive infinitesimal
equation, in terms of a suitable Green'’s function of a “Zerot in fhe time ar urr11eng Atom?c unitspare used in all equa-
order” system of non-interacting electrorG, (constructed tions throu hogut this .a er. These are four coupled int?a ro
from that system’s one-particle wavefunctions and ensjgie 9 Paper. P )

L . differential equations where the most complicated terrhés t
and the self-energy operaibr The approximation is defined vertex ', which contains a functional derivative and hence
by the choice of zeroth-order system and by the expressiol?l eﬁerél cannot be evaluated numerically. The vertdxas t '
(typically a diagrammatic expansion in terms@f) used to 9 ' Y.

approximate>. The self energyz, contains all the informa- usual target of simplification for_ an approximate sch(_ame.

: : : : The widely usedGW approximation is derived with the

tion of many-body interactions in the system and can be ObHartree method as a starting point. and hence has a ria-

tained by using Hedin's set of coupled equations: ; 9 point, : g
orous foundation only when started from a non-interacting

. Green'’s functionGgy, made from eigenstates of the Hartree

2(12) = i/W(1+3)G(14)r(42§3)d(34) (1)  Hamiltonian. This is because the initial self-energy,= 0

’ and the vertex function is correspondingly seftd2;3) =
0(12)6(13) sincedz(12)/0G(45) = 0.
- Solving Hedin’s equations with the vertex fixed in this ex-

W(12) =v(12) + /W(13)P(34)V(42)d(34) (2)  pression yields the so-called self-consistei approxima-
' tion. In this approach, the self-energy operator is fornmechf
a product of a Green'’s function and a screened Coulomb inter-
action, where the Green'’s function used is consistent b t
returned by Dyson’s equation. Since the self-energy depend
on G, this procedure should be carried out self-consistently,
beginning withG = Gg.

In practice, it is customary to use the first iteration only,
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P(12) = —i / G(23)G(42)T (34;1)d(34) 3)
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definition of the RPA. It is important to make this one itera- tal and theoretical investigatickst":18.19.20.2ht the issue re-
tion as accurate as possible, so an ini@iglcalculated using mains controversia$23:24:2°
Kohn-Sham density-functional theory in the local-denajby For individual atoms,GW quasiparticle properties have
proximation (DFT-LDA) is normally used. This choice@f  been investigated previously by Shirley and M&&iinclud-
generally produces much more accurate results for quasipaing an exchange-only vertex) and, more recently, totalgner
ticle energies (the correct electron addition and remomal e studies on atoms and molecules using the variational fomcti
ergies, in contrast to the DFT-LDA eigenval@esHowever,  als of Luttinger and Ward have been performed by Dahlen
because this choice & corresponds to a non-ze¥g, there et al2829 Stanet al2° and Verdoncket al2!l. These stud-
is no longer a theoretical justification for the usual preetf  ies have shown thaBoWE™ in general gives quasiparticle
setting the vertex to a product of delta functions and différ  properties which are much improved over DFT and Hartree-
choices for the exchange-correlation functional may lead t Fock methods and that, when calculated self-consisteaily,
different Green’s functiorfs’. also provides reasonably good total energies for atoms (wit
Using the static exchange-correlation kerikgh, (whichis  differences versus highly accurate reference methodgbein
the functional derivative of the DFT exchange-correlapon  on the order of tens ofmHa per electron). To its merit,
tential,Vic, with respect to density)) Del Soleet al€ demon-  self-consistenGW is also a conserving approximation in the
strated howGoWRPA may be modified with a vertex function Baym-Kadanoff? sense. However, non-self consistent total
to makeZ consistent with the DFT-LDA starting point. They energies irGoW;P are noticeably less accurate. Conversely,
added the contribution of the vertex into both the self-gper the good agreement between the quasiparticle energies and
3, and the polarizatior?. The result is a self-energy of the experiment is destroyed when performing self-consistaht ¢
form GoWpl'-PA2. The GoWLPA approximation is obtained culations.
when the vertex function is included iR only. As com- The answer to why this happens must, by definition, lie with
mented by Hybertsen and Lodfeand Del Soleet al. , both  the only approximated quantity, the vertex correction. sThi
these results take thierm of GW, but withW representing the study is meant to address the need for a precise (including a
Coulomb interaction screened by respectively the testgeha  full treatment in frequency) comparative study of the verte
electron dielectric function and the test-charge-tesirghdi-  corrections proposed by Del Sad¢ al. for localized and ex-
electric function, in each with electronic exchange and cortended systems withiGo\W.
relation included through the time-dependent adiabatié& LD

(TDLDA).
Del Soleet al. found thatGoWpI'-P* yields final results Il. METHOD
almost equal to those d@BWP for the band gap of crys-
talline silicon and that the equivalent results fr@gw;PA Hybertsen and Lou!® comment that it is possible to

were worse when compared®WERPA. It should perhaps be start aGW calculation from an initial self-energ¥o(12) =
mentioned that the inclusion of other types of vertex correc 6(12)Vxc(1). This approach gives a theoretical basis for be-
tions have been studied before as well, most notably correginning aGoW calculation from DFT-LDA orbitals. Adopt-
tions based on various approximations of a second iteratioimg this idea, we see from E{l(4) that the second term is now
of Hedins equations, starting witBoW§R™112 However, non-zero, unlike in th&W approximation. Since the electron
these have usually been applied with initial Kohn-Sham (KSYensity isn(1) = —iG(11*") then,

Green’s functions, which are still not theoretically catent

with that starting point. The correct theoretical treattnafn 02(12) _ 6x(12) dn(4) (5)
a second-iteration vertex from KS Green'’s functions isejuit 0G(45)  dn(4) 8G(45)
complicated and still absent in the literature. SVLPA (1)
. . _ _ i~ 'xc — _'KLDA(l) (6)
The purpose of the present work is to make a systematic '7&](4) Kxc

study, for both localized and extended systems, of a simple

ab initio vertex correction whose form is determined by theyhere delta-functions are to be understood in all other- vari
starting approximation for the self-energs(= Vic for DFT-  aples. In an appendix Del Sat¢al8 show how to add this ap-
LDA) Related vertex COI‘I‘ectIOI’IS, |nC|ud|ng others dedive proximate vertex to botWw andz' and intow On'y' by form-
from Ky, have belgn investigated in earlier work. For exam-ing two different effectivaVs. Our method follows that of Del
ple, Northrupet al= used LDA bulk calculations as a starting goleet al® by modifying the dielectric functiong from its

point and a plasmon-pole calculation of the response funciorm in the RPA. The screened Coulomb interaction in MBPT
tion in conjunction with aGo\WPA-like vertex correction in s written as

the screened interaction. They found a narrowing of the band

widths of Na, Li and K4 in agreement with the experiments W = g*l\,, (7)

of Jensen and Plumm@who had noted that the experimental

band width was significantly narroweel 23 %) comparedto wheree 1 is the inverse dielectric function. We use the full
the free-electron result. HedinGoWERFA4 calculations only  polarization without recourse to plasmon-pole models. The
gave a narrowing of about 10% for an homogeneous electrorandom phase approximation (RPA) dielectric function is

gas of the same mean density, indicating a large impact of

further many-body effects. This led to additional expemme g=1—vx° (8)
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Del Soleet al. show that adding the form of the vertex from numerical treatment of the angular dependence. We use a
Eq. (8) into both= andW modifies the RPA dielectric function real-space and imaginary time representa&fido calculate
to, the self-energy from the non-interacting Green'’s functn
The self-energy on the real frequency axis, required for-sol
E=1—(v+ Kxc)XO, (9)  ing the quasiparticle equation, is obtained by means of an-
) ) ) ) alytic continuatiod. The current implementation has been
which Iea.ds to t.he~|ntrod_uc_t|0n. (_)f an.effectlve SCree”edsuccessfully applied to jellium clustéfsand light atom535,
Coulomb interactioW. This is trivial to implement into & 14 gptain the quasiparticle energies and wavefunctions the
GW computer code as it requires a simple matrix additiongasiparticle equation (L 1) is fully diagonalized in theibaf
once Kyc is calculated. The result of this modification is e single particle orbitals of the non-interacting Kohmas

thatW contains not only the screened Coulomb interactionyystem. For localized systems the quasiparticle wavefunc-
but also an exchange-correlation potential. We shall riefer s can differ noticeably from the wavefunctions of theno

: LDA _ , i .
this method a&oWol " as we have added the correct DFT- inieracting system or in certain cases even have a completel

LDA vertex to theGW method, hence the method is a one-gitferent character, as was demonstrated for image states |
iteration GWI™ (GoWol o) calculation beginning with a DFT- a1l metal clusteé.

LDA Green's function. o _ _ Ground-state total energies were calculated using the

An alternative choice for the effective dielectric functjo Galitskii-Migdal formul&® transformed to an integral equa-

. on-1 o tion over imaginary frequency. This avoids analytic contin
E=1—(1-Kex") "X (10)  ation of the self-energy, which would be unreliable for karg
frequencies.

For jellium, the homogenous electron gas, we solve Hedin’s
equations in wavevector and real-frequency space. This
avoids analytic continuation and enables accurate andexasy
traction of spectral properties. Again, we do not use plasmo
JI)J/O|e models, but the full frequency-dependent polariratio

corresponds to addinigc into W only. We term this method
GoWEPA as the LDA vertex is inserted into the screened
Coulomb interactiony, only. This is equivalent to the one-
iterationGW approximationGoWp but withW calculated us-
ing the adiabatic LDA.

The vertices presented are thus dynamical, i.e. frequen
dependent, due to the inclusion pf, and must include the
excitonic effects of the corresponding jellium due to the ap
pearance oKy.. Another way of looking at it is that this cor-
responds to a treatment beyo@GgdWy whereat the level of
the vertex correctionghe system is modelled by the homoge-

IV. TOTAL ENERGIES

nous electron gas. Itis not likely, however, that these oagh _ Method He Be Ne
would be able to capture any satellite structure beyond that HF —1.4304 —3643% —12.8547
provided byKy. as the calculations are non-self-consistent. PFT-LDA —14171 —3.6110 —12.8183
GoWRPA —1.41175) —3.59059) —12.777(1)
GowgPA —1.412Q2) —3.590(1) —12.77515)
l1l. COMPUTATIONAL APPROACH GoWpr-PA ~1.39122) ~35731) —12.745(10)
VMC —1.45176 —3.6667¢ —12.891(5)2
. . . . DMC —1.45186 —3.66682 —12.8923F
The quasiparticle energies, and wavefunctionsys, are cl _1.45189' _3.66684 _12.8937¢

formally the solution of the quasiparticle equation,

102 , o 2 See reference_B7
{=30% +Vext(r) +Vu(r) } Llli(r)+/Z(r,r &)W (r)dr b See referencé B8
¢ See reference B39

=&i(r). (11)  d see reference 40

whereVey: andVy are the external and Hartree potential, re-

spectively. TABLE I: Total energy data (Hartrees/electron). See [Hig.1
In the case of a spherically symmetric system it is sufficient— A comparison of various methods for total energy calcula-

to describe all non-local operators in t&V formalism by  tions. Hartree-Fock, Density-Functional Theory, oneaitien GW

two radial coordinates and one angular coordin@f¢hat de-  (GoWg ), the two approximate verte®Ws, variational Monte

notes the angle between the vectoendr’. The self-energy, Carlo, diffusion Monte Carlo and configuration interacti¢@! usu-

%, then assumes the much simpler form ally yields the most accurate estimate of the ground-staegées for
' ' localized systems.)

2(r,r',8;6) =Y [Zi(r,r';€)] R(cosh), (12)

M

The MBPT total energy results are compared against con-
figuration interaction (Cl) and quantum Monte Carlo methods
whereR (cosb) is a Legendre polynomial of ordér (variational Monte Carlo (VMC) and diffusion Monte Carlo

The Legendre expansion coefficients of the self-enexgy, (DMC)). The Cl and QMC family of methods usually yield
are calculated directly, thereby circumventing the neecafo the most accurate estimates of ground-state energies and ar
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-12.72+ . three cases. It is known that there is a large self-intevacti
-12.76F . ¥ X Ne ] error in the LDA, especially noticeable in smaller atoms.
-12.80F ] Hartree-Fock, which is self-interaction free by constiat
-12.84F " 3 is more accurate than DFT-LDA. Hence the self-interaction
12.88C " ] error is introduced via the LDA orbitals into the Green’sdtun
_12.92__.....I.....: ..... II ..... o T ..... TI' __ tion, GBDA' which gives rise to th@oW(;?PA total energy’s
356 ' ' ' ' ' ' L— consistent poor agreement with Cl. (By way of illustration,
'S -3.58F . o * Be 1 using aGo from the superior KLES, an optimized effective
% -3.60 . . potential that is formally free of self-interaction erranrfa
T -3.62r 7] two-electron system, greatly improves the DFT &M to-
5364 o ] tal energies. Th&SH WERPA results for He, Be and Ne are
w '2 ggz ............................... L EIE SR AT —1.4550(3), —3.67802) and—12.843(1) respectively.)
:1 e+t For all three atoms the vertexW alone GoWEPA) shows
N ° He | little difference to GoWERPA (Tabld]l and Fidlll), whereas
-1.40 o o ] GoWol'-PA raises the total energy with respect@WRA.
-1.42- o ¢ 7 This change is due not to the LDA self-interaction but to
-1.44F - the nature of the vertex. The result of adding the LDA ver-
-1_46: ............................... ® 0 @ ] Fex tO-GgLIVVO mirrors that of adding it tCGBDAVVo. 'I_'here .
<<I ' Qv' S O O < is an increase of the total energy when the vertex is applied
I o &8 zo R © in bothW and = (GE-'We'-PA) but the vertex inw only,
& AN Q (GE-'WEPA), results in a similar total energy @ WRPA.
QO 0% 0° o

(The GE-'WoIPA and GKH'WEPA for He are—1.423510)
_ and—1.44755) respectively.)
FIG. 1: Total energies of atoms. — We compare a numbes\bt In jellium the trend is the same for all densities in the re-

based approaches to Hartree-F8GHDFT with an LDA exchange- gion fromrs = 2 to 5 (s is the density parameter, where
correlation fucntional consistent with th&g¢ used; quantum Monte

- 3,1/3 . . . .
Carlc®” (VMC and DMC) and Cf°. The dotted line is the Cl value s = (7m) .andn is the electron density in atomic unlts.) as
and is there to guide the eye. In all caS®\p-CA behaved poorly ~ can be seen in Tadlg IGOWLPA lowers the total energy of jel-
in comparison taGoW™, whereasGoW;P* makes no improve-  lium slightly as compared tGOWRPA andGoWpl'-PA makes
ment toGoWRPA. The MBPT methods are not as accg;ite as thethe energy too highGoWEPA is on average- 5% lower than
computationally cheaper mean-field calculations Gg¥\;*™™ and  the QMC result GoWp P2 is ~ 10% too high and_;OWLDA

GoWSPA are the better of the three MBPT methods. ~ 6% lower than the QMC result.
For jellium, neither method leads to a result more accurate
s > 3 7 5 thanGoWERPA. It is apparent, however, that the vertex added

GOW™™ | —0.28263)| —0.19671) | —0.15221) ) solely in the polarization has th_e minor effect of Iowerit_lgt

GOWLPA  |-0.28574) | -0.20022) | ~0.15601) ) total energy. Whe_n the vertex |s_s_ubsequ§ntly added into the

GoWer-PA | —0.25252) | -0.16781)| —0.1241(1) | -0.09721)  Self-energy there is a major positive shift in the total gyer

GW 2 —0.27275) n/a —0.1450(5) ) as seen in the atomic results as well. Self-consis@

QMC (DMC)P|—0.27421) | -0.19021) | —0.14641) ) calculation8!4*for jellium show that the self-consistent total

energy is about 4 5% higher than th&WR™ ones in the

a See reference 41 range ofrs = 2 to 5 and the essentially exact QMC energies

b See reference U2 are about ® — 1% lower than the self-consiste@iV values.
Assuming to a first approximation that the vertex correcion
are independent and additive corrections to self-comsigte

TABLE II: & (Ha) — The exchange correlation energy for jel- this would indicate that th&gWe-PA energies would still be

lium. The total enerzgy per particle |s given by= 5£|:+sxc, where much too high, but thGOW(')‘DA energies might end up very

gr=1ke=13 (%) anda = (gn) The energies under heading close to the QMC results if self consistency is achievedesin

GW are from self consistent calculations by Garcia-Gorzaied  they lower theGoWR™ energies to roughly the same extent

Godby?! for reference.GoWRA is lower than the QMC energy by as the difference between QMC and self-consis&mener-

~ 5% on averageGoWPA is ~ 6% lower andSoWpI P is~ 10%  gies.

too high. The DMC values are evaluated by Perdew and Zu#ger’s

parametrization of Ceperly and Alder's DMC calculations.

V. QUASIPARTICLE ENERGIES

variationally bound, meaning that the lowest energy is the The quasiparticle energy corresponding to the first ioniza-

most accurate. tion energ{® is presented for helium, beryllium and neon
The GoWp result with Gy constructed from DFT-LDA in Fig[2. The MBPT methods are consistently more ac-

eigenstates,GOWORPA) is in poor agreement with Cl in all curate than DFT-LDA Kohn-Sham eigenvalues. However,
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Method He Be Ne [ ' ' ' ]
DFT-LDA —15.4877 —5.5909 —13.503 qaL *® _
RPA Ne
GoW, —2420(4)| —9.24(2)| —2055(10) i ]
GoWyPA | —24055)| -9.253)| —19.48(10) -16 —
GoWprtPA | —22.5(1) —7.56(6) | —18.85(5) - 1
cl —24593(%| —9.3226'| —216034 181 - 7]
Experimenf —24587 | -0.3227F| -—21564% 20k m _
= . f
aSee reference 40 & 22 _....I .......... o o I ........ T ........ T ceed
b See reference’s 45/46. > s ' ' ' ' 3
¢ See reference _#47. 5 ~F . Be
d See referencé 48. c 6L ]
Ll C ]
c c 7
TABLE llI: First ionisation energy (eV) - A comparison of vaus -8 8L * .
methods for quasiparticle energy calculations: DFT-LEBWRPA c r 1
and the two approximate GW<I denotes the ionisation potential c 9 ¢ * . P
calculated from the difference in Cl total energies &geriment o [ T ]
the measured value. 5 10 . . . . . L
T 16 ® He -
againGoWLPA is roughly equivalent t@GoWERPA for helium 18k N
and beryllium and in all case8Wol'-PA causes an increase - .
in quasiparticle energy, in agreement with Del Seteal8. 20 7
In general GoWol-PA worsens QP energies as compared to 22k i
RPA L ® i
GoWg ™™
For jellium, different quantities are accessible at differ AT o ... ® ® - o ]
ent stages of the iteration of Hedin's equations. The pair- 26— . . . . .
correlation functiorg(r) for example, can be obtained from <7 \e \e N v
. . . , ' 9 9 Q
the (isotropic) inverse dielectric functios, *(k, w), by the /\9 N N {’ © Q}\'
integration Q\ © D
3 e Q O° 0O o
g(r)y=1+ —3/ dkksin(kr) [S(k) — 1], (13)
2rkg Jo FIG. 2: QP energies of atoms - The first ionization energy @&-pl
where the static structure factor ted. We compare th&W based approaches to DFT-LDA; the
' experiment&:46:47 answer (Expt.) and the values calculated from
K22 o doo the differences in @P calculations (CI). The helium, beryllium and
Sk) = — S hl [g*l(k7 a))} . (14) neon values are plotted with circles, diamonds and squasgsec-
3 Jo @ tively. The dotted lines go through the CI value and are there

. - _ . guide the eye. All of theGW calculations are more accurate than
g(r) is shown in FigB fors = 1.0. The RPA displays the 0 11ean field method. For helium and beryllium BeVEPA and

yvell knoyvn failure to be positive definite fog > 0.78. This GOWLPA methods give similar results. In all cas@gWort0A is
is remedied by the local vertex, but the result appears tmbe a_ . . RPA o LDA
X LDA LDA . shifted to a higher energy th&Wg ™. (This shift for GoWI™

overcorrection (note thaboWy =" andGoWel are equiv- 3 49,

. ; was also found by Del Solet al® and Fleszar and Hanke)
alent at this stage sin@has not yet been calculated).

The tendency 0GoWoI-PA to overshoot — the reason for

which, we will defer to the closing discussions — is apparent . :
in all subsequent results. Onkéhas been calculated, the QP controversy about whether the self-consistent eigensaie

dispersion can be extracted. Presented inFig. 4 is the agal p or the ?gro_th-order_ elgenvz;\!)u?_%hare llafest us.ed as the argL:;
of the self-energy evaluated at the self-consistent e@jees, ment of% in equation[(TE)=". The self-consistent approac

i.e. the correctiorRe[Z ()] to the quasiparticle dispersion Was chosen in this paper.
as found by the form[ullf'al( ] q P P The difference between the quasiparticle energiés-ake

andk = 0 is known as the band width, which therefore takes
the form of the free-electron valué/2) corrected by the
change in Figl ¥ betwedn= ke andk = 0. This band width is
where sf() is the non-interacting dispersion. Care has beershown in Tabl€IV and Fid.]5. It consistently seems that werte
taken to align the Fermi energy of non-interacting and in-corrections applied in the screened Coulomb interaatiaig
teracting systems so that the Dyson equation is consi8tentgive the best results. This is corroborated by the fact thiat t
and all quantities are calculated in real frequency. The sel quasiparticle dispersion has a better band width and tleat th
consistent quasiparticle energy should be used when one h&Wol-P* introduces little change to the band width. These
a self-consistenE, but for aGoWy calculation there is still results are in agreement with those of Mahan and Ser@lius

& = & + Re[Zk (&), (15)



rs | GoWETA GoWo-PA [GoWEPA | Experiment
(Al) 2.07| 11.5445] 11.6444 | 11.1814]10.60:0.102
(Li)3.28| 4.4644| 4.4853 | 4.2129 | 3.00+0.20°
(Na) 3.9 2.9837| 2.9889 27777 | 2.65+0.05°¢
(K)4.96| 1.8625| 1.8579 | 1.7044 | 1.60+0.05¢
(Rb)5.23 1.6669| 1.6610 | 1.5191 | 1.70+£0.20€
(Cs)5.63 1.4287| 1.4215 1.2944 | 1.35+0.20°

g(rky)

2 See reference_53.

b 0
-021 =10 ——— DMC b See referencé b4.
-o4p0 S o ¢ See referencé P1.
1 2 3 4 d See referencé 0.
rekge € See reference 55.

FIG. 3: The pair-correlation function — evaluatedrat= 1.0. The . ) o .
RPA goes negative for smallwhich is a well-known unphysical be-  TABLE IV: Occupied band widths of jellium for differemt (eV) —
haviour of this approximation. Including the vertex makeswj;PA  evaluated at the self-consistent eigenenergy.

fit the (essentially exact) QM2 curve better, but then the p.-c. func-

tion goes too positive instead. TW4-CA curve does not go to infinity o 0.5
whenr — 0, it just goes to a very high value-(2000). The horizontal o §
lines are there to guide the eye. 2L (o
3 .
EE
: 8% os
: 5
_-005F 2 g
G s = @ -1.0
= _010F ~§ 3
Z N L g‘ -15
—=-0.15F—" £ 0
=< . |- o O
A C o °
o -2.0 L
& 020 i > 54 5 6
N S
-025 F
s . 5: Correction to the free-electron occupied ban om-
- G(,WOLDA FIG.5: C tiontothe f lect ied band widtl®
030 EB=40 L L parison with experimentGoWPA has the most significant narrow-
1 2 3 k4 ing of the band in the relevant density-regi@yW-PA is not very
F

different fromGoW/RPA. Note that a jellium calculation does not in-

) ) ) o clude the contribution from the crystal lattice potential.
FIG. 4: Correction to the free-electron quasiparticle dispon for

rs = 4.0— Note the large absolute shift f@Wol'"PA. The two
intersecting straight lines are included to emphasizertbae of the

dispersions fulfill the conditioRe[Zy_ (&r )] = Vxc. new chemical potential,

=0 + A= ¢"P* — (Re[Zy (er)] — Vi) (16)

obtained for a model Hubbard vertex. whereAL is the correction due to the shift of the bulk Fermi
energy for aGW jellium calculation. The LDA workfunc-
tion is defined as the shift between the vacuum poterjad,
and the chemical potential from the LDA surface calculation
u-PA . Since the exact self-energy for jellium must fulfill the

o condition
To get another indication of whether the large absolute pos-

itive shift of the quasiparticle dispersion is physical, @gm- Re[Z. (er)] = Ve, a7)
pare with experimental work functions of Al (100), (110)

and (11 1) surfaces (see Table V). We assume that the electrave see that the LDA (taken from highly accurate QMC cal-
density of the surface region, and therefore the electiiosta culations) corresponds to the exact result if one assunags th
surface-dipole energy barrier, are well described by LDIA ca the bulk is accurately modelled by jellium. Comparing with
culations including the crystal lattice. The work functign ~ TablelM and Fid.6 we see th&WR™ is closest to the exact
will, however, be sensitive to the quasiparticle bulk Fermiresult andSoWPA is slightly further away, whileSo\Wl -PA
level, which we use here as a discriminator between selfis even worse.

energy approximations in the bulk. Treating the bulk metal This leads us to conclude th&Wel-PA is unphysical in

as jellium, we obtain a shift in the workfunction due to the the sense that a vertex correction derived from a self-gnerg

VI. THE CHEMICAL POTENTIAL OF JELLIUM



@ Al [Exp. (eVP|[LDAP|GoWFPA[ GoWoI P2 [ GoWEPA
(100)| 441 ||-0.14| 0.28 -1.19 0.45
(110)| 4.06 ||-0.18| 0.24 -1.23 0.41
(111)| 4.24 ||-0.06/ 0.36 -1.11 0.53

2 See reference_56.
b See referencé b7.

TABLE V: The workfunction of aluminiumiis = 2.07) — Compared
to experiment. The last four columns show the deviation fthm
experimental value. The LDA surface calculation corresjsoto
the exact result if jellium is used to model the bulk fermi iyye
GoWRPA andGoWPA are closer, whildSgWeI P4 is much worse

GOWOLDA
/ ----- * G“W”RPA
.- ®--"
S 45
P I
E L
S 407
=
8
% 35 F Al(110) Al (100) AL (111)
= e e G,W,I"™*
30 F T
[ = -
4.0 4.1 42 4.3 4.4 4.5

Experimental Value (eV)

FIG. 6: (Color online) The workfunction of aluminiunmg(= 2.07)

— Compared to experiment. The LDA surface calculation corre
sponds to the exact result if jellium is used to model the Bdkmi
energy.GoWRPA andGoWiPA are closer, whil&oWp-PA is much
worse. The colored lines are there to guide the eye. The lilaek
corresponds to perfect agreement with experiment (ernw ibdi-
cate experimental uncertainty)

action. The work function of aluminium was used to confirm
that the value of the chemical potential GyWol'-PA is far
from the correct result.

Anindication of why a local correction in bot andZ per-
forms so poorly has been discussed previously by Hindgren
and AlmbladR® and investigated in excitonic effects on wide-
bandgap semiconductors by Mariei al2%€% Both types
of vertex corrections lead to a modified screened interactio
W = £-1v. The spectral function of this, which is required to
be positive semidefinite fai < 0 and negative semidefinite
otherwise, is given by

By () = _ﬂn“’)lm ey (@)
_ sgr(e) Im[&g(e)]
T (@)

so it inherits whatever properties of definiteness the imaayi
part of the dielectric function has. Now f@WoI A this is
given by,

(18)

Im (& ()] = (Vg + Kxo)Im [Xq(@)] - (19)
Since theRPAresponse functioryp, will have the correct an-
alytical properties by construction, this expression willi-
ously change sign whenevig - which is strictly negative
for all densities and a negative constant for jellium - igé&ar

in magnitude thawvg, which decays as/f. This will thus
lead to a spectral function with the wrong sign, which is en-
tirely unphysical. For jellium, isolated atoms, or any sgar
enough condensed state, this is guaranteed to happenskecau
Kyxc — —oo for low densities. Inspection of the dielectric func-
tion in GoWLPA,

_ vglm (X§(w)]

Im [&q(w)] = r_ Kxcxg(w)\z’

(20)

illustrates that it cannot suffer from the same pathologyc&
Eq. (20) ensures that the static structure factor has theaor
behavior for bothGoWEPA and GoWe-PA, no conclusions

approximation with a completely local dependence on thgan be drawn on the reason for the overly positive value of the

density (like the LDA) will have pathological features. $lig

pair-correlation function of jellium when— 0, except that it

most probably due to improper behaviour of the spectralfuncmust depend on the highbehavior of the denominator. We

tion of the screened interaction, as is demonstrated inrtlaé fi
section of this paper.

VIl. DISCUSSION AND CONCLUSIONS

We have presenteGoWEPA and GoWwp-PA calculations
for isolated atoms and jellium. We see ti@Mp-PA wors-
ens results in all cases compared to the com@enRFA ap-
proximation.

A properab initio vertex correction for calculations on an
arbitrary system should be derived from the starting approx

note that none of the calculations have been carried out self
consistently; it is possible that the vertices presented be
some way to improve self-consisteBW resulté?.

One possibility of the failure of the LDA starting point with
the inclusion of the theoretically consistent vertex is skH-
interaction error the LDA orbitals carry with them. Any gtar
ing point with an inherent self-interaction error shoulddeo
correcting terms in the diagrammatic expansion. It is fmesi
that the first-order correction, lik€Wel'-PA, is not enough
and higher order corrections must be applied. A vertex driv
from a second iteration of Hedin’s equations does indeetl lea
to further and more complicated diagrams than the equivalen

mation for the self-energy. In this work we have shown thatvertex from a Hartree starting point. Unfortunately these d

in practice, vertex corrections derived frortoaal density ap-
proximation to the self-energy (like the LDA) are patholcayi

grams are of prohibitive complexity for practical calcidats.
It is still not understood why a correction W only (in a

when applied to both the self-energy and the screened intef-DDFT-like manner) seems to work as well as it does. There
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is a similarity here with the way that the Bethe-Salpeteraequ  Overall, vertices based on the local density clearly have
tion (BSE) is usually applied for the calculation of optical their limitations, arriving in part from the wavevector &pukn-
spectra. There too it is well known that, in theory, inclusio dent character . It should be fruitful to explore vertices
of a screened interaction in electron-hole excitationsikhoe  that incorporate non-local density-dependence and refiect
accompanied by an inclusion of the double-exchange term inon-local character of the original self-energy operator.

> but this has been proven to worsen results. Recently, Tiago

and Chelikowsk$? have used &oW;PA vertex in conjunc-

tion with an efficient numerical implementation of the BSE Acknowledgments
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