Russian-German-Seminar on Catalysis

Bridging The Gap Between Model And Real Catalysis

July 9-12, Novosibirsk-Altai Mountains, Russia

The role of subsurface species in heterogeneous catalytic reactions

D.Teschner, H. Gabasch, M. Hävecker, E. Vass, P. Schnörch, H. Sauer, <u>A.Knop-Gericke</u>, R. Schlögl

Fritz-Haber-Institut, Dept. Inorganic Chemistry, Faradayweg 4-6, 14195 Berlin, Germany

Knop@fhi-berlin.mpg.de

Introduction

Selectivity issue: what defines selectivity?

Model of overlapping TDS peaks

Acetylene hydrogenation (TDS)

Khan NA, Shaikhutdinov SK, Freund HJ CATALYSIS LETTERS, 108 (3-4) 159-164, 2006

Hydrogenation (TDS)

sub-surface H

Summary

1. <u>Subsurface H</u>: effective for alkene-to-alkane but also for alkyne-to-alkane transformation

Pulse experiments 1-pentyne Adsorption

(After H_2 pretreatment)

- **First pulse shows activity**
- 65% conversion
 - 38.5% 1-pentene
 - 6.5% *trans*-2-pentene
 - 3.5% *cis*-2-pentene
 - 6.5% pentane
 - 11.5% Unknown

Summary

- *1. <u>Subsurface H</u>*: effective for alkene-to-alkane but also for alkyne-to-alkane transformation
- 2. <u>Surface H</u>: could be selective (spillover)

Hydrogenation

1. 1-Pentyne hydrogenation over 1% Pd/Al_2O_3 in a closed loop-reactor, t=5 min. (after repeated runs at each condition)

2. 1-Pentyne hydrogenation over 1% Pd/Al₂O₃ in continuous flow

 $H_2:C_5 = 4:1$ total hydrogenation $H_2:C_5 = 3:1$ selective hydrogenation

9

Summary

- *1. <u>Subsurface H</u>*: effective for alkene-to-alkane but also for alkyne-to-alkane transformation
- 2. <u>Surface H</u>: could be selective (spillover)
- *3. <u>Different reaction orders</u>* in the different selectivity regimes & Abrupt changes between regimes

During TEOM experiment

	40 mins				170 mins			
	1-pentyne	1-pentene	2-pentenes	n-pentane	1-pentyne	1-pentene	2-pentenes	n-pentane
Pd/Al ₂ O ₃ , 100 % H ₂	trace	trace	trace	100	trace	trace	trace	100
Pd Black, 100 % H ₂	0.1	trace	0.1	99.8	3.6	0.5	11.3	84.5
Pd Black, 5 % H ₂	58.7	40.1	trace	1.2	42.8	54.7	0.2	2.3
Al ₂ O ₃ , 100 % H ₂	81.1	16.2	0.7	2.0	74.9	22.4	0.7	1.9
Quartz Wool, 358 K	81.6	17.1	0.2	1.1	-	-	-	-
Quartz Wool, 303 K	89.2	10.6	trace	0.3	-	-	-	-

During TEOM experiment

	40 mins				170 mins			
	1-pentyne	1-pentene	2-pentenes	n-pentane	1-pentyne	1-pentene	2-pentenes	n-pentane
Pd/Al ₂ O ₃ , 100 % H ₂	trace	trace	trace	100	trace	trace	trace	100
Pd Black, 100 % H ₂	0.1	trace	0.1	99.8	3.6	0.5	11.3	84.5
Pd Black, 5 % H ₂	58.7	40.1	trace	1.2	42.8	54.7	0.2	2.3
Al ₂ O ₃ , 100 % H ₂	81.1	16.2	0.7	2.0	74.9	22.4	0.7	1.9
Quartz Wool, 358 K	81.6	17.1	0.2	1.1	-	-	-	-
Quartz Wool, 303 K	89.2	10.6	trace	0.3	-	-	-	-

During TEOM experiment

Up to x5 more carbon is retained in the selective hydrogenation regime

Summary

- *1. <u>Subsurface H</u>*: effective for alkene-to-alkane but also for alkyne-to-alkane transformation
- 2. <u>Surface H</u>: could be selective (spillover)
- *3. <u>Different reaction orders</u>* in the different selectivity regimes & Abrupt changes between regimes
- 4. <u>Cuptake</u> is significantly more in the selective regime

In situ XPS system

Reaction in the mbar p region (in-situ XPS)

	5% Pd/CNT	3% Pd/Al ₂ O ₃	Pd foil	Pd(111)
Conversion [%]	~ 10	~5	~2.5	<1
Selectivity Pentene [%]	~95	~80	~98	100
Selectivity Pentane [%]	~5	~20	~2	_

Recation conditions: $C_5/H_2 = 1:9, 1 \text{ mbar}, 358 \text{ K}$

In-situ XPS: Pd 3d depth profiling

HRTEM: lattice expansion

5% Pd/CNT after reaction

Pd nanoparticle (5nm x 6nm) with typical lattice dilatations, angular distortions are negligible background: rather disordered graphitic

layers of a CNT

0.2025 nm	+4.2%	0.1944 nm	200
0.2027 nm	+4.3%	0.1944 nm	020
0.1421 nm	+3.4%	0.1374 nm	220
0.1434 nm	+4.4%	0.1374 nm	-220

In-situ XPS: C1s (Switching off experiments)

In-situ XPS: Pd 3d (Switching off experiments)

In-situ XPS: Pd vs. C depth profiling

Model

Summary

- *1. <u>Subsurface H</u>*: effective for alkene-to-alkane but also for alkyne-to-alkane transformation
- 2. <u>Surface H</u>: could be selective (spillover)
- *3. <u>Different reaction orders</u>* in the different selectivity regimes & Abrupt changes between regimes
- 4. <u>Cuptake</u> is considerably more in the selective regime
- 5. <u>Pd-C surface phase</u> forms during selective hydrogenation of pentyne & there is significant amount of <u>subsurface C</u> below of it
- 6. <u>Dynamic</u> behaviour of Pd-C and subsurface C

1-pentyne hydrogenation on 1%Pd/Al₂O₃ (done in Budapest)

Generally similar trend was observed as with bulk Pd $_{27}^{27}$

And at Bessy?

Alkene and alkyne hydrogenation at BESSY Pd foil, ~70°C, 1mbar (0.1 mbar C_xH_y + 0.9 mbar H_2)

Summary

➢ Alkene → Alkane: no Pd-C formation
➢ Alkyne → Alkane: no Pd-C formation
➢ Alkyne → Alkene: Pd-C formation

Pd-C surface phase controls selectivity

• In situ measurements: 2*10-3 mbar

 $C_2H_4:O_2=1:3$, heating ramp 10K*min⁻¹

• In situ measurements:

During the oxidation a carbon containing phase is formed and changes the selectivity from CO_2 towards CO

[1] J. N. Andersen, et al. Phys. Rev. B 50 1994 17525

Conclusions

- During ethene oxidation the incorporation of carbon leads to a non metallic Pd-C phase.
- The new, highly symmetric Pd3d_{5/2} peak was observed. The depth profiles indicate that this new phase is not only limited to the surface.
- The appearance of this phase is accompanied by strongly enhanced CO selectivity

Innovative Station for In Situ Spectroscopy A project of BESSY and the Dep. Inorganic Chemistry, Fritz-Haber-Institut

Installation of a beamline exclusively used for in situ spectroscopy in the soft X-ray range

Installation of infrastructure optimized for these kind of experiments on site (e.g. chemical lab, gas supply, gas analytics)

Later, further implementation of other in situ spectroscopy techniques: multi wavelength Raman, UV-Vis, fluorescence yield ?!

Start of operation of the beamline: 2007

MAX-PLANCK-GESELLSCHAFT

Thanks to:

- Mounir Chamam, Attila Wootsch (Institute of Isotops, Budapest)
- A. Canning, J. Gamman, S. D. Jackson
- J. McGregor, L. Gladden (University of Cambridge)
- A. Doyle, S. Shaikhutdinov, N. A. Khan, HJ. Freund
- B. Klötzer, W.Unterberger, K. Hayek (University Innsbruck, Dept. Physical Chemistry)
- B. Aszalos-Kiss, D. Zemlianov (Purdue University)
- F. Senf, R. Follath, W. Braun, J. Blume, J. Schmidt, G. Reichardt, O. Schwarzkopf (BESSY)

Why in situ XPS ?

- Many processes cannot be investigated in UHV: "Pressure Gap"
 - environmental chemistry
 - catalysis
 - corrosion
 - electrochemistry
 - biological samples
- Very few methods can investigate the solid-gas interface at high pressures
 - non-linerar optics (SFG, SHG)
 - scanning probe microscopies
 - X-ray diffraction
- Photoelectron spectroscopy is very powerful \Rightarrow Goal: XPS at pressures of at least 5 torr

In situ XPS: obstacles

Fundamental limit:

elastic and inelastic scattering of electrons in the gas phase

<u>Technical issues:</u> - Differential pumping to keep analyzer in high vacuum

- Sample preparation and control in a flow reactor

In situ XPS: basic concept

- Photons enter through a window
- Electrons and a gas jet escape through an aperture to vacuum

In situ XPS instruments: previous designs

- H. Siegbahn et al. (1973-)
- M.W. Roberts et al. (1979)
- M. Faubel et al. (1987)
- M. Grunze et al. (1988)
- P. Oelhafen (1995)

In situ XPS using differentially pumped electrostatic lenses

D.F. Ogletree, H. Bluhm, G. Lebedev, C.S. Fadley, Z. Hussain, M. Salmeron, Rev. Sci. Instrum. 73 (2002) 3872.

Close-up of sample-first aperture region

