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Abstract

Focussing on spectroscopic aspects of semiconductors and insulators we will illustrate how

quasiparticle energy calculations in the G0W0 approximation can be successfully combined

with density-functional theory calculations in the exact-exchange optimised effective poten-

tial approach (OEPx) to achieve a first principles description of the electronic structure that

overcomes the limitations of local or gradiant corrected DFT functionals (LDA and GGA).

Contents

1 Introduction

Density functional theory (DFT) has contributed significantly to our present understanding of

a wide range of materials and their properties. As quantum-mechanical theory of the density

and the total energy it provides an atomistic description from first principles and is, in the

local-density or generalized gradient approximation (LDA and GGA), applicable to polyatomic

systems containing up to several thousand atoms. However, a combination of three factors limits

the applicability of LDA and GGA to a range of important materials and interesting phenom-

ena. They are approximate (jellium-based) exchange-correlation functionals, which suffer from
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incomplete cancellation of artificial self-interaction and lack the discontinuity of the exchange-

correlation potential with respect to the number of electrons. As a consequence the Kohn-Sham

(KS) single-particle eigenvalue band gap for semiconductors and insulators underestimates the

quasiparticle band gap as measured by the difference of ionisation energy (via photoemission

spectroscopy (PES)) and electron affinity (via inverse PES (IPES)). This reduces the predic-

tive power for materials whose band gap is not know from experiment and poses a problem

for calculations where the value of the band gap is of importance, e.g. the energies of surface

and defect states. Moreover, the incomplete cancellation of the self-interaction questions the

applicability to systems with localized defect states, strong magnetic interactions or materials

with localized d or f states, such as II-VI compounds, group-III-nitrides, transition metal oxides

or lanthanides, actinides and their compounds. It is therefore desirable to have a more advanced

electronic structure approach that overcomes these shortcomings of LDA/GGA and provides a

reliable description of ground state total energies as well as electronic excitation spectra.

Many-body perturbation theory in the GW approach [1] has developed into the method of choice

for describing the energies of electronic excitation spectra of solids (in the following referred to

as quasiparticle energies) [2, 3]. For conceptual as well as computational reasons, however, it is

currently not feasible to compute total energies for systems of interest. Exact-exchange based

DFT functionals on the other hand give access to total energies and thus atomic structures. In

addition they largely or in certain cases completely remove the self-interaction error. Exact-

exchange in the optimized effective potential (OEP) approach (OEPx or EXX or OEPx(cLDA)

when LDA correlation is added (see also Section 3)) has become the most prominent approach

of this kind. It is self-interaction free and greatly improves the comparison of KS eigenvalue

differences with quasiparticle excitations for solids, with respect to Hartree-Fock [4–15].

Alternatively, the removal of the self-interaction can be approached by applying the exchange-

operator in a non-local fashion within the framework of the generalized Kohn-Sham (GKS)

scheme [16] or by using other non-local schemes such as the self-interaction corrected LDA SIC-

LDA) method [17]. In the former case the bare exchange interaction is empirically screened and

combined with a local potential (commonly referred to as hybrid functional). The most widely

used hybrid functionals are PBE0 [18–20], B3LYP [21–23], HSE [24–26], screened exchange (sX-

LDA) [16,27]. With the exception of SIC and sX-LDA hybrid functionals are only slowly being

applied to solids. Almost no experience exist in their combination with GW calculations and

we will thus defer a discussion of their properties to the outlook.

Combining exact-exchange based DFT calculations with quasiparticle energy calculations [10,

11, 28–30] offers several advantages and will be an important step towards reaching a thorough

understanding of the aforementioned systems. Up to now most GW calculations are performed

non self-consistently as a single perturbation to an LDA ground state. Unlike the Kohn-Sham

scheme in DFT (see Section 3.1) the GW approach in MBPT is not governed by a closed set of

equations. Iterating beyond the first order (G0W0) in the exact theory would introduce higher

order interactions at every step that lead beyond the GW approximation, while iterating the set

of GW equations ignoring these contributions generally worsens the good agreement achieved

after the first iteration (A more detail account of self-consistency in GW will be given in Section

2.2). ¿From the view point of perturbation theory it would thus be advantageous to use OEPx
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Figure 1: LDA KS calculations incorrectly predict wurtzite InN (bottom) to be

a metal with the wrong band ordering at the Γ point. ScN (top) is erroneously

described as semimetal. In OEPx(cLDA) the band gap opens and InN and ScN

correctly become semiconductors, thus providing a more suitable starting point for

subsequent quasiparticle energy calculations in the G0W0 approximation. All calcu-

lations are performed at the experimental lattice constants.

instead of the LDA1 as a starting point for G0W0 calculations, because the corresponding Kohn-

Sham spectrum is closer to the quasiparticle spectrum, thus requiring a smaller correction. This

becomes particularly important for materials where LDA severely underestimates the band gap

like in ZnO (by ≈80% for the wurtzite phase, LDA (at exp. lattice const.): 0.7 eV, exp: 3.4 eV)

or incorrectly predicts a (semi)metallic state as e.g. in germanium (Ge), indium nitride (InN)

and scandium nitride (ScN) (see Fig. 1 and 3).

In this Ψk-highlight we will focus only on spectroscopic aspects of semiconductors and insu-

lators and illustrate how quasiparticle energy calculations can be successfully combined with

OEPx(cLDA) calculations to achieve a first principles description of the electronic structure

that overcomes the limitations of LDA and GGA. Figure 1 summarises the structure and the

message of this paper. For the example of InN and ScN we demonstrate how OEPx(cLDA) opens

the band gap and correctly predicts them to be semiconductors thus providing a better start-

ing point for subsequent G0W0 calculations. The quasiparticle corrections to the OEPx(cLDA)

band structure are considerable – also for Gallium nitride (GaN) and selected II-VI compounds

– bringing the quasiparticle band structure into good agreement with direct and inverse pho-

1All G0W0 calculations in this work are performed at the experimental lattice constants.
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Figure 2: Schematic of the photoemission (PES) and inverse photoemission (IPES)

process. In PES (left) an electron is excited from an occupied valence state (lower

shaded region) into the continuum (white region) starting above the vacuum level

Evac by an incoming photon. In IPES (right) an injected electron with kinetic energy

εi = Ekin undergoes a radiative transition into an unoccupied state (upper shaded

region) thus emitting a photon in the process.

toemission data. Our OEPx based G0W0 calculations have helped to identify the band gap of

InN and ScN and to clarify the source for the puzzling, wide interval of experimentally observed

band gaps [29, 30].

The article is structured as follows. In Section 2.2 we will briefly review the connection between

the single particle Green’s function and photo-electron spectroscopy and then introduce the

GW method. The exact-exchange approach will be described in Section 3. In Section 4 we

will demonstrate why and how the combination of OEPx(cLDA) and GW provides an improved

description of the electronic structure. Finally we will conclude in Section 6 and give an outlook

in Section 7.

2 Quasiparticle energy calculations

2.1 Photo-electron spectroscopy and the quasiparticle concept

In photo-electron spectroscopy (PES) [31–33] electrons are ejected from a sample upon irra-

diation with visible or ultraviolet light (UPS) or with X-rays (XPS), as sketched in the left

panel of Fig. 2. Energies εi = hν − Ekin and lifetimes of holes can be reconstructed from the

photon energy hν and the kinetic energy Ekin of the photoelectrons that reach the detector2.

By inverting the photoemission process, as schematically shown in the right panel of Fig. 2,

the unoccupied states can be probed. An incident electron with energy Ekin is scattered in the

2Throughout this article the top of the valence bands is chosen as energy zero.
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sample emitting bremsstrahlung. Eventually it will undergo a radiative transition into a lower-

lying unoccupied state, emitting a photon that carries the transition energy hν. The energy

of the final, unoccupied state can be deduced from the measured photon energy according to

εf = Ekin − hν. This technique is commonly referred to as inverse photoemission spectroscopy

(IPES) or bremsstrahlung isochromat spectroscopy (BIS) [34–36].

The experimental observable in photoemission spectroscopy is the photocurrent. Since the

energy dependence of the transition matrix elements is usually weak and smooth, structures in

the photoemission spectrum can be associated with features in the density of states (DOS), i.e.

the imaginary part of the one-particle Green’s function3 [3, 37]

A(r, r′; ε) =
1

π
ImG(r, r′; ε). (1)

Peaks due to shake ups and shake downs found in XPS are not described by the GW approxi-

mation and will therefore not be addressed here.

The Green’s function is the solution to the many-body Hamiltonian

Ĥ(r, r′; ε) = ĥ0(r) + Σ(r, r′; ε) (2)

written here in single-particle form where all electron-electron interaction terms are rolled up

in the non-local, energy dependent self-energy Σ. The remaining contributions are given by4

ĥ0(r) = −1
2∇

2 + vext(r). The external potential vext is due to the nuclei, after the Born-

Oppenheimer approximation of stationary nuclei is taken. The photocurrent is then the surface

weighted integral over the diagonal part of the spectral function A(r, r′; ε). We note, however,

that with respect to the measured intensities a photoemission spectrum is a noticeably distorted

spectral function that in addition is weighted over the momentum components normal to the

surface (k⊥). In particular when selection rules and the energy dependence of the transition

matrix elements become important certain peaks in the spectral function may be significantly

reduced or may even disappear completely.

The excitation of a non-interacting or a bare particle would give rise to a delta peak in the

spectral function. When the electron-electron interaction is turned on, the electrons can no

longer be regarded as independent particles. As a consequence the matrix elements of the spec-

tral function Ank(ε) will contain contributions from many non-vanishing transition amplitudes.

If these contributions merge into a clearly identifiable peak that appears to be derived from a

single delta-peak broadened by the electron-electron interaction

Ank(ε) ≈
Znk

ε− (εnk + iΓnk)
(3)

this structure can be interpreted as single-particle like excitation – the quasiparticle 5. The

broadening of the quasiparticle peak in the spectral function is associated with the lifetime τnk =

3The r and r
′ dependence can easily be transformed into a k dependence. Furthermore only the spin unpo-

larised situation is discussed here. For the present discussion a summation over the spin indices in the Green’s

function is therefore assumed.
4Atomic units 4πε0 = h = e = me = 1, where e and me are the charge and mass of an electron, respectively,

will be used in the remainder of this article. If not otherwise stated energies are measured in hartrees and length

in bohr.
5A quasielectron is a new quantum mechanical entity that combines an electron with its surrounding polari-

sation cloud. The same concept applies to holes.
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2/Γnk of the excitation due to electron-electron scattering, whereas the area underneath the

peak is interpreted as the renormalisation Znk of the quasiparticle. This renormalisation factor

quantifies the reduction in spectral weight due to electron-electron exchange and correlation

effects compared to an independent electron.

A computational description of the quasiparticle band structure thus requires the calculation of

the Green’s function and the self-energy.

2.2 The GW formalism

An exact solution to equation (2) is given by Hedin’s set of coupled integro-differential equations

[1]

P (1, 2) = −i

∫

G(1, 3)G(4, 1)Γ(3, 4, 2)d(3, 4) (4)

W (1, 2) = v(1, 2) +

∫

v(1, 3)P (3, 4)W (4, 2)d(3, 4) (5)

Σ(1, 2) = i

∫

G(1, 3)Γ(3, 2, 4)W (4, 1)d(3, 4) (6)

Γ(1, 2, 3) = δ(1, 2)δ(1, 3) +

∫
δΣ(1, 2)

δG(4, 5)
G(4, 6)G(7, 5)Γ(6, 7, 3)d(4, 5, 6, 7) (7)

where the notation 1 ≡ (r1, t1, σ1) is used to denote a triple of space, time and spin variables6.

Accordingly
∫
d(1) is a shorthand notation for the integration in all three variables of the triple.

In eq. 4-7 P is the polarisability, W the screened and v the bare Coulomb interaction and Γ the

so called vertex function. By means of Dyson’s equation

G−1(1, 2) = G−1
0 (1, 2) − Σ(1, 2), (8)

which links the non-interacting system with Green’s function G0 to the fully interacting one (G)

via the self-energy Σ, Hedin’s equations could in principle be solved self-consistently starting

from a given G0. However, the functional derivative in eq. (7) does not permit a numeric

solution, requiring approximations for the vertex function in practise.

Starting from a non-interacting system the initial self-energy is zero and the vertex function

becomes Γ(1, 2, 3) = δ(1, 2)δ(1, 3). The first iteration yields Hedin’s GW approximation for the

self-energy as a function of energy

ΣGW(r, r′; ε) =
i

2π

∫ ∞

−∞

dε′eiε
′δG(r, r′; ε+ ε′)W (r, r′; ε′) (9)

where δ is an infinitesimal, positive time. The physical interpretation of the self-energy cor-

responds to the energy contribution of the quasiparticle that arises from the response of the

system due to quasiparticle’s own presence. The interaction of the electrons in the system is

mediated by the screened Coulomb interaction rather than the bare one. In the GW formalism

W (eq. 5) is calculated in the Random-Phase approximation (i.e. quasiholes and quasielectrons

6Throughout this article we will only consider systems without any explicit spin dependence and will therefore

omit the spin index in the following.
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do not interact with each other) from the irreducible polarizability7 (eq. 4). For the zeroth

order Green’s function G0 a Kohn-Sham Green’s function GKS

G0(r, r
′, ε) = GKS(r, r

′, ε) = lim
δ→0+

∑

nk

φnk(r)φ∗nk(r′)

ε− (εnk + iδ sgn(EF − εnk))
(10)

is typically taken where EF defines the Fermi level.

Keeping Γ fixed (to delta functions) removes the functional derivative from eq. 4-7. These GW

equations could then in principle be solved self-consistently via Dyson’s equation (8). However

this issue is still a matter of debate [38–42]. Unlike in DFT, a self-consistent solution of the full

set of Hedin’s equations would go beyond the GW approximation and successively introduce

higher order electron-electron interactions through the vertex function with every iteration step.

Solving the GW equations self-consistently is therefore inconsistent if no higher order electron-

electron interactions are included. It was first observed for the homogeneous electron gas [43] that

the spectral features broaden with increasing number of iterations in the self-consistency cycle.

Similarly, for closed shell atoms the good agreement with experiment for the ionization energy

after the first iteration is lost upon iterating the equations to self-consistency [40]. Imposing

self-consistency in an approximate fashion [42, 44–46] is not unique and different methods yield

different results. Since the controversies regarding self-consistency within GW have not been

resolved conclusively, yet, the majority of all GW calculations is performed employing the zeroth

order in the self-energy (G0W0). This, however, introduces a dependence of the starting Green’s

function on the self-energy and thus the quasiparticle energies, which can have a noticeable

influence, as we will demonstrate in this article.

To obtain the quasiparticle band structure we solve the quasiparticle equation8

[

−
∇2

2
+ vext(r) + vH(r)

]

ψnq(r) +

∫

dr′Σ(r, r′; εnq)ψnq(r′) = εnqψnq(r) (11)

with the GW self-energy (Σ = ΣGW) by a approximating the quasiparticle wavefunctions (ψnq)

with the Kohn-Sham ones (φnq) [47]. The corrections to the Kohn-Sham eigenvalues (εKS
nq ) are

then give by

εqp
nq = εKS

nq + 〈φnq|ΣGW(εqp
nq) − vxc|φnq〉 (12)

where 〈φnq||φnq〉 denotes matrix elements with respect to the wavefunctions φnq of the preceding

Kohn-Sham DFT calculation with exchange-correlation potential vxc.

3 Exact-exchange based DFT

3.1 DFT and the Kohn-Sham band structure

With regard to quasiparticle band structures Kohn-Sham DFT calculations not only serve as a

starting point for G0W0 calculations, they are frequently used to interpret quasiparticle spectra

due to the similarity of the Kohn-Sham
[

−
∇2

2
+ veff [n(r)](r)

]

φi(r) = εiφi(r) (13)

7With Γ(1, 2, 3) = δ(1, 2)δ(1, 3) eq. 4 reduces to the much simpler form χ0 = −iGG.
8Note that the Hartree potential vH(r) defined in the next Section has been separated from the self-energy.
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with the quasiparticle equation (11) and because the correction can often be expressed in terms

of first-order perturbation theory (eq. (12)). To illustrate the difference between the Kohn-Sham

and the quasiparticle picture and to lay the foundations for the discussion of the exact-exchange

OEP approach we will briefly review the Kohn-Sham DFT scheme.

The central quantities in DFT are the electron density n(r) and the total energy Etot. The latter

is a functional of the former and attains its minimum at the exact ground state density, as proven

by Hohenberg and Kohn [48]. This formalism was turned into a tractable computational scheme

by Kohn and Sham [49], by assuming that the system of interacting particles can be mapped

onto a fictitious system of non-interacting particles moving in an effective local potential veff (r)

that reproduce the same density as the many-body problem of interest. The electron density

n(r) =
occ∑

i

|φi(r)|
2 (14)

is composed of the occupied Kohn-Sham orbitals φi(r) that are solutions of the Kohn-Sham

equation 13.

In analogy to Hartree theory Kohn and Sham divided the total energy into known contributions

such as the kinetic energy of the non-interacting particles Ts, the Hartree energy

EH [n] =
1

2

∫

dr n(r)vH(r) =
1

2

occ∑

ij

∫∫

dr dr′
φ∗i (r)φi(r)φ

∗
j (r

′)φj(r
′)

|r − r′|
, (15)

the external energy

Eext[n] =

∫

dr n(r)vext(r) , (16)

and an unknown remainder. This last term includes all electron-electron interactions beyond

the Hartree mean-field and is defined as the exchange-correlation energy

Exc[n] = Etot[n] − Ts[n] −Eext[n] −EH [n] . (17)

Performing the variation with respect to the density then yields the effective potential

veff [n](r) = vext(r) + vH [n](r) + vxc[n](r) , (18)

where each term in the sum is obtained as functional derivative of the corresponding energy

expression. Since the exact form of the exchange-correlation functional is unknown9 suitable

approximations have to be found in practice.

9To be more precise: according to the Hohenberg-Kohn theorem Exc is a unique functional of the density.

However, this does not necessarily imply that Exc can be written in a closed mathematical form as functional

of the density. Analogous examples are Te (the kinetic energy of interacting electrons) and Ts. For the latter

one may write down a series expansion, but this does not converge properly. Its evaluation therefore requires the

detour via the Kohn-Sham formalism. In fact this exact evaluation of Ts is the strongest reason for using the

Kohn-Sham scheme. As far as the exact vxc is concerned it can be expressed in terms of the Green’s function and

the self-energy via the Sham-Schlüter equation in the context of many-body perturbation theory. Alternatively

an exact representation of vxc can be obtained in Görling-Levy perturbation theory [50].
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3.2 LDA and self-interaction

Probably the most popular and efficient approximation for the exchange-correlation energy to-

date is the local-density approximation (LDA) [49]

ELDA
xc [n] =

∫

dr n(r)εHEG
xc (n)

∣
∣
n=n(r)

(19)

where εHEG
xc (n(r)) is the exchange-correlation energy density of the homogeneous electron gas

(HEG). Whilst the LDA10 describes even inhomogeneous systems with startling success in many

cases, it does so at the expense of a non-physical electron self-interaction. This is introduced by

the Hartree term, that contains a spurious interaction of an electron with itself since the sum in

eq. 15 includes all occupied states. Although the LDA fulfills the sum rule and thus correctly

removes the self-interaction with respect to the particle number, the shape of the exchange-

correlation hole is not correct11. Applying the definition of Perdew and Zunger [17] the ensuing

self-interaction error can be quantified for every state as

δi =
1

2

∫∫

dr dr′
|φi(r)|

2|φi(r
′)|2

|r− r′|
+Exc[|φi(r)|

2], (20)

which follows directly from eq. 14 and 15 for i = j. The self-interaction error is largest for

localised states and has a tendency to delocalise the electronic wavefunction [28, 52], a point

that we will return to later.

Perdew and Zunger proposed to subtract the sum over all self-interaction contributions δi for

all occupied states from the expression for the total energy in the LDA (or alternatively the

spin-dependent LDA) [17]

ESIC−LDA
xc [n] = ELDA

xc [n] −
occ∑

i

δi . (21)

The expression for the self-interaction corrected LDA (SIC-LDA) total energy can be minimised

according to the variational principle. However, since the energy functional is now orbital

dependent, the computational simplicity of the LDA is lost, making SIC-LDA calculations com-

putationally much more demanding than LDA or GGA calculations. Moreover, this form of

self-interaction correction vanishes for completely delocalised states, which makes a direct ap-

plication of this formalism to Bloch states in solids difficult.

It is this self-interaction error in the LDA that is responsible for the fact that InN, ScN and

also Ge are incorrectly predicted to be (semi)metals (cf Fig. 1 and Fig. 3) and that the band

gap of GaN and II-VI compounds is underestimated severely as shown in Fig. 3. Removing

the self-interaction error, as done for instance in the exact-exchange approach, alleviates this

problem, despite the fact that the valence and conduction band edge are give by Bloch states,

as we will demonstrate in the following.

10The statements made in this subsection apply also to the generalised gradient approximation.
11Only the spherical average of the exchange-correlation hole enters in the expression for the total energy [51],

which, at least partly, explains the remarkable success of the LDA
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Figure 3: Theoretical versus experimental band gaps: the OEPx(cLDA) based

schemes systematically open the band gap compared to the LDA based calcu-

lations. Our OEPx(cLDA)+G0W0 calculations with the cation d-electrons in-

cluded as valence electrons agree very well with the experimental values. (For

ZnO an estimate of 0.2 eV was added to the zinc-blende values in order to

compare to the experimental results for wurtzite.)

3.3 The OEP method and exact-exchange

Following Kohn and Sham’s concept of dividing the total energy into known and unknown

contributions the exact-exchange energy Ex

Ex = −
1

2

occ∑

ij

∫∫

dr dr′
φ∗i (r)φj(r)φ

∗
j (r

′)φi(r
′)

|r − r′|
(22)

can be isolated from Exc leaving only the correlation part Ec to be approximated. In the exact-

exchange only approach this correlation term is omitted12 so that the total energy becomes

Ex−only
tot = Ts +Eext +EH +Ex . (23)

For occupied states the exact-exchange term cancels exactly with the corresponding term in the

Hartree potential for i = j and thus removes the self-interaction δi = 0 in the Perdew-Zunger

sense.
12Later in this section we will reintroduce the correlation energy in an approximate form that is commonly used

in connection with exact-exchange DFT calculations.
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Applying the variational principle to eq. 22 and 23 with respect to the orbitals φi(r) yields

the Hartree-Fock approach. Like in the GW approach the eigenenergies and wavefunctions are

solutions to a quasiparticle equation – all be it with a hermitian operator

[

−
∇2

2
+ vext(r) + vH(r)

]

φi(r) +

∫

dr′Σx(r, r
′)φi(r

′) = εiφi(r) . (24)

Σx is the non-local Fock-operator or exchange self-energy

Σx(r, r′) = −
occ∑

j

φj(r)φ
∗
j (r

′)

|r− r′|
. (25)

To stay within the framework of density-functional theory the variation of eq. 22 with respect to

the density has to be performed instead. This can be done analytically for the exact-exchange

energy expression (eq. 22) in the optimised effective potential approach [53–56]. and yields the

local exchange potential

vOEP
x (r) =

∫

dr′
occ∑

i

unocc∑

j

[

〈φi|Σx|φj〉
φj(r

′)φi(r
′)

εi − εj
+ c.c.

]

χ−1
0 (r′, r) . (26)

〈φi|Σx|φj〉 are the matrix elements of the exchange self-energy of eq. 25 and χ−1
0 (r, r′) is the

inverse of the static independent particle polarisability

χ0(r, r
′) =

occ∑

k

∞∑

n6=k

φ∗k(r)φn(r)φ∗n(r′)φk(r
′)

εk − εn
+ c.c. . (27)

The exchange-potential vx can be thought of as the best local potential approximating the non-

local Fock operator [53]. It is important to emphasise, however, that by construction the total

energy in Hartree-Fock is always lower (or at most equal) and thus better than in the OEPx

formalism [57], because the energy minimisation in the optimised effective potential method is

subject to the constraint of the wavefunctions being solutions to the Kohn-Sham equation (13).

The eigenvalues of the OEPx formalism for the unoccupied states, on the other hand, are closer to

the photo-electron excitation energies for the materials presented in this article than the Hartree-

Fock single-particle energies. The difference is due to the derivative discontinuity of the exchange

potential (see Section 4.2 and 7). In the exchange-only case the discontinuity is particularly

large [8,9,58,59], because the conduction band states are poorly accounted for in Hartree-Fock.

They are subject to a different potential than the valence states, since the Fock-operator contains

the self-interaction correction only for the valence electrons. In OEPx, on the other hand, the

Kohn-Sham valence and conduction band states are governed by the same effective potential,

which exhibits the correct asymptotic behaviour (1/r decay for large distances in finite systems).

The contribution arising from the discontinuity can be calculated separately [16] and when added

to the OEPx band gaps the Hartree Fock band gaps are recovered [59].

In OEPx calculations local correlation is frequently added by including the LDA correlation

energy in the expression of the total energy (eq. 23). Here we follow the parametrization of

Perdew and Zunger [17] for the correlation energy density εHEG
c [n] of the homogeneous electron

gas based on the data of Ceperley and Alder [60]. This combination will in the following be

denoted OEPx(cLDA).
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Figure 4: Effective Kohn-Sham potential for the neutral Zn (left panel) and S (right panel)

atom: the OEPx(cLDA) potential (red curves) reproduces the correct asymptotic decay −e2/r

(black curves), whereas the LDA (blue, dashed curves) decays exponentially and thus underbinds

the electrons. The atomic Kohn-Sham eigenvalues (shown as horizontal lines) are lowered in the

OEPx(cLDA) approach compared to the LDA resulting in better agreement with the experimentally

measured ionisation potentials (green horizontal lines).

4 OEPx(cLDA)+G0W0

4.1 From the atom to the solid

Having established that the removal of the self-interaction in the OEPx(cLDA)-KS approach is

the distinguishing feature compared to KS-LDA or KS-GGA calculations we will now illustrate

how this leads to an opening of the band gap in solids. For this it is illuminating to start from

the eigenvalues of the isolated atoms, depicted in Fig. 4 and 5. The Kohn-Sham potential in

OEPx(cLDA) (red curves) is essentially self-interaction free and follows the correct asymptotic

−e2/r potential outside the atom (black curves), whereas the LDA potential (blue, dashed

curves) decays exponentially fast. The strong underbinding of the electrons inherent to the

LDA is thus greatly reduced in the OEPx(cLDA) approach resulting in a downward shift of all

atomic states. The valence electrons of the anion (N, O, S, Se) that take part in the chemical

bonding are localised stronger than the respective valence electrons in the cation (Al, Ga, In,

Sc, Zn, Cd). The stronger localisation leads to a larger self-interaction correction resulting in

a net relative downwards shift of the anion levels with respect to the relevant cation levels (see

Fig. 5).

The same behaviour is also observed in SIC-LDA calculations [61] as Tab. 1 demonstrates.

In fact for the anions O, S and Se and the 4(5)s in Zn(Cd) Kohn-Sham eigenvalues obtained

in the SIC-LDA calculations agree closely with the OEPx(cLDA) ones. The most striking

differences are found for the semicore d-electrons, which are significantly lower in SIC-LDA than

in OEPx(cLDA). This is due to the fact that the potential in SIC-LDA is non-local. Localising
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Figure 5: Kohn-Sham eigenenergies of the isolated atoms: The removal of the self-interaction in

the OEPx(cLDA) (solid lines) leads to a systematic lowering of all atomic levels compared to the

LDA (dotted lines). The downward shift is larger for more localised atomic states, such as the outer

valence s and p states in N, O, S and Se.

Zn Cd O S Se
4s 3d 5s 4d 2p 2s 3p 3s 4p 4s

Exp. -9.4 -17.2 -9.0 -17.6 -13.6 -28.5 -10.4 -20.3 -9.8 -20.2
LDA -6.2 -10.4 -6.0 -11.9 -9.2 -23.8 -7.1 -17.3 -6.7 -17.5
SIC-LDA -9.3 -20.0 -8.9 -18.9 -16.5 -31.0 -11.4 -22.4 -10.5 -22.3
OEPx(cLDA) -9.2 -15.6 -8.8 -16.0 -16.8 -32.1 -12.9 -23.2 -11.9 -22.5
OEP(SIC-LDA) -9.1 -15.0 -8.4 -15.8 -17.9 -32.8 -12.1 -22.2 -11.1 -21.3

Table 1: Kohn-Sham eigenvalue spectrum of selected isolated atoms. For the valence states
SIC-LDA [61], OEPx(cLDA) and OEP calculations for the SIC-LDA functional (OEP(SIC-
LDA)) [62] yield very similar energies and improve significantly on the LDA compared
to experiment [63] (remaining difference in the two SIC formulations are due to different
parametrisation of the LDA functional). For the semicore d-electrons (as well as the lower
states not shown here) calculations with a local potential (OEP) give higher eigenvalues
than their non-local counterpart.

it by means of the optimised effective potential approach denoted here by OEP(SIC-LDA) [62]

leads to a significantly narrower spectrum, i.e. the d-electrons (as well as all lower lying states)

are moved up in energy. The same behaviour has also been observed for the local/non-local pair

of OEPx(cLDA)/Hartree-Fock [64]. The Kohn-Sham energies for both the valence as well as

the semicore d-electrons then agree quite well in OEPx(cLDA) and OEP(SIC-LDA).

Taking the example of ScN we demonstrate that the large relative shift of the atomic anion state

(N 2p ) also translates to the solid13. In ScN the scandium atom donates its two 4s and single

13This was for example realised by Vogl et al. who therefore suggested to use SIC-LDA pseudopotentials in reg-
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Figure 6: The difference between (a) the OEPx(cLDA) and LDA exchange po-

tentials (in Hartree atomic units) and (b) the valence electron densities (in elec-

trons/unit cell) of ScN (the 1s of N and the 1s, 2s and 2p of Sc form the core of

the pseudopotentials) for one of the square faces of the conventional rock-salt unit

cell. Black circles denote Sc and white circles N atoms. The inset shows the bonding

scheme together with the electron filling.

3d electron to the nitrogen atom (cf. Fig 6). The five d states of Sc hybridize with the three

valence p states of the neighboring N atoms in the rock-salt structure of ScN, forming three p-like

bonding, three d-like anti-bonding t2g and two d-like non-bonding eg bands at the Γ point14.

The upper three valence bands correspond to the bonding states and originate mainly from the

N 2p states with some admixture of the Sc 3d states, while the lowest conduction band are the

anti-bonding t2g states with Sc 3d character. The two bands derived from the non-bonding eg

states are more than 1 eV higher in energy [30].

Inspection of the difference between the exchange potential in OEPx(cLDA) (v
OEPx(cLDA)
x ) and

LDA (vLDA
x ) shown in Fig. 6(a) reveals that the large relative shift of the atomic anion state

(N 2p ) indeed translates to the solid. Fig. 6(a) illustrates that v
OEPx(cLDA)
x is significantly less

attractive than vLDA
x in the Sc regions and more attractive around the N atoms. This difference

in vx leads to a significant electron density redistribution (shown in Fig. 6(b)). The electron

transfer from the Sc to the N regions gives rise to an increase in the electron negativity difference

between the cation and the anion and thus increases the bond polarisation. This in turn, leads to

ular LDA calculations for the solid [61,65,66]. While this idea is appealing, using a different exchange-correlation

functionals for the pseudopotential than for the solid has to be taken with care. In fact LDA calculations performed

with OEPx(cLDA) pseudopotentials, that include the d-electrons but not the remaining semicore states in the

valence, yield greatly improved d-electron binding energies in GaN and InN, whereas OEPx(cLDA) calculations

using the same OEPx(cLDA) pseudopotentials worsens the results again [15].
14At other points in the Brioulline zone the 4s states hybridise, too, which does not change the argument, since

the relative shift of the 4s and the 3d to the N 2p level are almost identical.
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Figure 7: Comparison between OEPx(cLDA) and LDA results for the electron

density and the partial densities difference for ZnS (top) and GaN (bottom). Positive

density differences indicate an accumulation in OEPx(cLDA). Left hand side: partial

density differences (∆ni(r)) along the [111] direction through the unit cell. The

removal of the self-interaction in OEPx(cLDA) leads to a stronger localisation of

the d-electrons (red) on the Zn and Ga atoms. In GaN this localisation is not

accompanied by a delocalisation of the valence electrons as in ZnS leading to a

visible change in the electron density (Right hand side: OEPx(cLDA) (red), LDA

(black dashed) and their difference (blue line – magnified by a factor of 10 for ZnS

and 5 for GaN)).

an opening of the band gap – consistent with our OEPx(cLDA) band structure calculations [30].

In the II-VI compounds and group-III-nitrides this mechanism is also responsible for an opening

of the band gap in OEPx(cLDA) compared to LDA, but it is complemented by a contribution

arising from the coupling between the anion semicore d-electrons and the 2p-electrons of the

anion. Contrary to ScN the cation d-shell of these compounds is fully filled and the bonding

and anti-bonding bands are formed between the 2p state of the anion and the highest occupied s

states of the respective cation. The bands derived from the d-electrons fall energetically between

the anion 2p and 2s bands. The difference in the partial electron densities plotted along the

[111] direction for the example of ZnS and GaN in Fig. 7 reveals that the removal of the self-

interaction leads to a localisation of the d-electrons in OEPx(cLDA) compared to LDA. In ZnS,

where the d-bands are energetically much closer to the p-derived valence bands than in GaN,

the stronger localisation of the d-electrons is accompanied by a delocalisation of the p electrons

into the bonding region [28]. The localisation of the d electrons reduces the strength of the pd

repulsion and the valence bands are lowered in energy leading to a further opening of the band

gap in OEPx(cLDA) [15].
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4.2 Discontinuity and the band gap

In the Kohn-Sham formalism the system of interacting electrons is mapped onto a fictitious

system of non-interacting electrons as alluded to in Section 3. Even in exact DFT only the

eigenvalue corresponding to the highest occupied Kohn-Sham state of a finite system can be

rigorously assigned to the ionisation potential. For an extended system with well defined chem-

ical potential (Fermi level) this is equivalent to stating that the electron chemical potential

in DFT is the same as the true one [49, 67–69]. In comparison to quasiparticle energies this

leads to an important difference between the Kohn-Sham and the quasiparticle band structure.

This is best illustrated for the example of the band gap of semiconductors and insulators. It

can be expressed in terms of total energy differences of the N - and (N ± 1)-particle system

(Egap = E(N +1)−2E(N)+E(N −1)). Alternatively, the band gap can be entirely formulated

in terms of KS eigenvalues as the difference between the electron affinity and the ionisation

potential:

Egap = εKS
N+1(N + 1) − εKS

N (N) (28)

= εKS
N+1(N + 1) − εKS

N+1(N)
︸ ︷︷ ︸

∆xc

+ εKS
N+1(N) − εKS

N (N)
︸ ︷︷ ︸

EKS
gap

(29)

Here εKS
i (N) denotes the ith Kohn-Sham state of an N -particle system. EKS

gap is the eigenvalue

gap of a Kohn-Sham calculation for the N -particle system, given by the difference between the

highest occupied and lowest unoccupied state. In a solid, in which N � 1, the addition of an

extra electron only induces an infinitesimal change of the density. Therefore, the two Kohn-Sham

potentials must be practically the same inside the solid up to a constant shift and, consequently,

the Kohn-Sham wavefunctions do not change. The energy difference ∆xc can then only arise

from a spatially constant discontinuity of the exchange-correlation energy upon changing the

particle number

∆xc =

(
δExc[n]

δn(r)

∣
∣
∣
∣
N+1

−
δExc[n]

δn(r)

∣
∣
∣
∣
N

)

+ O

(
1

N

)

, (30)

since changes in the Hartree potential will be negligible for ∆n(r) → 0 [70–72]. This also implies

that the dispersion of bands will not be affected by the discontinuity. The conduction bands

will merely be shifted relative to the valence bands.

Whether the (considerable) underestimation of the LDA Kohn-Sham band gaps reported here

and elsewhere is a deficiency of the LDA itself or a fundamental property of the Kohn-Sham

approach has been a longstanding debate. Similarly it has been argued that the band gaps

in the OEPx approach should be larger than the true Kohn-Sham gap, since correlation is

omitted [9]. The exchange-correlation energy in the LDA is a continuous function of the density

with respect changes in the particle number and will thus not exhibit a discontinuity even if the

band gap were calculated by means of total energy differences. The OEPx formalism, on the

other hand, exhibits a derivative discontinuity [69,73], which would be taken into account if the

excitation energies were calculated by computing total energy differences between the N and the

N±1 electron system [73]. In KS-DFT, however, this derivative discontinuity does not enter the

calculation. The opening of the band gap discussed in Section 4.1 is therefore due to the removal

of the self-interaction and not the derivative discontinuity. Adding the corresponding derivative
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discontinuity would make the band gaps comparable to the Hartree-Fock ones [9, 58, 74], which

are significantly too large.

Further substance to the notion that even the exact Kohn-Sham potential would give rise to a

band gap underestimation was first given by Gunnarsson and Schönhammer [75,76] and Godby

et al. [72, 77] and recently by Grüning et al. [74]. Gunnarsson and Schönhammer derive their

conclusions from an exactly solvable, Hubbard-like model, whereas Godby et al. and Grüning

et al. use the Sham-Schlüter formalism to generate the local exchange-correlation potential that

corresponds to the G0W0 self-energy. They show that the resulting potential closely resembles

that of the LDA. Also the Kohn-Sham eigenvalue differences are very similar to the LDA ones,

whereas G0W0 calculations, that incorporate information of the (N ± 1)-particle system in a

natural way (see Section 2), generally give quasiparticle band gaps to within 0.1-0.2 eV [2].

The good agreement of the OEPx(cLDA) band gaps with experiment reported previously [7–13]

can therefore be regarded as fortuitous. In fact inspection of Fig. 3 shows that the OEPx(cLDA)

band gaps are lower than the experimental ones [28] and hence lower than those of previous

studies. This is due to the fact, that unlike in the earlier work we have explicitly included the

d-electrons as valence electrons in our pseudopotential calculations. The pd repulsion pushes

the valence bands up in energy and shrinks the gap [15]. All-electron OEPx calculations for

CdS and ZnS, on the other hand, report band gaps considerably higher than the experimental

ones [58]. The origin of this discrepancy between pseudopotential and all-electron calculations

is still under debate. A band gap underestimation in OEPx has also been observed for noble

gas solids and insulators [14, 58, 59].

Table 2 illustrates for four representative compounds that adding LDA correlation to the OEPx

approach has a marginal effect on the calculated band gaps (and the band structure in general –

not shown). ZnO is the only material of those studied here where the difference exceeds 0.1 eV.

The remaining difference between OEPx(cLDA) and experiment is recovered to a large degree

in the G0W0 quasiparticle energy calculations as Tab. 2 and Fig. 3 demonstrate.

The advantage of the OEPx(cLDA)-G0W0 approach is that it proves to be sufficient to in-

clude the d-electrons of the cation explicitly as valence electrons in the pseudopotential without

having to include the remaining electrons of the semicore shell, provided OEPx(cLDA) pseu-

dopotentials [90] are used. Taking GaN as an example the 3s-electrons in the Gallium atom

are approximately 130 eV and the 3p-electrons approximately 80 eV lower than the 3d states.

Resolving these more strongly localized 3s and 3p-electrons in GaN with a plane-wave basis

set will hence require significantly higher plane-wave cutoffs than the 70 Ry required for the

d-electrons [28]. In a pseudopotential framework it would thus make sense to explicitly in-

clude the d-electrons of the cations in the II-VI compounds and group-III-nitrides as valence

electrons, but to freeze the chemically inert semicore s and p-electrons in the core of the pseu-

dopotential. However, due to the large spatial overlap of the atomic semicore s and p with the d

wavefunctions, core-valence exchange-correlation is large in these compounds. As a consequence

core-valence exchange-correlation is treated inconsistently when going from LDA to LDA-G0W0,

if pseudopotentials are used in this fashion, because the exchange-correlation self-energy in the

GW approach acts on the d-electrons in the solid, but cannot act on the s and p-electrons in the

semicore shell, too. The result is a severe underestimation of the LDA-G0W0 band gaps (cf. red
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DFT PP Conf. GW ZnO ZnS CdS GaN

OEPx OEPx d 2.34 2.94 1.84 2.76
OEPx(cLDA) OEPx(cLDA) d 2.57 3.08 1.96 2.88
OEPx OEPx d GW 3.07 3.62 2.36 3.09
OEPx(cLDA) OEPx(cLDA) d GW 3.11 3.70 2.39 3.09

Experiment (3.44) 3.80 2.48 3.30

LDA LDA no d’s GW 3.98a 2.83a 3.10b

OEPx(cLDA) OEPx(cLDA) no d’s 3.74c 3.46d

OEPx(cLDA) OEPx(cLDA) no d’s GW 3.49e

LDA LDA d GW 1.50f

LDA LDA d-shell GW 3.64g

LDA LDA d-shell GW 3.50h 2.45h 2.88h

LDA LDA d-shell GW 3.38i 2.11i

LDA FP all e− GW (2.44)j 3.24k (3.03)k

LDA ASA all e− GW (4.06)m 3.97l (3.25)m

Table 2: DFT and quasiparticle band gaps in eV for ZnO, ZnS, CdS, and GaN in the

zinc-blende structure sorted in increasing energy from top to the experimental values. The

first column lists the DFT scheme and the second column denoted PP the pseudopotential

used. For all-electron calculations this column denotes if the atomic sphere approximation

(ASA) or the full potential (FP) was employed. ”Conf.” refers to the configurations of

the (pseudo)atoms: d-electrons included (d), as described in the previous section, valence

only (no d’s), d-electrons and their respective shell included (d-shell) and all-electron (all

e−). Experimental results are taken from: ZnO [78], ZnS [79], CdS [80], GaN [81] and the

OEPx(cLDA) and GW data from: aRef. [82], bRef. [83], cRef. [13], dRef. [8], eRef. [10],
fRef. [84], gRef. [44], hRef. [85], iRef. [45] jRef. [86], kRef. [87], lRef. [88], mRef. [89].

Numbers in round brackets refer to wurtzite structures. In Ref. with superscript a and b

a model dielectric function was employed and in e,f,g,h a plasmon pole model was used.

diamonds in Fig. 3) and d-bands that are pushed energetically into the p-derived valence bands

in the II-VI compounds [28, 84, 85] (cf. Tab. 3). The only way to remedy this problem within

LDA-G0W0 is to free the electrons in question by performing all-electron G0W0 calculations [87]

or by using pseudopotentials that include the entire shell as valence electrons [44,84,85], which

in the latter case introduces formidably high plane-wave cutoffs. If, on the other hand, OEPx

or OEPx(cLDA) is used for the ground state calculation, then the exchange self-energy already

acts on the semicore s and p states in the generation of the pseudopotential. Since the exchange

self-energy can be linearly decomposed into a core and a valence contribution no non-linear core

corrections [91] arise in the Hartree-Fock case and they are expected to be small for OEPx(cLDA)

pseudopotentials [9]. When going from OEPx(cLDA) to OEPx(cLDA)-G0W0 core-valence ex-

change is therefore treated consistently, even when the semicore s and p-electrons are frozen in

the core, as long as OEPx(cLDA) pseudopotentials are used [28].

For InN the LDA starting point is so problematic (cf. Fig. 1), that even subsequent all-electron

G0W0 calculations only open the gap to 0.02 - 0.05 eV [87,92]. Here the importance of removing

the self-interaction from the ground state calculation has been demonstrated before by combining

SIC-LDA calculations withG0W0 calculations (all be it in a rather approximate way by adjusting

the pd repulsion and combining calculations with and without the 4d-electrons in the core of

the In pseudopotential) [93, 94]. The OEPx(cLDA) approach, on the other hand, predicts InN
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to be a semiconductor, as Fig. 1 illustrates, and G0W0 calculations can be applied without

further approximations. The size of the band gap of InN and the origins for the considerable

spread in the experimental data has been a matter of intense debate over the last years. For

wurtzite InN our value of 0.7 eV [29] strongly supports recent experimental findings [95–97].

The OEPx(cLDA)-G0W0 calculations further helped to clarify the source for wide interval of

experimentally observed band gaps [29].

For ScN, an emerging versatile material for promising technological applications, the electronic

band structure has also been difficult to access experimentally, due to growth related problems.

Similar to the metallic state in InN the strong self-interaction effects in the LDA predict ScN

to be semimetallic (cf. Fig. 1) preventing a direct application of the LDA-G0W0 approach. By

using OEPx(cLDA) the ground state becomes essentially self-interaction free. This leads to an

opening of the band gap and a suitable semiconducting starting point for G0W0 calculations [30],

as described in Section 4.1. The OEPx(cLDA)-G0W0 calculations lower the OEPx(cLDA) band

gap of 1.7 eV down to 0.8 eV [30], clearly supporting recent experimental findings of an indirect

gap of 0.9±0.1 eV [98].

While LDA based G0W0 calculations generally open the band gap from the underestimated

LDA value, we observe here that the G0W0 corrections lower the respective gaps of InN and

ScN obtained in the OEPx(cLDA) approach. Since G0W0 falls into the realm of perturbation

theory (cf. eq. 12) this is not unusual, because it is not a priori clear if the quasiparticle

corrections are positive or negative.

4.3 d-electron binding energies

A known problem for the group-III-nitrides and the II-VI compounds is, that both KS-LDA and

LDA based G0W0 calculations underestimate the binding of the d-bands – regardless of whether

applied in a pseudopotential or an all-electron fashion. For four selected compounds the center

of the d-bands15 is listed in Tab. 3 for the different computational schemes. For ZnS and CdS

OEPx(cLDA) and OEPx(cLDA)-G0W0 produce essentially the same d-electron binding energies.

Only in ZnO quasiparticle corrections are found to lower the d-states by 1.5 eV compared to

OEPx(cLDA), further reducing the pd coupling. Again, adding LDA correlation to the OEPx

has essentially no effect on the energies of the bands (energy differences < 0.2 eV).

At first side it appears surprising that the removal of the self-interaction does not automatically

lower the position of the d-bands in OEPx(cLDA). Closer inspection of the atomic eigenvalues in

Fig. 5 reveals, however, that the cation d states are shifted down by almost the same amount as

the anion p states. The relative position to the p states, from which the top of the valence band

is derived, therefore remains similar in OEPx(cLDA) and LDA [15]. A recent all-electron OEPx

study (line 20) has reported values for ZnS and CdS in better agreement with experiment [58].

However, it is not clear at the present stage, why for CdS the difference to our pseudopotential

calculations (line 5) is merely 0.6 eV, whereas for ZnS it amounts to 2.2 eV. It is also not

clear if the discrepancy is caused by core-valence linearisation in the pseudopotentials, the use

of pseudo- rather than all-electron wavefunctions in the Fock-operator or if it has an entirely

15This has been obtained by averaging over the d-bands at the Γ-point.
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DFT PP Conf. GW ZnO ZnS CdS GaN

1 LDA LDA d GW 4.29 4.30 6.17 13.05
2 OEPx(cLDA) LDA d GW 4.98 5.02 6.40 13.58
3 OEPx(cLDA) LDA d 4.36 5.33 6.54 12.75
4 LDA LDA d 5.20 6.32 7.72 14.25
5 OEPx OEPx d 5.12 6.91 7.57 14.85
6 OEPx(cLDA) OEPx(cLDA) d 5.20 7.05 7.61 15.02
7 OEPx OEPx d GW 6.68 6.97 7.66 16.12
8 OEPx(cLDA) OEPx(cLDA) d GW 6.87 7.08 7.75 16.15

9 Experiment (9.00)a 8.97a 9.20b 17.70c

9.03d 9.50d

10 LDA LDA d GW 5.20e

11 LDA LDA d-shell GW 7.40f

12 LDA LDA d-shell GW 6.40g 8.10g 15.70g

13 LDA LDA d-shell GW 6.87h 8.15h

14 LDA LDA d-shell SAT 7.90g 9.10i 17.30g

15 LDA LDA d-shell G′W ′Γ 8.02h 8.99h

16 LDA+U LDA 8.78j

17 LDA+U LDA d-shell GW 7.10j

18 LDA FP all e− GW 6.16k 7.10l 8.20l (16.40)l

19 LDA ASA all e− GW (5.94)m 8.33n (17.60)m

20 OEPx FP all e− 9.1o 8.2o

Table 3: d-electron binding energies referenced to the top of the valence band: The layout is the

same as in Table 2. Experimental values taken from: aRef. [99], bRef. [100] cRef. [101], dRef. [102],

and the GW data from: eRef. [84], fRef. [44], gRef. [85], hRef. [45] iRef. [103], jRef. [104] (U=8 eV,

J=1 eV), kRef. [86], lRef. [87], mRef. [89], nRef. [88]. oRef. [58]. SAT denotes GW calculations

including plasmon satellites, G′W ′Γ calculations performed with eigenvalue self-consistency and

addition of a vertex contribution. Numbers in round brackets refer to wurtzite structures. In Ref.

denoted by d,e,f a plasmon pole model was used.

different origin.

Overall the binding energies obtained with our OEPx(cLDA)-G0W0 approach agree well with

other available GW calculations (line 11, 12, 13 and 18 in Tab. 3), but are still about 2 eV

at variance with experiment. The reason for this could be twofold. Either interactions beyond

the GW approximation are required for describing the excitation of these semicore d-electrons

and/or one needs to go beyond even OEPx(cLDA) as a starting point. Evidence that both

self-consistency in the GW calculations as well as the inclusion of vertex effects (see Section 2.2)

introduce changes in the right direction was recently given by Fleszar and Hanke. Starting

from an LDA ground state only eigenvalues (and not also the wavefunction) were iterated to

self-consistency in the GW calculations. This increases the binding energy by 0.4-0.5 eV in ZnS

and CdS [45]. Adding a vertex function that makes the calculation ”consistent” with the LDA

starting point16 increases the binding energy by additional 0.4-0.5 eV (line 15) [45]. Similar

conclusions were drawn from a recent study, in which G0W0 calculations were based on LDA+U

ground states [104]. With increasing U the binding energy of the d-state increases linearly in

16Strictly spoken Σ is only zero on the first iteration when starting from Hartree theory (see Section 2.2).

Starting from a Kohn-Sham calculations implies that Σ = vxc in which case the vertex function is not given by

delta functions, but can still be analytically derived [105].
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the LDA+U calculations (line 16) as the pd hybridisation reduces. The G0W0 calculations,

however, prove to be insensitive to this change and shift the d-bands up again, close to their

LDA-G0W0 positions (line 17) [104]. Previously Rohlfing et al. had devised a way to go beyond

the GW approximation by including plasmon satellites in the Green’s function, denoted here

by SAT (line 14 in Tab. 3). Although the SAT improves on the d-electron binding energies

it considerably over corrects the band gap and the valence part of the bandstructure [103].

Work towards a consistent description of excitation energies of the semicore d-electrons in these

materials is clearly required in the future.

5 Comments on self-sonsistency

As alluded to in Section 2.2 it is still a matter of debate how to perform self-consistent GW

calculations for quasiparticle band structures. For the non self-consistent G0W0 scheme our

calculations for the selected II-VI compounds and GaN have revealed a significant dependence

on the starting point, if the semicore d-electrons, but not the remaining electrons of the semi-

core shell, are explicitly taken into account in the pseudopotential calculation. Since for the

reasons given in Section 4.2 no meaningful comparison can be made between LDA-G0W0 and

OEPx(cLDA)-G0W0 calculations unless the entire semicore shell is included in the calculation

these systems are not suitable to assess the influence of the starting point on the quasiparticle

band structure. In ScN, on the other hand, the semicore d-shell of Sc is not fully filled and the

remaining s and p-electrons in the semicore shell are much higher in energy. Taking GaN as an

example the 3s-electrons in the Scandium atom are approximately 100 eV and the 3p-electrons

approximately 60 eV higher than in Gallium. Resolving the 3s and 3p-derived bands in ScN

with plane-waves thus only requires a cutoff of 80 Ry [30] and makes ScN an ideal candidate for

constructing a comparison between LDA-G0W0 and OEPx(cLDA)-G0W0 calculations.

However, the negative LDA band gap (see Table 4) impedes the direct application of the LDA-

G0W0 formalism with our GW code, since in its current implementation [106–108] a clear sep-

aration between conduction and valence bands is required. Therefore, an indirect approach

is adopted. First, LDA-G0W0 calculations are performed at a lattice constant (a0 = 4.75 Å)

larger than the experimental one (a0 = 4.50 Å), where the fundamental band gap in the LDA

is small but positive. We then use the LDA volume deformation potentials (which agrees well

with the OEPx(cLDA)-G0W0 one) to determine the corresponding LDA-G0W0 band gaps at the

equilibrium lattice constant17.

We find (Tab. 4) that the LDA-G0W0 and OEPx(cLDA)-G0W0 calculations, starting from the

two extremes (negative band gap in LDA, 0.8 eV overestimation in OEPx(cLDA)), yield quasi-

particle band gaps that agree to within 0.3 eV. Since the LDA-based calculations are close to

the limit of metallic screening, whereas the OEPx(cLDA)-based calculations form the opposite

extreme of starting from a completely self-interaction free exchange-correlation functional, we

expect the results of a self-consistent GW calculation to fall in the range between the LDA-

G0W0 and OEPx(cLDA)-G0W0 calculations. ¿From these results we estimate the maximum

17This approach is in principle not limited to band gaps and can equally well be applied to the full band

structure for example.
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Approach EΓ−Γ
g EΓ−X

g EX−X
g

OEPx(cLDA)-G0W0 3.51 0.84 1.98
LDA-G0W0 3.71 1.14 2.06
[G0W0]average 3.62 0.99 2.02
OEPx(cLDA) 4.53 1.70 2.59
GGA 2.43 −0.03 0.87
LDA 2.34 −0.15 0.75

Experiment

Ref. [12] ∼3.8 1.30 2.40
Ref. [98] 0.9±0.1 2.15

Table 4: Calculated and experimental band gaps
(Eg) of ScN (in eV). [G0W0]average denotes the
arithmetic average between the OEPx(cLDA)-
G0W0 and LDA-G0W0 results (see text).

error bar associated with omitting self-consistency in GW to be the difference from the arith-

metic averages for EΓ−Γ
g , EΓ−X

g and EX−X
g (reported in Tab. 4) to the largest deviation between

LDA-G0W0 and OEPx(cLDA)-G0W0, i.e. of the order of 0.15 eV for ScN [30].

6 Conclusions

We have presented the combination of quasiparticle energy calculations in the G0W0 approxi-

mation with DFT calculations in the OEPx(cLDA) approach. Using OEPx(cLDA) instead of

LDA or GGA removes the inherent self-interaction of the latter from the ground state calcu-

lation. Starting from the individual atoms we have illustrated how this leads to an opening of

the Kohn-Sham band gap in the solid. In the spirit of perturbation theory OEPx(cLDA) thus

provides a more suitable starting point for G0W0 calculations than LDA or GGA. For materials

for which LDA erroneously predict a (semi)metallic state, like e.g. InN or ScN, OEPx(cLDA)

yields a semiconducting ground state, which unlike in the LDA case, permits a direct applica-

tion of the G0W0 approximation. For the II-VI compounds and group-III-nitrides presented here

as an example the band gaps in the OEPx(cLDA)-G0W0 approach are in excellent agreement

with experiment and the position of the semicore d-electron bands no worse than in previous

LDA-G0W0 calculations.

7 Outlook

A disadvantage of the OEPx approach is that it yields total energies and thus structural prop-

erties comparable to Hartree-Fock. For the materials considered here all lattice parameters are

know from experiment, but this might not be the case for surfaces, defects, nanostructures or

new materials. Then, in cases where LDA and GGA are known to fail, exchange-correlation

functionals that appropriately include exact-exchange are needed.

In the most pragmatic approach a portion of Hartree-Fock exchange is mixed with a different
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portion of local exchange and correlation18

Ehyb
xc = EDFT

xc + α(EHF
x −EDFT

x ) (31)

as already alluded to in the introduction. Prominent examples of these so called hybrid func-

tionals are PBE0 [18–20] and B3LYP [21–23]. The factor α in front of the Hartree-Fock

exact-exchange term is equivalent to a constant static screening function. Alternatively a

more complex screening function can be chosen as in the screened-exchange (sX-LDA) ap-

proach [16, 27, 109, 110], the Σ-GKS scheme [111] or the Heyd-Scuseria-Ernzerhof (HSE) func-

tional [24–26]. An appealing feature of the hybrid functional approach is that it incorporates

part of the derivative continuity of the exchange-correlation energy [16]. For semiconductors

and insulators this leads to a much improved description of band gaps [26,59,109,110,112–114].

However, the dependence on universal (i.e. material independent) parameters questions their ab

initio character.

While ample experience with hybrid functionals exists in the quantum chemistry community

applications to solids are only slowly emerging and many issues remain open or controversial i.e.

computational efficiency, basis sets, pseudopotentials or the choice of functional. In particular

with regard to structural properties systematic studies are required. Conversely, GW quasipar-

ticle energy calculations have traditionally fallen into the realm of condensed matter physics,

but also here similar open questions remain (most of which have not been explicitly discussed

in this article) including that of self-consistency. Again in a more pragmatic fashion the latter

has recently been approached by mapping the G0W0 self-energy back onto a static, non-local

potential. The eigenenergies and eigenfunctions of the new non-local, hermitian Hamiltonian

then serve as input for the next G0W0 cycle until self-consistency is reached [42, 115]. This

approach shows promising success for different types of materials ranging from semiconductors,

insulators and metals to transition metal oxides and f -electron systems [42, 115–117].

Although the G0W0 approximation is currently the state of the art approach to calculate defect

levels for solids from first principles it has so far only been applied in a few cases [118–122].

Ideally the GW calculations would encompass the determination of the defect structure, too,

but so far GW total energy calculations, that would be required for this task, are still in their

infancy. Meanwhile a combination of exact-exchange-based DFT functionals (for the structural

properties) with quasiparticle energy calculations in the GW approach and the G0W0 approx-

imation (for the spectral properties) offer the possibility to develop a better understanding of

defect properties untainted by structural artefacts caused by the self-interaction or the band

gap underestimation of Kohn-Sham. First G0W0 calculations for bulk semiconductors based on

hybrid functionals appear to be promising [116,123], but more work along these lines is needed

in the future.
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[40] K. Delaney, P. Garćıa-González, A. Rubio, P. Rinke, and R. W. Godby, Phys. Rev. Lett.
93, 249701 (2004).

[41] N. E. Zein, S. Y. Savrasov, and G. Kotliar, Phys. Rev. Lett. 96, 226403 (2006).

[42] M. van Schilfgaarde, T. Kotani, and S. Faleev, Phys. Rev. Lett. 96, 226402 (2006).

[43] B. Holm and U. von Barth, Phys. Rev. B 57, 2108 (1998).

[44] W. Luo, S. Ismail-Beigi, M. L. Cohen, and S. G. Louie, Phys. Rev. B 66, 195215 (2002).

[45] A. Fleszar and W. Hanke, Phys. Rev. B 71, 045207 (2005).

[46] F. B. M. Marsili, O. Pulci and R. Del Sole, Phys. Rev. B 72, 115415 (2005).

[47] For the upper valence and conduction bands of standard semiconductors numerical inves-
tigations indicate that this approximation is well justified [?, 2], but it breaks down for
certain surface [?,?,?,?] and cluster states [?,?].

[48] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).

[49] W. Kohn and K. J. Sham, Phys. Rev. 140, A1133 (1965).

[50] A. Görling and M. Levy, Phys. Rev. A, 50, 196 (1994); ibid. Phys. Rev. B, 47, 13105
(1993).

[51] O. Gunnarsson and B. I. Lundqvist, Phys. Rev. B 13, 4274 (1976).

[52] W. Nelson, P. Bokes, P. Rinke, and R. Godby, Phys. Rev. A , accepted (also at: cond-
mat/0701592).

[53] M. E. Casida, Phys. Rev. A 51, 2005 (1995).

[54] R. Grabo, T. Kreibich, S. Kurth, and E. K. U. Gross, in Strong Coulomb Correlations in
Electronic Structure Calculations: Beyond the Local Density Approximation edited by V.
I. Anisimov (Gordon and Breach, New York, 2000), volume 1, pp. 203–311.

[55] Y. M. Niquet, M. Fuchs, and X. Gonze, J. Chem. Phys. 118, 9504 (2003).

[56] E. Engel, in A Primer in Density-Functional Theory edited by C. Fiolhais, F. Nogueira
and M. Marques (Springer, Berlin, 2003), pp. 56–122.

[57] S. Ivanov and M. Levy, J. Chem. Phys. 119, 7087 (2003).

[58] S. Sharma, J. K. Dewhurst, and C. Ambrosch-Draxl, Phys. Rev. Lett. 95, 136402 (2005).
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