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Abstract

Scroll waves are vortices which occur in three dimensional excitable

media. Scroll waves have been observed in a variety of systems including

cardiac tissue, where they are associated with cardiac arrhythmias. The

disorganization of scroll waves into chaotic behavior is thought to be the

mechanism of ventricular fibrillation, which lethality is widely known. One

of the possible mechanisms of scroll wave instability is negative filament

tension, which was studied theoretically using low dimensional models

of excitable medium. In this article we perform a numerical study of

negative filament tension using the Luo-Rudy phase 1 model, which is

widely used in cardiac electrophysiology. We show that this instability

exists in this model, study its manifestation and discuss its relation to

cardiac arrhythmogenesis.
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Rotating spiral waves occur in a variety of nonlinear excitable me-

dia. The appearance and multiplication of spiral waves disorders the

spatial organization of the medium and may result in turbulent or

chaotic behavior. If such a regime occurs in cardiac tissue it causes

cardiac fibrillation, which is one of the main causes of death in the in-

dustrialized world [1]. Several mechanisms were proposed to explain

the origin of the instability which produces this turbulence. The most

discussed of them relate the instability to tissue heterogeneities or to

dynamical instabilities of wave propagation in cardiac tissue. In this

article we investigate an alternative mechanism based on negative fil-

ament tension of scroll waves in cardiac tissue. We show that negative

filament tension occurs in a one of the most widely used ionic models

of cardiac tissue, the Luo-Rudy phase 1 model, determine the region

of parameters for this instability and discuss its possible application

for cardiac arrhythmias in conditions of low excitability.

1 Introduction

Contraction of the heart is controlled by electrical waves of excitation that prop-

agate through the myocardium and induce the contraction of the cardiac fibers.

Abnormal excitation of the heart results in cardiac arrhythmias. Ventricular

tachycardia is a common cardiac arrhythmia which is characterized by a high

rate of cardiac excitation and thus high rate of contraction of the heart. Exper-

imental and clinical studies show that in most of the cases tachycardia is driven

by a reentrant wave of excitation, also called spiral wave. Spiral waves have

been found in a wide variety of non-linear systems in physics, chemistry and

biology [2]. Ventricular tachycardia can deteriorate into ventricular fibrillation

(VF). VF is characterized by a turbulent pattern of excitation which disrupts

the coordinated contraction of the heart and results in sudden cardiac death.

Currently the two main hypothesis of VF are the mother rotor and the multiple

wavelet hypothesis. The mother rotor hypothesis assumes that VF is driven
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by one stable high frequency source mother rotor and complex VF patterns are

the result of multiple breaks of the waves from this source at heterogeneities

of the heart [3]. The multiple wavelet hypothesis explains VF by breakup of

spiral waves due to dynamical or anatomical heterogeneity [4,5]. Many possibil-

ities for spiral breakup have been studied theoretically [6]. However, the exact

mechanism of onset of this chaotic pattern in the heart remains unknown.

There are several factors that are considered important for VF onset. One

of such factors is the three-dimensional (3D) structure of the heart. As was

discussed in [7], VF can occur if the thickness of the ventricular wall of the

heart exceeds some critical value, thus it implies that instabilities of waves in

three dimensions may be of great importance.

The extension of a spiral wave into three dimensions is a scroll wave. Scroll

waves have been observed in many excitable systems, such as the Belousov-

Zhabotinsky chemical reaction [8, 9], in the slug phase of the life cycle of slime

molds [10] and in the ventricles of the heart during cardiac arrhythmias [11,12].

Numerous modeling studies of scroll waves have been performed using analytical

and numerical methods. The importance of scroll waves for our understanding

of the behavior of excitable media has been consistently emphasized in the

literature [13].

A scroll wave is usually characterized by its filament [2], which is an extension

into three dimensions of the notion of the core of spiral waves. The filament can

be regarded as a union of the cores of all the spirals which can be seen in various

sections of the scroll wave. This filament can be straight or curved, or can even

be closed into a ring. This last type of waves with a circular filament are known

as scroll rings (Fig.1). Scroll ring filaments are non-stationary and drift in space

Fig.1. The two main drift regimes are filament contraction (positive tension)

and filament expansion (negative tension) [14]. Drift can be characterized by

the velocity, which has components in the normal and binormal directions. Both

drift velocities in the normal Vn (horizontal in Figure 1) and Vb the binormal

(vertical) are proportional to the curvature k of the filament:
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Vn = Dnk, (1)

Vb = Dbk; (2)

where Dn and Db are the proportionality coefficients. These relations have been

verified in 3D experiments with the Belousov-Zhabotinsky reaction, where scroll

rings are observed to shrink with a rate proportional to the curvature.

Filament tension is important for filament stability [15]. If the tension of

the filament is positive, the filament tends to become shorter, which results ei-

ther in the collapse of the scroll wave with a closed (circular) filament or in the

stabilization of a straight filament between two boundaries [16]. If the filament

tension is negative this will result in an instability because the filament will tend

to increase its length and as a result there will be the formation of new filaments

when the growing filament touches the boundaries of the medium. The nega-

tive filament tension has been associated to a translation band instability [17].

Although negative filament tension still has not been observed in experiments,

it was studied analytically in ref. [18] and observed in numerical simulations in

the FitzHugh Nagumo model ref. [14, 15] and in the Fenton Karma model [6].

Later, numerical studies on the final complex regime, were performed [19, 20]

with the Barkley model of excitable media [21].

In spite of potential importance of negative filament tension for VF, this

type of instabilities has not been studied in any ionic model for cardiac tissue

that incorporates the most accurate description of properties of cardiac cells.

Currently there are many ionic models for cardiac cells which describe various

types of cardiac tissue (for review see [23]). However, for 3D cardiac simulations

the most widely used is the Luo-Rudy model for ventricular cardiac cells [22,24].

In this paper we use the Luo-Rudy model to study negative filament tension. We

show that negative filament tension can occur in this model, find the parameter

region for its onset and give a 2D test that may help to identify this phenomenon

in cardiac tissue. We also discuss its possible applicability to experimental

research.
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2 Methods

Cardiac tissue can be modeled by the following system of parabolic partial

differential equations [25, 26] :

∂V

∂t
= −Iion

Cm
+D∇2V. (3)

Here V is the transmembrane potential, t is time, Cm = 1 µF/cm2 is the

membrane capacitance, D = 0.001 cm2/ms is the diffusion coefficient and Iion

is the sum of all transmembrane ionic currents. We use the Luo-Rudy phase 1

model (LR1) [22] for the calculation of the total current: Iion = INa + Isi +

IK + IK1 + IKp + Ib, where INa = GNam
3hj(V −ENa) is the fast Na+ current,

ISi = GSidf(V − ESi) is the slow inward Ca2+ current, Ik = Gkxx1(V −
Ek) is the slow outward K+ current, IK1 = GK1K1∞(V − EK1) is the time-

independent K+ current, IKp = GKpKp(V − EKp) is the plateau K+ current,

and Ib = Gb(V − Eb) is the background current. The variables m, h, j, d, f

and x are gating variables, which dynamics can be modeled by

dy

dt
= (y∞−y)/τy, (4)

where y represents any of the gating variables. We use the following ionic

concentrations: [Na+]i = 18mM , [Na+]o = 140mM , [K+]i = 145mM and

[K+]o = 5.4mM , the maximal conductances for the potassium currents are

Gk = 0.282mS/cm2 and Gk1 = 0.6047 mS/cm2, and the maximal conduc-

tances for sodium and inward slow calcium currents are respectively GNa = 23.0

mS/cm2 and GSi = 0.09mS/cm2. The values of GNa, GSi and [K+]o are varied

and will be specified later. For more details of the model see Ref. [22].

We numerically integrate Eq.3 by the Euler method with a temporal step

∆t = 0.02ms and by the use of finite differences for the calculation of the

Laplacian with a spatial step ∆x = 0.02cm. We solve Eq.3 in a one-dimensional

cable in order to calculate the velocity and the duration of the action potential

(APD). The velocity of the traveling wave is calculated once the shape of the

action potential is stationary. The APD is defined by the condition V > −72mV
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when the resting potential is around VR = −84mV [27,28]. However the resting

potential depends on the concentration [K+]o, therefore for larger values of

the concentration of extracellular potassium we approximate the APD by the

condition V > (VR + 10)mV . Spirals waves are generated in 2D domains of

up to 14 × 14 cm2 by applying the S1-S2 protocol [25, 26]. Scroll waves are

generated from a stack of 2D spiral waves by displacement of the solutions

along the vertical axis with a sinusoidal perturbation of the pattern in order

to create an initial perturbation on the scroll filament. The size of the tissue

is up to 4 × 4 × 4 cm3. We used such large tissue size in order to minimize

possible effects of the boundaries on our solutions. We use no-flux boundaries

conditions.

The radial symmetry of scroll rings allows us to study filament drift using

just two spatial coordinates [14]. Indeed, for the Laplacian of Eq.3 in a cylindri-

cal coordinate system r, φ, z, all angular derivatives will disappear, due to the

symmetry of the problem, and the equation can be re-written as:

∂V

∂t
= −Iion

Cm
+D

(
∂2

∂r2
+

1

r

∂

∂r
+

∂2

∂z2

)
V. (5)

The trajectories of the spiral tip and the dynamics of the filaments of the

scroll wave are found using the algorithm of filament tracing developed in [29]

at the level of V = −35mV .

3 Results

3.1 Weakly excitable cardiac tissue in the LR1 model.

In low dimensional models of excitable media negative filament tension was

found under conditions of weak excitability where the motion of the waves is

quite stable and the front-tail interaction between the consecutive pulses is

absent. The main parameters of the LR1 model that affect excitability are the

maximum sodium conductance GNa, the maximum conductance of the slow

inward current GSi and the concentration of extracellular potassium [K+]o.

Note, that these parameters are also important in the study of acute myocardial
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ischemia [30], which is one of the main physiological conditions that reduces the

excitability of cardiac tissue.

We reduce the value of the maximum conductance GSi, which controls the

slow inward current. The effect of this modification is shortening of APD. If

APD is short there is less interaction between the pulses and, thus, the trajec-

tories of the tip in 2D and of the filament in 3D are more regular. Therefore, we

employ low values of GSi, in order to avoid complex meanders and breakup [28].

Note, that the reduction of GSi was used in [30] to simulate conditions of acidosis

due to ischemia.

Fig.2 shows the effect of these parameters on the main characteristics of

the cardiac action potential. We see that the velocity of a traveling wave is

almost independent of the value of the slow inward current (Fig.2,A). However,

the APD substantially decreases with a decrease of GSi (Fig.2,D). The value of

GNa has a substantial effect on the velocity of the waves (Fig.2,B), but the APD

remains almost constant (Fig.2,E). Effects of [K+]o are more complex: we see

a non-monotonous dependence of the velocity on the potassium concentration

(Fig.2,C) and slight decrease in APD for large values of [K+]o (Fig.2,F).

With these considerations we reduce excitability in two steps: first, by the

reduction of the slow inward current conductance GSi, and second, by the re-

duction of the maximum sodium current conductance GNa or the increase of

extracellular potassium concentration [K+]o.

In some simulations we modify the dynamics of the variable j by clamping it

to 1. The reason for that is the same as for the modification of GSi. As shown

in numerical simulations [28] the rotation of spiral waves in the LR1 model with

clamped values of j is much more stable, and in some cases even rigid rotation

of spiral waves is observed. This particular modification of the original model

was already considered in the original article of Luo and Rudy [22], and it was

one of the central assumptions of the Ebihara and Johnson model of the sodium

current [31].
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3.2 Negative filament tension

We found that negative filament tension can occur in the LR1 model of cardiac

tissue in conditions of low excitability. Figure 3 shows typical dynamics.

The simulation starts with an initial condition in the form of a scroll wave

with a sinusoidally perturbed straight filament (Fig.3,A). After several rotations

the filament begins to bend (Fig.3,B) and the length and curvature of the fil-

ament increases (Fig.3,C-D) until the filament touches the boundary (Fig.3,E)

and a new scroll wave appears. This process goes ahead giving rise to a com-

plex spatio-temporal pattern of excitation (Fig.3,E-F). This chaotic dynamics

persists as long as we perform the simulation (10 s). As shown in Fig.3 new

filaments appear and disappear as a result of the interaction with the bound-

aries or due to the interaction between the filaments. The excitation pattern is

similar to the dynamics obtained in low dimensional models of excitable media

under negative filament tension [6, 15, 19].

The filament instability is a pure three-dimensional effect, spiral waves are

completely stable in two dimensions under the same parameter values. It means

that there is a minimal thickness of the wall in order to observe the instability.

In Fig.4 we show the results of numerical simulations with the same parameter

values as in Fig.3 but for different vertical thickness. For thick three-dimensional

tissue the negative tension instability develops (Fig.4,A) similar to that in Fig.3.

However, when the tissue is very thin, the instability does not develop and the

scroll wave rotates similar to a spiral wave in two dimensional media (Fig.4,C).

For the intermediate thickness the filament is unstable, but it undergoes a com-

plex meandering motion without breaking up (Fig.4,B).

In the above described simulations the values of the parameters were GNa =

3.9 mS/cm2 and GSi = 0.0 mS/cm2. Increasing either GNa or GSi results in

an increase of the excitability of the cardiac tissue causing the tension of the

filament to become positive. For positive filament tension we observed that

the initially perturbed filament stabilizes between the opposite boundaries and

remains straight for the whole simulation.

In order to find the region in parameter space where scroll rings expand,
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we performed numerical simulation for different values of GNa, using the radial

symmetry assumption (see Eq.5). The results of two simulations of this type

are plotted in Fig.5, where we show the position of the free edge of the scroll

ring, (analog to the spiral tip in two dimensions) in the course of time for two

different values of the sodium conductance. We see fast oscillations in the R and

Z value, which reflect the rotation of a scroll ring around a core region which

has size of about 1cm, and slow drift of the filament in space. The left column

of Fig.5, which corresponds to the weak excitability case from Fig.3, shows the

scroll ring with negative filament tension: the scroll ring radius increases with

time, that, as we saw in Fig.3 results in filament instability. The right column

shows the results for a larger value of GNa. We see that now the scroll ring

has positive filament tension: the radius of the scroll ring decreases, what in 3D

corresponds to the case in which straight filaments are stable.

The average drift velocities of the filament in the normal and binormal direc-

tions for different GNa are shown in Fig.6. We see (Fig.6,A) that for GNa < 4.10

mS/cm2 the normal drift velocity is positive, corresponding to negative tension

filament tension, while for GNa > 4.16 mS/cm2 the normal drift velocity is

negative corresponding to positive filament tension. Interestingly enough, the

transition from the positive to the negative filament tension regime is not con-

tinuous for both normal and binormal components.

Change of dynamics of spiral wave rotation under the change of GNa is

shown in Fig.7. In order to avoid Doppler effects, we calculate the average

of the periods of the waves calculated near the four corners of the medium.

We see that period decreases with the increase of GNa, but there is a non-

monotonous increase in period around the transition point between positive

and negative tension. This period increase is due to meandering of the spirals.

Indeed, as shown in [32], meandering (under periodic forcing) affects the period

of spiral wave rotation. The variance of the period, which is closely related to

the amplitude of the meandering, also increases around the transition point.

We see substantial changes in the meandering pattern of spiral waves with the

increase of GNa. The core shape changes form a circular core to inward loop
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meandering, then the radius of the meandering pattern dramatically increases

(around GNa = 4 mS/cm2). Further increase in GNa results in change of the

meandering regime from inward to outward loops. For larger values of GNa

there is a decrease of the meandering radius of this outward loop pattern. We

also see that the transition boundary between positive and negative filament

tension coincides with the boundary between inward and outward loops of the

meandering motion.

Now we can explain the non-continuity of the velocities in Fig.6. Such non-

continuity occurs in the region where meandering of spirals has a large radius.

In this region, the drift pattern is mainly determined by the meandering and

not by 3D effects. Also, in that region, spiral waves typically disappear as a

result of the collision with the boundaries.

A two parametric study of filament drift is shown in Fig.8. Here, the evolu-

tion of the filaments in the plane (R,Z) are plotted for different values of GNa

and GSi. All the scroll rings begin with the same initial radius and the direction

of motion is shown by an arrow. Note, that decreasing of GNa < 3.6 mS/cm2

results in propagation failure and cardiac tissue becomes non-excitable. We see

that for small values of GNa scroll rings expand and this dynamics corresponds

to negative filament tension. For large values of GNa scroll rings collapse and

disappear, corresponding to positive filament tension. In the region between ex-

tension and contraction of scroll rings (grey squares in Fig.8), the drift pattern

was more complex due to pronounced meandering of spiral waves in a similar

way as was discussed above.

In order to relate filament drift to the corresponding dynamics of spiral waves

we performed 2D simulations for the same value of the parameters. The results

are shown in Fig.9. We see that for low values of GNa and GSi spiral waves

rotate rigidly around the central core. When the value of GNa is increased

the spiral wave develops a complex motion composed by two frequencies and

meandering of spiral waves with inward loops is observed. For larger values of

GNa the spiral waves also meander but now with outward loops. Between both

regimes straight drift of spiral waves can be observed [33]. We also see that
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for increasing values of GSi, meandering is different because the spiral performs

large straight motions between the loops of the meandering. For large values of

GSi spiral waves breakup and study of tip dynamics is not possible anymore.

The comparison of Fig.8 and Fig.9 shows a clear relation between the me-

andering with inward loops in 2D and the negative filament tension in 3D; also

between meandering with outward loops in 2D and the positive filament ten-

sion in 3D. This relation has also been observed in low dimensional models of

excitable media and cardiac tissue [6, 34], and in the Oregonator model of the

Belousov-Zhabotinsky reaction [35]. Here we show that it also works for a de-

tailed model of cardiac tissue. It allows us to propose a 2D test for negative

filament tension: we need to study meandering of spiral waves in 2D slices of

cardiac tissue. Negative filament tension can be expected for such conditions in

cardiac tissue that produce an inward loop meandering of spiral waves.

We have also studied how the modification of sodium current by clamping

of the gate variable j to 1 affects filament drift. Clamping of the j gate to 1

substantially reduces the meandering of spiral waves [28].

Similar to the previous figures, Fig.10 and Fig.11 show the filament drift and

the corresponding meandering patterns for different values of GNa and GSi. We

see that meandering of spiral waves with j clamped to 1 is less pronounced and

is similar to the meandering observed in low dimensional models of excitable

media near the condition of weak excitability.

The main 3D effect of the clamping of j is a shift of the boundary between

positive and negative filament tension toward larger values of GNa and a change

of the direction of the vertical drift of the scroll rings in Fig.8 and Fig.10: the

binormal velocity of the contracting scroll rings in Fig.8 is positive for large

values ofGSi and negative for small values ofGSi, while in Fig.10 the contracting

scroll rings always drift upward.

3.3 Increased extracellular potassium concentration [K+]o

One of the main physiological conditions resulting in a decrease of excitability of

cardiac tissue is ischemia. In the LR1 model the effects of ischemia are usually
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represented by the decrease of the sodium and calcium conductances (GNa and

Gsi) [30], by the decrease of cell-cell coupling in the diffusion coefficient term

[37], and mainly by elevation of the level of extracellular potassium [K+]o [30,

36]. We have therefore studied the effect of [K+]o on scroll wave dynamics.

First of all, Fig.12 shows the effect of [K+]o in spiral wave dynamics. We

see that an increase of [K+]o dramatically increases the wavelength of the spi-

ral wave and decreases the APD. We observe dense spirals (Fig.12,A) for low

values of the extracellular potassium concentration and sparse spirals for high

values (Fig.12,C-D). For still larger concentrations of the extracellular potas-

sium ([K+]o > 13.6mM) the cardiac tissue becomes non-excitable.

Fig.13 shows typical patterns of scroll wave filament drift for the same pa-

rameter values as in Fig.12. We see, that the increase in [K+]o results in a tran-

sition between positive and negative filament tension. For low values of [K+]o

scroll rings shrink (Fig.13,A-C) and, thus, filament tension is positive. Around

[K+]o ∼ 13.3mM the tension of the filament changes and scroll rings expand

(Fig.13,D). As in the previous cases, the velocity of the scroll ring drift increases

when the values of the parameters are close to the boundary between positive

and negative filament tension. Indeed, the drift of the scrolls in Fig.13,C-D is

larger than in Fig.13,A-B; and there is also a correspondence between inward

meandering and negative filament tension (Fig.12,D,D’) and between outward

meandering and positive tension (Fig.12,A-C,A’-C’).

One of the consequences of elevating the potassium concentration is the in-

crease of the refractory period [30], which increases the amplitude of meandering

of spiral waves. Spiral waves for normal [K+]o concentration rotate with a small

meandering (Fig.13,A’), but as the value of [K+]o increases, the meander am-

plitude grows (Fig.13,C’) although the APD decreases (Fig.2).

4 Discussion

Negative filament tension has been observed in several low dimensional mod-

els of excitable media and reduced models of cardiac tissue. This instability
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gives rise to chaotic dynamics in 3D media and can potentially be applied to

understanding the mechanisms of ventricular fibrillation.

The LR1 model has been widely used to study the dynamics of cardiac

cells and the propagation of waves in cardiac tissue. We have demonstrated by

numerical simulations that negative filament tension exists in the LR1 model

of cardiac tissue. This instability leads to chaotic wave dynamics in a slab of

cardiac tissue. The character of the 3D turbulence obtained with the LR1 model

does not substantially differ from the chaotic behaviors obtained with simpler

models.

Negative filament tension is only observed in a parameter region where ex-

citability is weak and near the limit of propagation failure. The propagation

of waves in cardiac tissue is usually observed in the limit of normal or high

excitability i.e. far from this region of parameters. However, there are some

conditions in which excitability of cardiac tissue is substantially decreased: for

example during ischemia. We have mimicked the conditions of ischemia by in-

creasing the concentration of extracellular potassium and found, that combined

with decreasing of sodium and slow inward currents, it may result in the onset

of instability.

Although negative filament tension was found in a relatively small region of

parameters, we think that it still can be observed in cardiac tissue in ischemic

conditions. Indeed, the tissue excitability during the course of ischemia changes

from normal to pathological conditions where the tissue is unable to sustain

propagating waves. Therefore, as follows from our simulations, at a certain

moment of time just before propagation failure the tissue should be in the region

of the negative filament tension regime. Also, ischemia is not homogeneous in

space, thus the conditions for negative filament tension can be satisfied locally

in different regions at different times.

Another effect of ischemia is decreasing of cell-to-cell coupling [37]. Such

decreasing can be modeled by decreasing the value of the diffusion coefficient in

Eq.(3). In general, change of the diffusion coefficient does not changes the regime

of filament drift, because it can be rescaled from the equations by changing the
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spatial variables. However, if cell-to-cell uncoupling will be substantial, it will

lead to discrete propagation [37], and thus to additional decrease of excitability

of the tissue, which will increase the region of existence of the expansion regime.

It would be interesting to look for a correlation of the onset of arrhythmias

and tissue excitability in ischemic conditions. The results of this paper suggest

that if such arrhythmias will occur close to propagation failure, they are likely

to have a negative filament tension mechanism.

Another pure 3D instability, is scroll wave breakup due to rotational anisotropy

of cardiac tissue [29,38]. As was shown in [29], such instability occurs as a result

of filament elongation due to the twist of the filament that develops because of

tissue anisotropy. Anisotropy should also affect filaments in the negative fila-

ment tension regime, thus it should enhance the instability. Therefore we can

expect that taking into account anisotropy of cardiac tissue will increase the

region of parameters for which negative filament tension can be observed.

We show that for drift velocities, the transition from the positive to the neg-

ative filament tension in LR1 model is not continuous (Fig.6). Similar behavior

for the normal velocity has already been observed in low dimensional models of

excitable media [20,34]. In those models the normal velocity shows a maximum

in the negative tension region and a minimum in the positive tension region.

Between both peaks there is a value of the parameters with null radial velocity

corresponding to null filament tension. We cannot reproduce these results with

the LR1 model because the large meandering observed in the dynamics of the

filament masks these drifts. The behavior of the binormal velocity, however, dif-

fers from the previous results obtained with reduced models of excitable media.

This change between positive and negative drift has never been observed.

In all cases we observed a clear correlation between inward petals on the

meandering of spiral waves and negative filament tension. We propose to use it

as a 2D test for the negative filament tension regime. Using it we can suggest

that negative filament tension should be observed in the Beeler-Reuter model

[39] where inward meandering has been reported in the weak excitability limit

[40]. Furthermore, inward meandering of spiral waves was found in experiments
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of 2D preparations of cardiac tissue [41]. This suggests that we can expect

negative filament tension in thicker 3D preparations under the same as in [41]

experimental conditions.
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Figure 1: Schematic representation of a scroll ring and its filament for the two

main dynamics of filament drift: contraction and extension regimes.
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Figure 2: Velocity and APD of a traveling wave propagating in cardiac tissue

for different values of GNa, GSi and [K+]o. The values [K+]o = 5.4mM and

GNa = 23.0 mS/cm2 are kept constant for panels (A,D), [K+]o = 5.4mM and

GSi = 0.01 mS/cm2 for panels (B,E) and GSi = 0.0 mS/cm2 and GNa = 23.0

mS/cm2 for panels (C,F).
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Figure 3: Evolution of the filament (solid lines) and the waves (grey surfaces)

under condition of negative filament tension in the Luo Rudy model. The pa-

rameter values are GNa = 3.9 mS/cm2 and GSi = 0.0 mS/cm2. The snapshots

correspond to times: (A) t = 200 ms, (B) t = 480 ms, (C) t = 784 ms, (D)

t = 1084 ms, (E) t = 1548 ms, (F) t = 1848 ms.
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Figure 4: Evolution of the filament (solid lines) and the waves (grey surfaces)

under condition of negative filament tension in the Luo Rudy model for a slab

of tissue of 5cm × 5cm and different thickness: 2cm (A), 1cm (B) and 0.8cm

(C). The parameter values are GNa = 3.9 mS/cm2 and GSi = 0.0 mS/cm2.

The snapshots correspond to times around t = 2 s.

20



2 4 6 8 10
t (s)

0

5

10

R
 (c

m
)

2 4 6 8 10
t (s)

0

5

10

R
 (c

m
)

2 4 6 8 10
t (s)

0

5

10

Z
 (c

m
)

2 4 6 8 10
t (s)

0

5

10

Z
 (c

m
)

0 5 10
R (cm)

0

5

10

Z
 (c

m
)

0 5 10
R (cm)

0

5

10

Z
 (c

m
)

A B

D

F

C

E

Figure 5: (Left) Expansion of a scroll ring corresponding to negative filament

tension (GNa = 3.9 mS/cm2 and GSi = 0.0 mS/cm2). (Right) Collapse of a

scroll ring corresponding to positive filament tension (GNa = 5.0 mS/cm2 and

GSi = 0.0 mS/cm2). The evolution of the radius (A,B) and of the vertical

coordinate (C,D), and the dynamics in the plane (R,Z) (E,F) are plotted.
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Figure 6: Value of the normal (A) and binormal (B) velocities of the filament

of scroll rings for different values of the excitability. The parameter GSi =

0.01mS/cm2 is kept constant.
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Figure 7: Period of spiral wave (black points) and the corresponding meandering

patterns for different values of the excitability, the value of the parameters

are the same as in the previous figure. Error bars show the dispersion of the

period, the grey points below the period graph show APD, which does not

change substantially for these parameter values. At the bottom, the meandering

patterns corresponding to: GNa = 3.88 mS/cm2, GNa = 4.02 mS/cm2, GNa =

4.08 mS/cm2, GNa = 4.22 mS/cm2, GNa = 4.32 mS/cm2 and GNa = 4.42

mS/cm2.
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Figure 8: Phase diagram of the motion of the filament of scroll rings in the plane

(R,Z) in front of the variables GNa and GSi. The evolution of the filament is

plotted in all the panels for 10 s. The arrows show the direction of the motion.

24



0.
05

0.
04

0.
03

0.
02

0.
01

3.9

0.
00

4.0 4.1 4.2 4.3 4.4 4.5 4.6

GSi

GNa

2 cm

Figure 9: Phase diagram of the motion of the tip of spiral waves in 2D cardiac

tissue in front of the variables GNa and GSi. The evolution of the tip is plotted

in all the panels for 200 ms.
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Figure 10: Phase diagram of the motion of the filament of scroll rings in the

plane (R,Z), with j clamped to 1, in front of the variablesGNa and GSi, keeping

Gk = 0.423 mS/cm2. The evolution of the filament is plotted in all the panels

for 10 s. The arrows show the direction of the motion.
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Figure 11: Phase diagram of the motion of the tip of spiral waves in 2D cardiac

tissue, with j clamped to 1, in front of the variables GNa and GSi, with Gk =

0.423 mS/cm2. The evolution of the tip is plotted in all the panels for 200 ms.

Figure 12: Examples of spiral waves in cardiac tissue for different values of

the extracellular potassium concentration: A) [K+]o = 5.4mM , B) [K+]o =

10.4mM , C) [K+]o = 12.4mM and D) [K+]o = 13.4mM .
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Figure 13: Dynamics of the filament of scroll rings in the plane (R,Z) for dif-

ferent values of the extracellular potassium concentration: A) [K+]o = 5.4mM ,

B) [K+]o = 12.4mM , C) [K+]o = 13.0mM and D) [K+]o = 13.4mM . Small

panels show the trajectories of the tip of 2D spiral waves (x, y)
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