

Zirconium oxynitride as new support for Cu in methanol steam reforming

A. Dennstedt, A. Trunschke, R. Schlögl

Department of Inorganic Chemistry, Fritz Haber Institute of the MPG, Faradayweg 4-6, 14195 Berlin, Germany

N. Frenzel, M. Lerch, T. Ressler

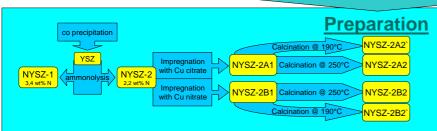
Institut für Chemie, TU-Berlin, Sekr. C2, Straße des 17. Juni 135, 10623 Berlin, Germany

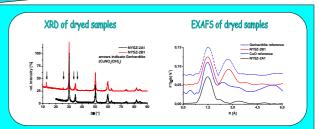
hydrogen for fuel cells in mobile applications → could be provided by methanol [1]:

CH₃OH + H₂O → CO₂ + 3 H₂

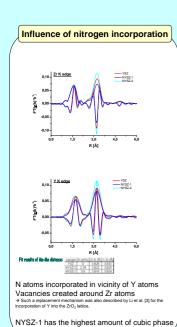
Introduction

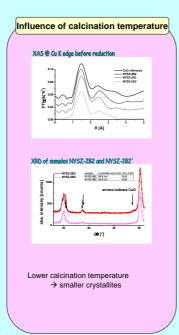
for methanol steam reforming

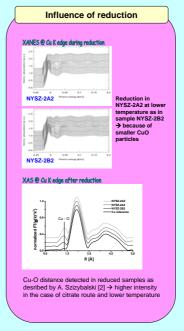

Methods:


ex situ XAS in situ XAS

@ Cu K, Zr K and Y K edge


@ Cu K edge


Aim: Preparation of new Cu based catalysts





Results

Conclusions

- N incorporated around Y atoms - Gerhardtite as intermediate after drying of the nitrate-based catalyst - higher intensity of Cu-O distance in reduced samples and higher decrease of intensity of Cu-O distance during MSR in the case of lower calcination temperature

References
[1] K.-O. Hinrichsen, and J. Strunk,
Nachrichten aus der Chemie 54, 1080 (2006)
[2] A. Szizybalski, F. Girgsdies, A. Rabis, Y. Wang, M. Niederberger,
and T. Ressler, J. Catal. 233, 297 (2005)
[3] P. Li, I-W. Chen, and J. E. Penner-Hahn,
Phys. Rev. B 48, 10074 (1993)

HASYLAB is acknowledged for providing beamtime. Contact: annedenn@fhi-berlin.mpg.de