Band structure and many body effects in graphene
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Abstract. We have determined the electronic bandstructure of clean and
potassium-doped single layer graphene, and fitted the graphene 7w bands to a
one- and three-near-neighbor tight binding model. We characterized the quasi-
particle dynamics using angle resolved photoemission spectroscopy. The dynamics
reflect the interaction between holes and collective excitations, namely plasmons,
phonons, and electron-hole pairs. Taking the topology of the bands around the
Dirac energy for n-doped graphene into account, we compute the contribution to
the scattering lifetimes due to electron-plasmon and electron phonon coupling.

1 Introduction

Graphene, a single layer of carbon atoms arranged in a honeycomb lattice, is the building
block of Cgg, nanotubes, graphite, and other mesoscopic carbon systems. As such, graphene is
a model system whose properties should be studied in order to understand exotic phenomena
in all of carbon systems. It is also interesting in its own right since graphene has the potential
to play an important role in future electronic technologies, and may display its own interesting
fundamental two-dimensional (2D) phenomena reflected in transport measurements. The recent
isolation of high-quality, few-layer graphene by exfoliation [1,2] and by epitaxial growth [3-8]
has led to an explosion of theoretical and experimental studies of graphene.

The carrier dynamics can be explored directly using angle-resolved photoemission spec-
troscopy (ARPES), which determines the lifetime and mass renormalization of the carriers.
In this paper, we present ARPES measurements of single layer graphene films grown on SiC
substrates as a function of potassium doping. The 7 bands are fitted to a tight-binding (TB)
model, which simulates the bands very well except in the vicinity of the Dirac and Fermi levels
(Ep and Ep), where the bands are renormalized by many-body interactions, namely electron-
plasmon, electron-electron, and electron-phonon interaction. These renormalizations turn out
to be strongly affected by doping, which we determined by measuring the bands as a function
of n-doping by potassium adsorption.

2 Experimental

Single layers of graphene were prepared by etching a 6H-SiC(0001) substrate (n-type with a
nitrogen concentration of (1.5 4 0.5) x 108 cm ™3 from SiCrystal AG) in hydrogen (P = 1bar,
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T = 1550°C, ¢t = 30min) followed by annealing at 1150°C for 4 minutes by direct current
heating in pressure better than 1 x 1070 Torr. After preparation, the samples were trans-
ferred in vacuo to a liquid He-cooled cryostat, and the samples were cooled to around 20K for
ARPES measurements. The ARPES measurements were conducted at a pressure better than
2 x 10~ Torr.

The growth and ARPES measurements were conducted at the Electronic Structure Factory
endstation at beamline 7.01 at the Advanced Light Source, which was equipped with a hemi-
spherical electron energy analyzer (SES-R4000), using a photon energy hry = 94eV with an
overall energy resolution of ~25meV. The samples were n-doped by adsorption of submono-
layer amounts of potassium atoms at low temperature, which were deposited by commercial
(SAES) getter sources. The angular emission patterns were converted to momentum space units
by geometric transform. The absolute momentum scale in ARPES is difficult to determine
exactly since it is sensitive to an inner potential parameter. In this paper, we have chosen this

inner potential to scale the band structures to the distance 'K = 1.703 A or equivalently, a
C-C bond length of 1.42 A or lattice constant a = 2.46 A.

3 Band structure and tight binding models

Figure 1(a) shows the 7 band structure of as-prepared graphene taken along principle directions
of the graphene Brioullin zone (BZ). The measurements are extracted from a larger data set
which samples momenta k throughout the 2D BZ. Our purpose in this section is to develop
a tight-binding fit to the bandstructure, including the slowly-varying effects of many-body
interactions on the overall bandwidth, but ignoring those many-body interactions which affect
the detailed shape of the bands near Er. We first consider a simple single near neighbor (NN)
tight binding (TB) model as presented by Saito [9] and generalized to third-NN by Reich [10].
The first-NN bandstructure can be written in closed form as

€2p = yow(k)

B(k) = 1+ sow(k) ’ (1)

where

w(k) = \/1 + 4 cos (V3ak, /2) cos (ak, /2) + 4 cos? (ak,/2). (2)

Here, 7o and so are the NN hopping and overlap integrals, respectively, and €3, is chosen to
adjust the Fermi level Er to the experimental value relative to Ep. Previously, we neglected sg
when comparing the model equation (1) to the data [8]. Here we show a systematic fit of the
bands along the principle directions (figure 1(a)) including the overlap term, with the fitting
parameters summarized in Table 1. Since for clean graphene, the states above the Dirac energy
Ep are mostly unoccupied, the fit is only taken over the bands below Ep. While the first-NN
TB fit models the overall bandwith reasonably well, the detailed curvature of the bands is not
well modelled, nor are the energies of the bottom of the 7 band or of the saddle point at the
M point of the BZ. This is because additional nearest neighbor hopping and overlap must be
considered to get a more accurate fit.

Reich et al. evaluated the band structure from first principles, and constructed a third-NN
TB model as a fit to the first principles calculation [10]. Their model is shown for comparison to
the data in figure 1(a), which has been aligned to the bottom of the 7 bands at I". This model
underestimates the observed bandwidth (below Ep) by around 11%. A similar mismatch has
also been seen for graphite, which was attributed to self-energy effects due to electron—electron
interaction [11]. In order to present a more useful TB fit, we encapsulate this band widening,
and other deviations of the bands from Reich’s model, with an empirical fit of the bands to the
graphene measurements (figure 1(a)). This fit is now seen to be quite satisfactory throughout a
wide range of energies, and captures not only the bandwidth but also does a good job to match
the detailed shape of the bands. This good agreement comes at the expense of having a rather
larger hopping parameter (79 = —5.13) than generally expected.
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Fig. 1. Experimental and tight binding band structures for pure and K-(2 x 2) graphene. The bands
for the principle directions of the graphene Brioullin zone (see inset, figure 2) are shown for (a) clean
graphene and (b) K-(2 x 2) graphene as greyscale images (darker = more intense). The best-fit tight
binding bands are shown for one and three-NN models (dashed and solid, respectively). The third-NN
model by Reich is shown for reference (dotted lines).

One must be careful to consider the doping level of the graphene, since we observed the TB
parameters to be doping-dependent. To see the effect of doping, we deposited potassium atoms
at T = 100°K until a sharp 2 x 2 reconstruction was observed. This reconstruction corresponds
in stoichiometry and (we believe) arrangement to a single bilayer of the graphite intercalation
compound KCs.

The data and comparisons to Reich’s third-NN fit and our first- and third-NN fits, are shown
in figure 1(b). The most prominent differences compared to clean graphene are (1) that the slope
(or band velocity) near Fp has been reduced in the doped film, and now agrees reasonably well
with that by Reich, and (2) the shape of the bands is somewhat different. Especially notable is
the flattening of the bottom of the 7 bands around I'. This flattening cannot be accounted for
except by higher terms, and hence is missing in the first-NN fit. Since this flattening is missed
by the Reich model, it must be due to some self-energy corrections, which would be interesting
to explore further but which are beyond the scope of this paper.

One should note that similar to the clean graphene case, the third-NN fit in figure 1(b) was
carried out only for data below Ep. Despite the large number of terms, the data above Ep seem
to be well-accounted for, apart from small deviations to be discussed below. This suggests that
we might be able to trust the extrapolated bands above Er as well. In that case, we can see
that in the doped K case, we can observe a relative narrowing of the unoccupied bands around
the M saddle point. This trend is continued for even higher doping than is presented here [12].
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Table 1. Tight binding parameters for one- and three-NN fits of the data in figure 1, also shown are
the fits to theory by Reich [10].

Sample Yo [eV] S0 7 [eV] s1 ~2 [eV] S2
clean, 1-NN —3.28 0.0425
clean, 3-NN —-5.13  —0.148 1.70 —0.0948 —-0.418 0.0743
K-(2x2),1-NN  —3.17 0.033
K-(2x2),3NN -3.64 —0.238 1.33 —0.0537 —0.344 0.0626
Reich, 3-NN —2.97 0.073 —0.073 0.018 —0.33 0.026

4 Many body interactions at low energy scales

With the discovery of superconductivity in carbon nanotubes (CNTs) [13,14], alkali-metal-
doped Cgp crystals [15], and graphite intercalation compounds [16-18] (GICs) with relatively
high transition temperatures, there is a strong interest in the influence of many-body interac-
tions on the electron dynamics of graphite and related materials. Graphene and graphite are
also interesting because their carriers can be described as relativistic Fermions through a for-
mal equivalence of the wave equation with the relativistic Dirac equation [1,2,19]. Departure
of the electron dynamics from Fermi liquid behavior in graphite has also been attributed to the
special shape of the graphene bandstructure [20,21]. It is interesting to ask whether any such
departure is related to the massless character of the Dirac fermions.

With the ARPES technique, we can derive not only the bandstructure as discussed in sec-
tion 3, but also the quasiparticle dynamics. We found that the bands are strongly renormalized
near Fp and Ep by electron-electron, electron-phonon, and electron-plasmon coupling effects.
The latter coupling is particularly interesting because it distorts the bands near Ep. Figure 2(a)
shows a magnified view of the bands measured along a line (the vertical double arrow in the
inset) through the K point. The predicted (bare) bands are nearly perfectly linear and mirror-
symmetric with respect to the K point according to equation (1). The actual bands deviate
from this prediction in two significant ways: first, at a binding energy ~200meV below Ef,
we observe a sharpening of the bands accompanied by a slight kink in the bands’ dispersions.
We attribute this to renormalization of the electron bands near Er by coupling to phonons, as
discussed later.

Second, linear extrapolations of the lower bands (dashed lines in figure 2(a)) do not pass
through the upper bands, demonstrating that the bands do not pass smoothly through Fp as
equation (1) predicts. This is observed more easily for data acquired along the orthogonal direc-
tion through the K point (figure 2(e)), where a favorable matrix element effect [22] suppresses
one of the two bands. We observe an additional kink near Ep, which we propose is caused by
many-body interactions.

The deviations from the bare band are sensitive to doping, which we varied by adsorbtion of
potassium atoms. The evolution of the band structure upon doping is followed in figure 2(b)—
(d) and along the orthogonal direction in figure 2(f)—(h). Similar to graphite, doping graphene
by K deposition shifts the bands more or less rigidly to higher binding energy [23]. While the
energy of the kink at 200 meV does not change, the second kink strengthens and follows Ep
with doping, demonstrating that it is associated with electrons with energy near Ep. The effect
of this kink on the bandstructure is significant: at high doping, a curve fit of the band positions
(figure 2(d)) shows that Ep has been shifted towards Er by 130 meV from the single-particle
prediction.

In the quasiparticle scheme, ARPES measures the spectral function, expressed in terms of
the complex self energy ¥(k,w), as [24,25]

Im¥(k, w)|
(w — wp (k) — ReX(k, w))* + Im2(k, w)?

Ak, w) = (3)

where w is the quasiparticle energy, and wy (k) is the unrenormalized, or “bare” band dispersion
in the absence of many-body effects. The form of equation (3) is that of a Lorentzian whose



Advances in Graphene Physics 9

0.0

-0.0
—

K

3 10
-
3
£ 15
; 1.1x10"3
> -2.0 L "
& N i
o 0.0 iy —s simulation &
£ 0.0 JE
£
m

01 00 01 ~01 00 01 01 00 01  -01 00 01  -01 00 01
Momentum k (&™)

Fig. 2. The bandstructure of graphene near the Fermi Level. (a)—(d) Experimental energy bands along
the vertical double-arrow in the inset as a function of doping. The dashed lines are an extrapolation
of the lower bands (below the Dirac crossing energy Ep). The electron density (per cm?) is indicated
on each panel. (e)—(h) Bandmaps for similar dopings acquired along the horizontal double arrow in
the inset. The non-linear, or “kinked” dispersion of the bands is evident from the fitted band position
(dotted lines) (i) The simulated spectral function, calculated using only the bare band (yellow dotted
line) and ImY derived from the data in panel h. From [8].

position (relative to wy,) and width are given by the real and imaginary parts of the self-energy
function X(k,w). This function plays the same role for the quasiparticles as the complex index
of refraction plays for photons in an interacting medium. Thus, it encodes both the scattering
rate and the renormalization of the band dispersion in its imaginary and real parts, respectively.

In the k-independent approximation [25,26] (X(k,w)~ X(w)), Im ¥(w) is proportional to the
Lorentzian linewidth of the so-called momentum distribution curve (MDC) A(k,w), which is a
horizontal cut of the spectral function taken at constant w. Like the complex index of refraction,
Re X(w) is readily computed from Im ¥(w) through a Hilbert transform (to satisfy causality),
and the full spectral function A(k,w) can be reconstructed using the computed Re ¥(w) and
compared to experiment. Such a reconstruction for one doping is shown in figure 2(i); it is
in excellent agreement with the data (figure 2(h)) from which ImY was obtained. This shows
that the kinks in the bands originate not from details of the single-particle bandstructure, but
rather from many-body interactions, providing strong support for the quasiparticle picture in
graphene.

The observed kink structure is therefore derived from a complicated w-dependence of the
observed scattering rate (proportional to the MDC linewidths shown in figure 3) as a function
of doping. To model this behavior, we consider three processes: decay of the carriers by phonon
emission, by electron-hole (e-h) pair generation, and by emission of collective charge excitations
(plasmons) via electron-plasmon (e-pl) coupling. (Impurity scattering, a fourth contributing
process, is a relatively small contribution which can be neglected.) By summing up all the
momentum- and energy-conserving decay events as a function of hole energy w, we can show
that the three principle decay processes contribute differently to the lifetime in regions I-IV as
identified in figure 3.

Such a calculation for the total scattering rate, together with the individual contributions
from e-ph, e-h and e-pl processes, is shown in figure 3. This calculation is for a sample with
n =5.6 x 103 cm™2 and compares favorably to the experimental MDC width for that doping;
similar agreement can be obtained for the other dopings as well. The predicted dip at Ep is
an artefact of the simplicity of our model, which does not consider interactions between the
plasmons and the Fermi liquid excitations.

Now we discuss the different decay processes in turn. We attribute the kink near Ew to
electron-phonon (e-ph) coupling as described previously for metals [27-29], graphite [30,31]
and (possibly) high-T,. superconductors [32,33]. E-ph coupling is expected at this energy scale
considering the known phonon spectrum [34]. In this process, photoholes decay by phonon
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Fig. 3. MDC Widths of Carriers in Graphene. Measured spectral linewidth (assumed proportional
to scattering rate and ImY) for graphene, derived by performing a line shape analysis of MDCs for
each binding energy as a function of doping n (10'* cm™2). Each trace is shifted upward by 0.025 A~*.
The simulated total scattering contribution (black line) and the partial contributions due to decay
into phonons (green), e-h pairs (red) and plasmons (blue) are calculated for the highest doped sample.
These interactions contribute differently in regions I-IV defined as follows: (I) the phonon energy scale
wph< w < 0, (II) the Dirac energy scale wp< w < 0, (III) 2wp< w <wp, (IV) w < 2wp. The recently
calculated MDC widths by Hwang et al. for three representative dopings are shown for comparison
([38], dashed lines). Adapted from [8].

emission (see figure 4(a)). Using the graphite phonon density of states [35], we calculated the
e-ph contribution to Im¥ (figure 3, green curve) with the standard formalism [36] and find
an e-ph coupling constant A &~ 0.3. Although this is a factor of 5 larger than predicted [37]
for n = 5.6 x 10" cm ™2, comparison with the experimental data shows that this provides an
accurate description of Im¥ in region I. The observed increase of the kink’s strength with n
(see figure 2(e)—(h)) is expected from the increase in the size of the Fermi surface, although the
200meV energy scale remains constant because the K atoms should not significantly alter the
phonon spectrum of graphene.

Consider now the decay of the photohole by excitation of an electron from below to above
Er thereby creating an e-h pair. In Landau’s Fermi liquid (FL) model, the decay rate increases
as ~ w? away from w = 0, reflecting the growing number of possible excitations that satisfy
momentum and energy conservation. However, the linear dispersion of the graphene bands and
the presence of the Dirac crossing drastically modify this picture. A hole just above Ep can
easily decay through many possible e-h creation events, for example as in figure 4(b), and we
find a similar w*(a ~ 1.5) dependence of ImX. in regions I-II as in FL theory. But a hole decay
originating at w just below Ep has few final states with sufficient momentum transfer to excite
an e-h pair (figure 4(c)). This causes a sharp reduction in the scattering rate in region III. Only
for energies in region IV does e-h pair generation become favorable (e.g. figure 4(d)).
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Fig. 4. Decay and Scattering Processes in Graphene. (a) The energy/momentum diagrams for decay
processes scattering of a photohole, initially created at energy w, decaying by a emission of a phonon.
(b)—(d) Spontaneous generation of an electron-hole pair near the Fermi level Er for photohole energy
satisfying (b) (w >wp), (¢) (2wp < w <wp), which can generate no possible e-h pair as drawn, and
(d) (w < 2wp). (e) emission of a plasmon (2wp < w <wp). (f) The net effect of these processes is to
distort the bare bands to the renormalized bands (shown in tan). From [8].
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The e-h and e-ph processes can explain the observed MDC widths in regions I, I, and IV.
In region III, however, decay by e-h pair creation is practically not allowed yet the observed
scattering rate has a peak rather than a dip (highlighted in blue in figure 3). This peak may
be explained by decay through plasmon emission. In graphene, the charge carriers near the K
point have zero effective mass and travel like photons at constant speed c¢*, but unlike photons,
they have charge and are therefore subject to collective oscillations such as plasmons. Although
a full treatment of the e-pl interaction is difficult near the Dirac point, a simple model suffices
to explain how e-pl coupling can enhance the scattering rate below Ep.

Ordinary two-dimensional plasmons have a dispersion relationship in the long-wavelength
limit [39]

wpi(q) = \/4mne2q/m(1 + €), (4)

where ¢ is the plasmon momentum, m is the carrier mass, and € ~ 10 is the dielectric constant.
Although plasmons in principle exist in the domain 0 < ¢ < oo, in practice they propagate freely
up to a critical momentum ¢ < ¢. due to Landau damping (plasmon decay into electron-hole
pairs) [40].

For graphene, the rest mass m is zero near Ep but the relativistic mass m, = E/c*? is on
the order [1] of 0.1 m, and can be used to set the plasmon energy scale wp). Since the plasmon
spectrum wp(g) rises steeply over a short, finite range of ¢, decay of the photohole into plasmons
becomes kinematically possible only for hole decays originating just below Ep (figure 4(e)).

The simple plasmon spectrum equation (4) is illustrated in figure 5, calculated using the
experimentally determined carrier masses [1] for a range of dielectric constants (3), (6) and
(10). Also shown is the recent calculation of the plasmon spectrum [38]. As expected, when the
plasmon energy-momentum is outside the range of e-h excitations (shaded region) the simple
model equation (4) is a very good approximation to the computed plasmon spectrum in the
relevant excitation region at small ¢. (Similar plasmon dispersions have also been presented at
lower dopings [41,42] and for a graphene bilayer [43].)

Given the plasmon dispersion relation we can easily sum up the possible plasmon decays as
a function of w (figure 3, blue curve), which is proportional to the scattering rate. We find a
peak located just below Ep, whose width and intensity scales with Fp. A peak following these
trends is clearly observed in the experimental data (highlighted in blue in figure 3). A more
detailed calculation by Hwang et al. has also confirmed the existence of this e-pl scattering
peak [38]. Their calculation of the e-pl and e-e contributions to the scattering rate is shown for
three dopings as the dashed lines in figure 3.

Previously, e-pl coupling was shown to affect the unoccupied bands of a 3D metal at the
large plasmon energy scale (~20 eV) [44]. But e-pl coupling at small energy scales is normally
forbidden for 2- and 3D electron gases (except for the special case of layered electron gases) [20]
so this is a unique instance where e-pl coupling is kinematically allowed for a pure 2D system.
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Fig. 5. Energy diagram of the electronic excitations in graphene. The shaded red region shows the
possible e-h pair excitations for graphene, computed for a conical band structure with n = 5.6 x
10'3 em™2. The lines show the plasmon dispersion calculated for dielectric constants 3, 6, and 10
using equation (4) together with the relativisitic mass taken from transport measurements [1,2]. The
calculated plasmon dispersion of Hwang et al. ([38], dashed line) is shown for comparison. Adapted
from [8].

It is also remarkable because of the relativistic nature of the carriers and the strong role it plays
in shifting the Dirac energy.

It is worth emphasizing that the model for the scattering rate has only four adjustable
scaling factors: the e-ph coupling constant A, the absolute probabilities for e-h pair creation
and plasmon emission, and the screening constant € which scales the Coulomb interaction. The
other inputs are the experimentally determined band dispersion, the graphite phonon density
of states, and the relativistic mass m, which is taken from the literature [1].

These results show that the special condition of massless Dirac Fermions found in graphene
does not preclude the validity of the quasiparticle picture — in fact the quasiparticle picture
is valid over a spectacularly wide energy range — but it does induce novel e-h and e-pl decay
processes. These result in strong modifications of the band dispersion, as schematically illus-
trated in figure 4(f). This distortion occurs not only near the Fermi level as in conventional
metals, but also centered around the Dirac crossing energy Ep. The effects we describe are not
unique to high doping levels, but extrapolate all the way down to zero doping. Near this regime
(already approached for the lowest dopings in figure 3(b)), the energy scales for e-h, e-pl and
e-ph decay processes overlap, and a unified treatment of all these interactions is necessary to
reproduce the many-body effects. These conclusions apply as well to graphite, nanotubes, and
other carbon materials with similar electronic structure.
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