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Abstract

The subject of this study is the exchange-correlation-energy functional of reduced density matrix

functional theory. Approximations of this functional are tested by applying them to the homoge-

neous electron gas. We find that two approximations recently proposed by Gritsenko, Pernal, and

Baerends, J. Chem. Phys., 122, 204102 (2005), yield considerably better correlation energies and

momentum distributions than previously known functionals. We introduce modifications to these

functionals which, by construction, reproduce the exact correlation energy of the homogeneous

electron gas.
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I. INTRODUCTION

Reduced-density-matrix-functional theory (RDMFT) is one possible way to tackle the

problem of electronic correlation. It is based on Gilbert’s theorem [1], which is an extension of

the Hohenberg-Kohn theorem to non-local external potentials. Gilbert’s theorem guarantees

that the ground-state expectation value of any observable of a quantum mechanical system

is a unique functional of the ground-state one-body reduced-density matrix (1-RDM). Thus,

the fundamental quantity in RDMFT is the 1-RDM instead of the electronic density on which

DFT is built upon. The properties of the exact 1-RDM have been the subject of theoretical

studies for a long time [1, 2, 3, 4]. Nevertheless, only relatively recently approximate total-

energy functionals of the 1-RDM were used in practical applications [5, 6, 7, 8, 9, 10, 11, 12,

13, 14, 15, 16, 17]. All these approximate functionals give a satisfactory account of electronic

correlations in small atoms and molecules at the equilibrium distance. The latest generation

of functionals performs equally well at the molecular dissociation limit. Especially this latest

success makes RDMFT particularly appealing.

A great advantage of RDMFT, compared to DFT, is that the exact many-body kinetic

energy is easily expressed in terms of the 1-RDM. More specifically, the total energy of a

many-electron system in its ground state, characterized by an external potential V (r), can

be expressed in terms of the ground-state 1-RDM, γ as

Etot [γ] = Eion +

∫

d3r

∫

d3r′ δ(r − r′)

[

−1

2
∇2

r

]

γ(r, r′)

+

∫

d3r

∫

d3r′ δ(r − r′)V (r)γ(r, r′)

+
1

2

∫

d3r

∫

d3r′
γ(r, r) γ(r′, r′)

|r − r′| + Exc [γ] . (1)

The first term in the above expression is a constant not related to the electronic degrees of

freedom, for example the ion-ion repulsion energy. The next three terms are, respectively,

the kinetic, the external potential and the electrostatic energy and they are known, explicit

functionals of γ. Finally, the last term is the exchange and correlation (xc) energy which

contains all the remaining electronic contributions to the total energy. The exact form of

this functional is unknown and for practical applications needs to be approximated. Most of

the approximate functionals for the xc energy that have been introduced so far are implicit

functionals of γ. They depend explicitly on the natural orbitals ϕj, and the corresponding
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occupation numbers nj which are defined as the eigenfunctions and eigenvalues of the 1-

RDM:
∫

d3r′ γ(r, r′) ϕj(r
′) = nj ϕj(r) . (2)

Viewed as a functional of arbitrary γ in an appropriately defined domain, the functional

given in Eq. (1) has a minimum value at the ground-state γ. This appropriate domain

is defined through subsidiary conditions for γ known as N -representability conditions. It

was shown by Coleman [18] that there are two such conditions for γ, and they concern the

occupation numbers
∞
∑

j=1

nj = N , 0 ≤ nj ≤ 1 , (3)

where N is the total number of electrons. These conditions guarantee that γ corresponds

to either a pure many-body state or an ensemble of pure states. The first condition can be

enforced in the minimization with respect to γ through the Lagrange-multipliers method.

In that way, the quantity to be minimized becomes

F = Etot − µ

(

∞
∑

j=1

nj − N

)

, (4)

where µ is the corresponding Lagrange multiplier. µ was shown to be equal to the chemical

potential, i.e. the derivative of the total energy with respect to the total number of elec-

trons [19]. Interestingly, this allows one to exploit the discontinuity of µ as a function of the

particle number for the calculation of the fundamental gap of materials and is a motivation

for the development of RDMFT schemes for periodic systems in order to address questions

like the semiconductor and insulator gaps.

The second of the N -representability conditions (3) has a dramatic consequence: it allows

for border minima in the occupation number optimization. In other words, it allows for the

the existence of a subset of the optimal occupation numbers which are exactly equal to either

one or zero and do not satisfy the condition ∂F/∂nj = 0. We refer to the corresponding

states as pinned states. It is rather unlikely for the exact theory to produce pinned states

for most systems of interest. For an occupation number being exactly equal to one, the

corresponding natural orbital would be present in all determinants of the full CI expansion

with non-zero coefficients. A situation like that has not been found for small atoms and

molecules or for the HEG, where the exact solution can be calculated. While this is true

for the exact xc functional, all the approximate functionals which are considered in this
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work, yield pinned states with nj = 1 for all systems we applied them to, except for the

two-electron systems. These pinned states are core states and, in the exact theory, they

correspond to occupation numbers which are marginally smaller than one. Hence, as far as

the optimal γ is concerned, the approximate result, nj = 1, is perfectly satisfactory. The

important implication, however, is that ∂F/∂nj 6= 0 for the pinned states, and consequently

δF/δγ(r, r′) 6= 0 at the optimal γ.

A number of approximate functionals for Exc, including those of interest in the present

work, can be cast into the form

Exc [γ] = Exc [{nj}, {ϕj}] = −1

2

∞
∑

j,l=1

∫

d3r

∫

d3r′ f(nj, nl)
ϕ∗

j(r) ϕ∗

l (r
′) ϕl(r) ϕj(r

′)

|r − r′| , (5)

i.e. they have the form of the usual Hartree-Fock exchange modified by the function f(nj , nl)

of the occupation numbers. The first such approximation was introduced by Müller [4] and

corresponds to the function f(nj, nl) =
√

njnl. Müller considered a more general exponent

for the occupation number product in the exchange-like term and found an optimal exponent

of 1/2. By modelling the exchange and correlation hole, Buijse and Baerends [5] arrived at

the same functional. Goedecker and Umrigar [6] (GU) considered a modification by explicitly

removing the self-interaction (SI) terms. They also presented [6] a direct minimization with

respect to the natural orbitals and the occupation numbers and found correlation energies

for small atomic systems which are in very good agreement with the exact results. Later

however, it was realized that the GU functional fails to reproduce the correct dissociation

limit for small molecules [20, 21]. On the other hand, the Müller functional yields the correct

dissociation limit but, in all cases, overestimates substantially the correlation energy [20, 21].

In the last decade, several other functionals of the 1-RDM have been introduced [8, 9, 10,

11, 12, 13, 14, 15, 16, 17] and applied to atomic and molecular systems. Recently, Gritsenko

et al. [13] proposed improved 1-RDM functionals based on a hierarchy of repulsive corrections

to the Müller functional. In that way, they attempted to correct the overcorrelation of this

functional. The functionals corresponding to these hierarchical corrections, are called BBC1,

BBC2, and BBC3. For all these functionals, it is essential to divide the natural orbitals into

strongly and weakly occupied ones. This distinction appears naturally for finite systems

since usually a subset of the orbitals corresponds to occupation numbers close to one, and

the rest to occupation numbers close to zero. For the BBC1 and BBC2 functionals, the
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function f(nj, nl) is:

BBC1: f(nj, nl) =







−√
nj nl , j 6= l, and j, l weakly occupied,

√
nj nl , otherwise,

(6)

BBC2: f(nj , nl) =



















−√
nj nl , j 6= l, and j, l weakly occupied,

nj nl , j 6= l, and j, l strongly occupied,
√

nj nl , otherwise.

(7)

Finally, in the BBC3 functional the anti-bonding orbital is treated as strongly occupied

orbital. Additionally, the self-interaction terms are removed as in the GU functional, except

for the bonding and anti-bonding orbitals. Gritsenko et al. [13] applied the BBC functionals

to diatomic molecules and showed that they give an accurate description of these molecules

at both the equilibrium distance and the dissociation limit.

There is a strong motivation for the extension and application of 1-RDM functionals to

solid-state systems. This motivation stems from the success of these functionals in the de-

scription of electron correlation for finite systems, as well as the difficulties of DFT methods

in describing certain materials and properties such as the band gap of semiconductors and

insulators [22, 23, 24, 25] or the band width of the conduction band in Na [26].

A very important prototype system, which serves as a benchmark for the performance

of approximate 1-RDM functionals when applied to periodic systems, is the homogeneous

electron gas (HEG). Furthermore, this system can serve as a laboratory for the development

of approximate functionals, in a fashion similar to DFT. As a consequence of translational

invariance, the natural orbitals can be chosen as plane waves and the search for the ground

state 1-RDM is restricted to the optimization of the momentum distribution n(k), which is

the occupation number that corresponds to the plane-wave natural orbital with wavevector

k. An important point to note is that the self-interaction terms for the plane-wave natural

orbitals vanish. Consequently, the GU and the Müller functionals are identical. Finally,

approximations that involve a special treatment of single orbitals have zero effect in the

continuous wavevector case. Thus, the BBC3 functional is identical to BBC2.

As a consequence of the rotational invariance of the HEG the occupation numbers have

the property n(k) = n(k), i.e. all the plane-wave natural orbitals corresponding to the

same absolute value k are degenerate (with respect to the occupation number). This allows

one to perform unitary transformations among the degenerate plane waves leading, e.g., to
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angular-momentum eigenfunctions

ϕklm(r) = jl(kr) Ylm(Ω) (8)

for the natural orbitals, where jl(kr) are spherical Bessel functions and Ylm spherical har-

monics. Since these functions are localized in real space it is conceivable to include self-

interaction corrections in terms of the natural orbitals (8) for the HEG. To our knowledge,

this possibility has not been explored so far and is also beyond the aim of the present work.

Choosing the natural orbitals as plane waves, the 1-RDM of the HEG can be written as

γ(r, r′) =
2

V

∑

k

n(k) eik(r−r
′) , (9)

where V is the volume of the system (V → ∞). Substituting this expression in Eqs. (1)

and (5) we obtain for the total energy

Etot = 2
∑

k1

k2
1

2
n(k1) −

1

V

∑

k1,k2

f (n(k1) , n(k2))
4π

|k1 − k2|2 + α2
, (10)

where k1, k2 are wavevector indices, and α is a small quantity (usually ∼ 10−8) included

for numerical stability. As in Hartree-Fock, the external potential energy and the electronic

Coulomb repulsion energy, i.e. the third and fourth terms in Eq. (1) cancel exactly with the

first term i.e. the ion-ion interaction. The quantity F of Eq. (4) per particle then becomes

F

N
=

3

2k3
F

∫

∞

0

dk1 k2
1 (k2

1 − 2µ) n(k1)

+
3

4πk3
F

∫

∞

0

dk1

∫

∞

0

dk2 k1 k2 log

[

(k1 − k2)
2 + α2

(k1 + k2)
2 + α2

]

f(n(k1), n(k2)) + µ , (11)

where kF = (9π/4)1/3r−1
s is the Fermi-wavevector of the non-interacting HEG and rs is the

radius (in atomic units) of the sphere with volume equal to the volume per electron.

Cioslowski and Pernal [27] applied the Müller functional to the HEG and calculated

analytically the resulting momentum distribution

n(k) = 512πρ (1 + 4k2)−4 , (12)

where ρ is the electron-density-per-spin, ρ = 3(8πr3
s)

−1. The corresponding total energy

per particle is independent of the density and equal to −1/8 Hartree. It is obvious that the

solution of the Eq. (12) is consistent with the second N -representability constraint of Eq. (3)
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only for ρ ≤ (512π)−1, i.e. rs ≥ 5.77. In other words, the Müller functional gives a solution

without pinned states only for rs ≥ 5.77. In addition, Cioslowski and Pernal demonstrated

that the Oxford-Lieb [28] bound is violated for ρ ≥ 1.65×10−3, i.e. rs ≤ 4.167. The solution

with pinned states for rs < 5.77, was calculated by Csányi and Arias [7]. More specifically,

for rs < 5.77, one gets an optimal momentum distribution n(k) with n(k) = 1 for k below a

certain value kp and fractional n(k) < 1 for k > kp. This behavior is in complete analogy to

the case of finite systems for the Müller functional. Unfortunately, it is in conflict with the

fact that the exact momentum distribution [29, 30] is a monotonically decreasing function

of k and is strictly smaller than 1, i.e. there are no pinned states. Additionally, the exact

momentum distribution is concave for k < kF, it shows a discontinuity at kF, and for k > kF

it goes to zero asymptotically. The size of the discontinuity is decreasing with rs.

In addition to the Müller functional, Csányi and Arias [7] considered a similar functional

derived from a tensor product expansion of the two-body density matrix, which they called

Corrected Hartree-Fock (CHF). Unfortunately, CHF gives zero correlation for the HEG in

the high-density limit (rs → 0), coinciding with Hartree-Fock. In the opposite limit, it

strongly overcorrelates giving the same results as the Müller functional. In the intermediate

region, including the metallic densities, the result for the correlation energy is close to

the exact but its dependence on rs is monotonically decreasing instead of increasing. In

an attempt to improve over the Müller functional and CHF, Csányi, Goedecker and Arias

considered an improved tensor product expansion of the two-particle density matrix [8]. The

resulting functional, which is called CGA, performs very well in the high-density regime and

significantly better than the previous two functionals in the region of metallic densities. The

deviation from the exact correlation energy increases with rs and at higher densities CGA

coincides with CHF and the Müller functional.

In the present work, we apply the BBC1 and BBC2 functionals of Gritsenko et al. [13]

to the HEG and compare with previous functionals as far as the resulting correlation ener-

gies are concerned. We also investigate other features like the resemblance of the resulting

momentum distribution to the exact and the state-pinning. In order to apply the BBC1,2

functionals to the case of the HEG through Eq. (11), we need to distinguish between strongly

and weakly occupied orbitals. For finite systems, Gritsenko et al. [13] chose the first N/2

natural orbitals to be strongly occupied. In complete analogy, we can use a critical wavevec-

tor kc = kF below which all states are assumed to be strongly occupied while above they are
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weakly occupied.

An additional goal of the present work is to demonstrate that the HEG can be used to

develop functionals suitable for metallic systems. The idea is to modify the BBC1 functional

in such a way that it yields the exact correlation energy for the HEG. This is achieved in two

different ways: (i) For each given density we choose kc such that BBC1 reproduces the exact

correlation energy of the HEG at that density. We call this functional kc-functional. (ii)

We introduce a function s(rs) multiplying the xc terms of Eq. (5) for two weakly occupied

orbitals, keeping kc = kF. In this way, we replace the sign change of the BBC1 functional

with the parameter s. Accordingly, we call this functional s-functional.

In the following section we present details of the numerical implementation as well as the

results of applying the BBCs and the kc- and s-functional to the HEG.

II. NUMERICAL IMPLEMENTATION, RESULTS

The minimization of the energy expression (11) with respect to n(k) is performed using

the steepest-descent method. We choose to work in energy-space instead of k-space, i.e. we

perform the variable substitution ǫ = k2/2 and solve numerically the minimization problem

for n(ǫ). Working in energy-space rather than k-space improves the stability of the numerical

treatment. The energy ǫ is discretized using a double-logarithmic mesh centered at ǫF =

k2
F/2, where the occupation varies the most. The upper limit of integration is chosen such

that the momentum-distribution function has dropped to values smaller than 10−6. The

double integration with respect to the energy is carried out using an adaptive grid technique

capable of treating integrable singularities like the logarithmic singularity of the present

problem. The values of the energy-distribution function n(ǫ) in between the mesh points,

necessary for the adaptive grid method, are obtained from an interpolation scheme. The

N -representability constraint 0 ≤ n(ǫ) ≤ 1 is implemented through the substitution n(ǫ) =

sin2[π θ(ǫ)/2] and variation with respect to θ(ǫ). Extra care is required to avoid n(ǫ) being

falsely pinned to 0 or 1. Indeed, if for a particular ǫ, n(ǫ) gets very close to 1 or 0 during the

variation it would stay pinned at that point. The variation with respect to the Lagrange-

multiplier µ is implemented as an external iterative procedure, thus achieving convergence

for each value of µ. The correct value of µ is selected by requiring the momentum-distribution

function to integrate to the correct number of electrons for a given value of rs. Finally, we
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FIG. 1: (Color online) The correlation energy of the HEG as a function of rs calculated with

the BBC1 and BBC2 functionals compared to various other calculations. The Monte Carlo result

represents the Perdew-Wang fit [31] of the DMC data of Ortiz and Ballone [29]. The dotted line

corresponds to the numerical results by Csányi and Arias [7] employing the Müller functional, for

rs < 5.77. Its continuation, the dash-dotted line, for rs > 5.77, stands for the analytical results of

Cioslowski and Pernal [27] employing the same functional. The results for the CHF functional [7]

as well as the CGA [8] are also shown.

found that a reasonable value for the parameter α in Eqs. (10) and (11) is 10−8, which avoids

both numerical problems as well as the dependence of the results on α.

A. Application of the BBC functionals to the HEG

In Fig. 1, we show the correlation energy of the HEG as a function of rs. The correlation

energy calculated with the BBC1 and BBC2 functionals is significantly closer to the exact

than any other functional over the whole range of rs. Both functionals also seem to reproduce

the correct asymptotic limit of zero correlation for the dilute HEG. For small densities up

to metallic densities, the BBC functionals under-correlate, i.e. the absolute value of the
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correlation energy is too small. In the dense limit, they over-correlate and the crossover is

at around rs=0.5 and 0.3 for the BBC1 and BBC2, respectively. Unfortunately, in the area

of low metallic densities both functionals yield correlation energies which deviate from the

exact values by 50%. In absolute numbers, the error of BBC1 and BBC2 is of the same

order as the RPA result [31]. Nevertheless, in the range 0.1 < rs < 1, the BBC functionals

perform remarkably well. Compared to all previous 1-RDM functionals, BBC1 and BBC2

offer a much better account of the electron correlation for the HEG. Although less accurate

than the CGA in the high density region, they perform better for metallic densities and they

reproduce the limit of zero correlation at the dilute HEG limit where the Müller functional,

CHF and CGA fail.

A feature of the exact momentum distribution, namely the discontinuity at the Fermi

wavevector kF, is reproduced by the BBC functionals. The discontinuity is more pronounced

for the BBC1 functional, as can be seen in Fig. 2, where we plotted the momentum distri-

bution of the HEG with rs = 1 and rs = 5 using the Müller functional as well as BBC1 and

BBC2. Contrary to BBC1 and BBC2 the Müller functional does not yield a discontinuity.

To our knowledge, there is no report of any other 1-RDM functional reproducing this fea-

ture of the HEG. To extract the size of the discontinuity quantitatively, we used two energy

mesh points very close to ǫF (at a distance of ±10−8ǫF). In Fig. 3, we plot the size of the

discontinuity ∆n as a function of rs. As we see, it increases monotonically with rs and has

the tendency to saturate for large rs for both BBC1 and BBC2. For BBC2 the discontinuity

is substantially smaller than for BBC1 and it goes to zero at 0.6 < rs < 0.7. Both the size

and the dependence on rs are in complete disagreement with the exact theory, where ∆n

is substantially bigger and decreases with rs as one can see from the two fits to the DMC

data [29, 30].

We now turn to the question of state pinning. As we see in Fig. 2, state pinning is

a common feature of all the functionals we employed. To verify that the states are truly

pinned, we plot the functional derivative δF/δn(k) which is non-zero for pinned states.

As one expects, the number of pinned states decreases with increasing rs. We define a

wavevector kp below which the corresponding states are pinned, i.e. n(k) = 1 for k < kp.

In Fig. 4, we plot kp as a function of rs for the Müller and the two BBC functionals.

For all three functionals, kp decreases monotonically with rs. For the Müller functional our

numerical calculation confirms the analytic result [27] that above a critical value of rs = 5.77
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FIG. 2: (Color online) The momentum distribution n(k) of the HEG for rs=1 (left) and rs =

5 (right) calculated with the Müller functional, BBC1, and BBC2. BBC1 and BBC2 show a

discontinuity of the momentum distribution at kF. For comparison we include the fit to the DMC

data of Ortiz-Ballone [29]. The derivative δ(F/N)/δn(k) is also plotted. Note that for small k the

derivative is not zero and n(k) is pinned at one.

there are no pinned states, and therefore kp goes to zero at this value. This can already be

seen in Fig. 2, where, for the Müller functional at rs = 5, the derivative is very close to zero

even for small wavevectors. Interestingly, for BBC1 and BBC2 we found no such critical
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FIG. 3: (Color online) The discontinuity ∆n of the momentum distribution at kF for BBC1 and

BBC2 as a function of rs, compared to the fits of Ortiz and Ballone (OB) [29], and Gori-Giorgi

and Ziesche (GZ) [30] to the DMC data.

value up to rs = 20. Indeed, for both BBC1 and BBC2 the decrease of kp is much smaller

than for the Müller functional, kp being almost constant for BBC2.

As we have seen, the performance of the BBC1,2 functionals for the HEG is improved

significantly compared to previous functionals. This is especially remarkable, given that

they were originally constructed to describe the dissociation of small molecules.

B. Improved functionals for the HEG

In this section, we attempt to improve over the BBC functionals for the HEG. We present

two functionals which are simple modifications of the BBC1 functional. In both cases, the

BBC1 functional is generalized by introducing an additional function of rs such that the

correlation energy of the HEG is reproduced exactly for each rs. As exact results we regard
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FIG. 4: (Color online) The wavevector kp, where the optimal momentum distribution becomes

fractional, as a function of rs.

the Perdew-Wang fit [31] of the correlation energy obtained from diffusion Monte Carlo

(DMC) calculations by Ceperley and Alder [32] and Ortiz and Ballone [29]. The two Monte

Carlo calculations yield almost identical correlation energies.

For the first functional, we adjust the critical wavevector kc, which is used to distinguish

between strongly and weakly occupies states, instead of using kc = kF, as in BBC1. We call

this functional the kc-functional. The corresponding function f in Eq. (5) then reads

f(n(k1), n(k2)) =







−
√

n(k1) n(k2) , k1, k2 > kc(rs),
√

n(k1) n(k2) , otherwise.
(13)

We perform the fitting of kc over the range of metallic densities, 0.5 ≤ rs ≤ 5. The results

are compiled in Table I. For rs = 0.5, kc ≈ kF, since this point is almost exactly reproduced

by BBC1 (see Fig. 1). For rs > 0.5, kc is a monotonically increasing function of rs. Fitting

kc has a strong impact on the momentum distribution which is displayed in Fig. 5, for

rs = 1 and rs = 5. It is not surprising that the discontinuity is displaced from kF to kc.
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rs 0.5 1.0 2.0 3.0 4.0 5.0

kc/kF 0.994 1.032 1.085 1.122 1.155 1.172

TABLE I: The the critical wavevector kc for some metallic densities.
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FIG. 5: (Color online) The momentum distribution for the kc-functional compared with the BBC1

and the fit to the DMC data of Ortiz-Ballone [29], for rs = 1 and rs = 5. For the kc-functional the

discontinuity is moved from kF to kc, i.e to 1.032kF and 1.172kF respectively.

Additionally, its size is reduced significantly compared to BBC1. Both the displacement of

the discontinuity and the decrease in the step size are in disagreement with the exact result.

An alternative idea is to keep kc = kF fixed and consider a fitting parameter s multiplying

the exchange-like terms when both states, k1 and k2, are weakly occupied, i.e.

f(n(k1), n(k2)) =







−s(rs)
√

n(k1) n(k2) , k1, k2 > kF,
√

n(k1) n(k2) , otherwise.
(14)

In this way, the parameter s which is a kind of strength of the xc terms becomes a function

of rs, as indicated in Eq. (14). We call this functional the s-functional. The values of s

for the fitting to the Ortiz and Ballone DMC results are included in Table II. As we see,

s varies between 4 and −0.26 for the range of densities, 0.1 ≤ rs ≤ 10, we considered. In

Fig. 6, we show the resulting, monotonically decreasing function s(rs).

From Fig. 7 one can see that one of the advantages of fitting s instead of kc is that the

discontinuity of the momentum distribution remains fixed at kF. In addition, its size is

almost constant (≈ 0.2) as a function of rs. As we see in Fig. 3, the exact discontinuity is

significantly higher and it is a decreasing function of rs. Therefore, concerning the size of

the discontinuity, the s-functional does not improve over the BBC1, which, in the dilute gas
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rs s

0.1 4.913

0.2 2.751

0.3 1.867

0.4 1.390

0.5 1.087

0.6 0.877

0.7 0.727

0.8 0.602

rs s

1.0 0.435

1.5 0.190

2.0 0.059

3.0 -0.074

4.0 -0.146

5.0 -0.189

7.0 -0.234

10.0 -0.263

TABLE II: The fitted values of s for various values of rs for the s-functional. s was fitted to

reproduce the correlation energies of the DMC calculation of Ortiz and Ballone [29].

limit, is close to the exact result. However, the increasing behavior of BBC1 is improved by

the s-functional which yields discontinuities that are almost constant as a function of rs.

In conclusion, the s-functional results in momentum distributions that resemble the exact

ones over the whole range of rs more closely than any of the other functionals considered

here.

III. CONCLUSION

We have applied a variety of 1-RDM functionals to the HEG. We show that the BBC func-

tionals [13] yield a significant improvement over previous functionals as far as the correlation

energy is concerned. In addition, they yield a discontinuity of the momentum distribution

at the Fermi wavevector in resemblance of the exact HEG theory. However, the size and

the dependence on the density of this discontinuity are not in agreement with the quantum

Monte Carlo results.

By introducing an appropriately fitted function of rs in the BBC1 functional, we demon-

strate that the exact correlation energy of the HEG can be reproduced with a smooth and

monotonic fitting function. For this function, we either use the critical wavevector kc(rs)

which distinguishes between the strongly and weakly occupied states, or a strength s(rs)

multiplying the exchange-like terms for two weakly occupied states. Both of these proce-
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FIG. 6: (Color online) The dependence of the fitting parameter s on rs resulting from fits to

the Perdew-Wang parameterization [31] of the correlation energy from two different sets of DMC

results: the Ceperley and Alder [32] and the Ortiz and Ballone [29].
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FIG. 7: (Color online) The momentum distribution given by the s-functional, compared with the

BBC1 and the fit to the DMC data of Ortiz-Ballone [29], for rs = 1 (s = 0.435), and rs = 5

(s = −0.189). The discontinuity remains at kF and is approximately equal to 0.2.

dures were applied to the BBC1 functional. The two functionals, yielding by construction

the exact correlation energy of the HEG, are assessed by the quality of the resulting mo-

mentum distributions. We show that choosing the second procedure, i.e. the s-functional,

is superior to fitting kc. The discontinuity ∆n of the momentum distribution resulting from
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the s-functional is nearly constant as a function of rs and hence represents a significant

improvement over BBC1 and BBC2. However, the momentum distribution obtained by the

s-functional still deviates significantly from the exact one. To remedy this, more complicated

strategies have to be considered, possibly with the introduction of more fitting parameters.

Our functional of choice, being derived from the HEG, is expected to yield good results

for metallic systems. The application to finite as well as non-metallic periodic systems is

not straightforward because rs is not well-defined in these cases. Hence, the necessity arises

to map rs onto other quantities characterizing these systems, or to involve a LDA-type

prescription relating s(rs) to the local density.
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