

The impact of nitrogen mobility on the activity of zirconium oxynitride catalysts for ammonia decomposition

H. Soerijanto^{, <u>b</u>}, C. Rödel^a, U. Wild^{<u>b</u>}, M. Lerch^a, R. Schomäcker^a, R. Schlögl^{<u>b</u>} and T. Ressler^a

^aTechnical University Berlin, Institute for Chemistry, Straße des 17. Juni 135, D-10623

Berlin, Germany

^bFritz-Haber-Institute of the MPG, Department of Inorganic Chemistry, Faradayweg 4-6, D-

14195 Berlin, Germany

Abstract

A zirconium oxynitride catalyst was used for the decomposition of ammonia to hydrogen and nitrogen. The onset of catalytic activity at ~550 °C coincided with the onset of nitrogen ion mobility in the material and a phase change from the initial $\underline{\beta}$ phase ($\sim Zr_7O_{11}N_2$) to the nitrogen-rich $\underline{\beta}''$ ZrON phase ($\sim Zr_7O_{9,5}N_3$). No hydrazine formation during an extended time on stream was detectable. Moreover, the onset of activity was also correlated to a rapid change in the electronic structure of the surface accompanying formation of the more active $\underline{\beta}''$ ZrON phase. The results presented here show for the first time a direct correlation among the onset of ion conductivity as a bulk property, a modified electronic structure of the surface, and the catalytic performance of a heterogeneous catalyst.