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Abstract.

To study the fluctuations and dynamics in chemical reaction processes,
stochastic differential equations based on the rate equation involving chemical
concentrations are often adopted. When the number of molecules is very small,
however, the discreteness in the number of molecules cannot be neglected since
the number of molecules must be an integer. This discreteness can be important
in biochemical reactions, where the total number of molecules is not significantly
larger than the number of chemical species. To elucidate the effects of such
discreteness, we study autocatalytic reaction systems comprising several chemical
species through stochastic particle simulations. The generation of novel states
is observed; it is caused by the extinction of some molecular species due to
the discreteness in their number. We demonstrate that the reaction dynamics
are switched by a single molecule, which leads to the reconstruction of the
acting network structure. We also show the strong dependence of the chemical
concentrations on the system size, which is caused by transitions to discreteness-
induced novel states.
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1. Introduction

In nature, there exist various systems that involve chemical reactions. Some systems
are on a geographical scale while others are on a nanoscale, in particular, the
biochemical reactions in a cell. To study the dynamics of reaction systems, we often
adopt rate equations in order to observe the change in the chemical concentrations.
In rate equations, we consider the concentrations to be continuous variables and the
rate of each reaction as a function of the concentrations. In fact, in macroscopic
systems, there are a large number of molecules; therefore, continuous representations
are usually applicable.

When the concentration of a certain chemical is low, fluctuations in the reactions
or flows cannot be negligible. They are usually treated by employing stochastic
differential equations, in which the noise is used as a continuum description of the
fluctuations [1, 2]. The employment of stochastic differential equations has led to
some important discoveries such as noise-induced transitions [3], noise-induced order
[4], and stochastic resonance [5].

In stochastic differential equations, the quantities of chemicals are still regarded
as continuous variables. At a microscopic level, however, we need to seriously consider
the fact that the number of molecules is an integer (0, 1, 2, · · ·) that changes in a
discrete manner. Fluctuations originate from the discrete stochastic changes; thus,
continuum descriptions of fluctuations are not always appropriate.

Biological cells appear to provide a good example for such discreteness in molecule
numbers. The size of the cells is of the order of microns, in which nanoscale “quantum”
effects can be ignored. However, in these cells, some chemicals act at extremely low
concentrations of the order of pM or nM. Assuming that the typical volume of a
cell ranges from 1 to 103 µm3, the concentration of one molecule in the cell volume
corresponds to 1.7 pM to 1.7 nM. It is possible that the molecule numbers of some
chemicals in a cell are of the order of 1 or sometimes even 0.

If such chemicals play only a minor role in a cell, we can safely ignore these
chemicals to study intracellular chemical processes. However, this is not always the
case. In biological systems, chemical species with a small number of molecules may
critically affect the behavior of the entire system. As an extreme example, there exist
only one or a few copies of genetic molecules such as DNA, which are important to
characterize the behavior of each cell. Further, some experiments show that doses of
particular chemicals at concentrations of the order of pM or fM may alter cell behavior
(e.g., [6, 7]). Biological systems also include positive-feedback mechanisms such as
autocatalytic reactions, which may amplify single molecular changes to a macroscopic
level. It is only recently that the stochastic effect due to small molecule numbers in
cells has been noticed both theoretically [8, 9] and experimentally [10].

In this paper, we focus on the possible effects of molecular discreteness. Through
stochastic simulations, we showed that the discreteness can induce transitions to
novel states in autocatalytic systems [11], which may affect macroscopic chemical
concentrations [12]. In the first part of this paper, we briefly review these studies
and explain other aspects of such effects. See also [13, 14, 15] for recent advances
in the present topic by analytic methods and numerical simulations and [16, 17] for
simulation methods concerned.

In some cases, the discreteness in the molecule numbers may cause switches
between two or more states with distinct concentrations and dynamical behaviors.
Further, even though the concentration of chemicals is sufficiently high for one state,
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Figure 1. Time series of Ni for V = 32, Di = 1/256, and ri = si = 1. In
this case, Ni can reach 0, and the switching states appear. In the 1-3 rich state,
the system successively switches between the N1 > N3 and N1 < N3 states. The
interval of switching is considerably longer than the period of continuous vibration
(≈ π). At around t = 520, a transition occurs from the 1-3 rich state to the 2-4
rich state.
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Figure 2. The average concentrations x̄i in the autocatalytic loop system for
∀i : si = 1 and Di = 1/128 with nonequivalent reaction constants. For small V ,
the flow of molecules dominates the system. Thus, x̄i ≈ 1, which simply reflects
si = 1; this does not depend on how the continuum limit is imbalanced by the
reactions. (a) r1 = r3 = 1 and r2 = r4 = 0.9. (b) r1 = r2 = 2 and r3 = r4 = 1.

the concentration could be low in another state, in which a chemical with a very
low concentration could work as a stochastic switch. In the second part of this
paper, we discuss how molecular discreteness leads to switch among states with
distinct dynamical behaviors in an autocatalytic chemical reaction network system.
This spontaneous switching is characterized as an alteration (i.e., disconnection and
reconnection) of the acting reaction paths.
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2. Discreteness-induced transitions and alteration of concentrations

We have previously reported that the discrete nature of molecules may induce
transitions to novel states, which are not reproduced by the continuous descriptions of
the dynamics (stochastic differential equations) [11, 12]. Here, we briefly review that
result by including some novel results.

We consider a simple autocatalytic network (loop) with four chemicals Xi

(i = 1, · · · , 4). We assume the reactions Xi + Xi+1 → 2Xi+1 (with X5 ≡ X1) between
these chemicals. All the reactions are irreversible.

We assume that the reactor is a well-stirred container with a volume V . The set
of Ni, the number of Xi molecules, determines the state of the system. The container
is in contact with a chemical reservoir in which the concentration of Xi is fixed at si.
The flow rate of Xi between the container and the reservoir is Di, which corresponds
to the probability of the flow-out of a molecule per unit time ‡.

We can consider the continuum limit as V → ∞. In this limit, the change in xi,
the chemical concentration of Xi in the container, obeys the following rate equation:

dxi

dt
= ri−1xi−1xi − rixixi+1 + Di(si − xi), (1)

where ri is the rate constant of the reaction Xi + Xi+1 → 2Xi+1, and X0 ≡ Xk.
In [11], we considered a case with four equivalent chemical species, given as ri = r,

Di = D, and si = s for all i (r, D, s > 0), k = 4. In the continuum limit, the dynamics
is represented by the rate equation, which has only one attractor: a stable fixed point
xi = s for all i. Around the fixed point, xi vibrates with the frequency ωp ≡ rs/π.
If the number of molecules is finite but fairly large, we can estimate the dynamical
behavior of the system using the Langevin equation, which is obtained by adding a
noise term to the rate equation. Each concentration xi fluctuates and vibrates around
the fixed point. An increase in the noise (corresponding to a decrease in the number
of molecules) merely amplifies the fluctuation.

However, as we have shown in [11], when the number of molecules is small, novel
states that do not exist in the continuum limit are observed. Two chemicals are
dominant and the other two are mostly extinct (Ni = 0). Figure 1 shows the time series
of Ni in such a case. At t < 520, N1 and N3 dominate the system and N2 = N4 = 0
for the most part (the 1-3 rich state). Once the system reaches N2 = N4 = 0, all the
reactions stop. The system remains at N2 = N4 = 0 for a long time as compared with
the ordinary time scale of the reactions (∼ 1/rs). Conversely, at t > 520, N2 and N4

are large and usually N1 = N3 = 0 (the 2-4 rich state). In the 1-3 or 2-4 rich states,
the system alternately switches between either N1 > N3 and N1 < N3 or N2 > N4

and N2 < N4. We name these states the “switching states.”
The appearance of discreteness-induced novel states is described as a phase

transition with a decrease in the system size (or flow rate), where the histogram
of (N1 + N3) − (N2 + N4) exhibits a change from single-peaked to double-peaked
distribution.

In this example, although the state at each instant exhibits a clear transition, the
average concentrations of the chemicals are not altered since the system resides equally
in the 1-3 rich and 2-4 rich states over a long time span. On the other hand, we found
examples in [12], where the long-term average concentration of the molecule species is

‡ Di is the diffusion rate across the surface of the container. Here, we choose a flow proportional to
V in order to obtain a well-defined continuum limit.
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altered by the discreteness as well. A simple example is provided by considering the
same reaction model as that depicted by eq. (1), but by considering the case where
the parameters Di, si, or ri are species dependent. Note that the rate equation (1)
obtained in the continuum limit does not contain the volume V ; hence, the average
concentrations should be independent of V . Here, we seek the possibility of the change
in the average concentrations depending on the decrease in the system size V by taking
advantage of the switching states.

Recall that for the transitions to the switching states to occur in [11], it was
necessary for the interval of the inflow to be greater than the time scale of the reactions.
In the present case, the inflow interval of Xi is ∼ 1/DisiV , and the time scale of the
reaction Xi + Xi+1 → 2Xi+1 in order to consume Xi is ∼ 1/rixi+1. If the conditions
of all the chemicals are equivalent, the discreteness of all the chemicals takes effect
equally and the 1-3 and 2-4 rich states coordinately appear at V ≈ r/D.

Now, since the parameters are species dependent, the effect of the discreteness
may be different for each species. For example, by assuming that D1s1 < D2s2, the
inflow interval of X1 is greater than that of X2. Thus, the discreteness in the inflow
of X1 can be significant for larger V .

In the previous paper [12], we studied the case in which only the external
concentrations (chemical inflows) si were dependent on the species. Based on the
degree of siV , the discreteness-induced transition occurs successively with the decrease
in V , and the average concentrations of the chemicals take distinct values from those
of the continuum limit case. Similarly, we can study the effect of the discreteness when
each of the chemical reaction rates ri is species dependant. In fact, the dependence of
x̄i on V in this case is different from the previous study in which only si was species
dependent.

For example, we consider the case that r1 = r3 > r2 = r4 and ∀i : si = 1. Figure
2 shows the dependence of x̄i on V . Recall that the concentrations should not depend
on V as long as the continuum representations hold (eq. (1) does not contain V ).
Here, in the continuum limit or in the case of large V , x̄2 = x̄4 > x̄1 = x̄3, as shown
in Fig. 2 (a). In contrast, when V is small, x̄i ≈ 1. If V is very small, so that the
total number of molecules is mostly 0 or 1, the reactions rarely occur and the flow of
chemicals dominates the system. Thus, x̄i ≈ si.

If both the reactions and the flows are species dependent, we can simply expect
the behavior to be a combination of the above mentioned cases. Even this simple
system can exhibit a multi-step change in the concentrations along with the change
in V . Furthermore, the present behavior is not limited to the simple autocatalytic
reaction loop. In fact, we observe this type of change in randomly connected reaction
networks. For a large reaction network with multiple time scales of reactions and
flows, the discreteness effect may bring about behaviors that are more complicated,
although our discussion is generally applicable to such cases if the time scales are
appropriately defined.

As seen above, the discreteness of molecules can alter the average concentrations.
When the rates of inflow and/or the reaction are species dependent, the transitions
between the discreteness-induced states are imbalanced. This may drastically alter
the average concentrations from those of the continuum limit case.

Note that although the concentrations are altered in both cases, their dependence
on V is different. If the system is extremely small (V ∼ 1), the frequency of
the reaction event, in comparison to the diffusion, is low. The reaction is limited
by the inflows, and therefore, the system is dominated by diffusion. The average
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Figure 3. Model catalytic network. There are two reaction paths—indicated by
arrows A and B—from the chemical X1 (substrate). (I) If all the chemical species
exist, all the reactions may occur. The system exhibits damped oscillations.
(II,III) If the system lacks one or more chemicals, some of the reactions cannot
proceed. The portion of the reaction path beyond the stalled reaction is
disconnected; consequently, the actual topology of the network may change.

concentrations x̄i depend on V , but the dependence is quite different from the case
with uniform reaction rates (ri) and imbalanced inflows (si), which were previously
reported by us.

3. Discreteness-induced switching of catalytic reaction networks

Molecular discreteness may not only affect the chemical concentrations but also the
network of reactions. As seen above, if the number of molecules required for a certain
reaction is 0, the reaction cannot take place at all. If such a situation continues
for a long time, when compared to the time scales of other reactions, the system
behaves as if the reaction never existed, i.e., the reaction is virtually eliminated from
the network. Furthermore, the existence of even one or a few molecules could cause
the resumption of the reaction and the recovery of the network. In contrast to the
continuum limit, where decay or recovery of the chemical is gradual, such changes in
the network structure are discrete and therefore quick.

Here, we show an example in which the discreteness alters the actual network and
switches the dynamical behavior. We adopt a simple model with four chemicals and
five reactions among them (see Fig. 3) such that

R1 : X1 + X4

k1

−→ 2X4; R2 : X1 + X2

k2

−→ 2X2;

R3 : X2 + X3

k3

−→ 2X3; R4 : X3 + X4

k4

−→ 2X4;

R5 : X4 + X2

k5

−→ 2X2 (k1 = k4 = k5 = 10−3; k2 = k3 = 10−2).

Again, we assume a well-mixed reactor of volume V in contact with a chemical
reservoir, where the concentration of Xi is maintained at si (Di is the flow rate of
Xi). In the continuum limit, the system is governed by the following rate equations:

ẋ1 = − k1x1x4 − k2x1x2 + D1(s1 − x1)

ẋ2 = k2x1x2 − k3x2x3 + k5x4x2 + D2(s2 − x2)

ẋ3 = k3x2x3 − k4x3x4 + D3(s3 − x3)

ẋ4 = k1x1x4 + k4x3x4 − k5x4x2 + D4(s4 − x4)
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Figure 4. Time series of Ni, the number of molecules. (a) V = 4, (b) V = 1,
and (c) V = 0.25.
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where xi is the concentration of the chemical Xi.
This reaction network mainly comprises constant flows of chemicals (R1 and R2)

and an autocatalytic loop (R3, R4, and R5). Here, we set Di = D = 0.02 (for all i),
s1 = 103, s3 = 10, and s2 = s4 = 1. With these settings, generally, X1 molecules
flow into the container and serve as substrates. They are then converted into other
chemicals, following which they flow out; this maintains the nonequilibrium condition.
In the continuum limit, the concentrations xi vibrate and converge to the fixed point.

To elucidate the behavior at a condition distant from the continuum limit, we have
investigated the dynamical behavior in such a condition by stochastic simulation. Fig.
4 shows the time series of Ni, the number of Xi molecules. When V is large, generally,
Ni remains large. This behavior is similar to the rate equation with the addition of
noise. However, when V is small, Ni may reach 0. In our model, if the system
lacks a substrate or a catalyst for a certain reaction, the reaction ceases completely.
Consequently, the dynamics of the system with such a small V are qualitatively
different.

We define the state of the system based on the combination of the reactions that
cease. A system has the following three distinct states (see Fig. 3):

State I. Ni > 0 for all i, and all the reactions occur.
This state is determined by the fixed point concentrations obtained by the
continuum limit, and the system converges to the fixed point, while the vibration
around it is sustained when the number of molecules is finite.

State II. For the majority of the time, N2 = 0, and reactions R2, R3, and R5 cease.
The reaction loop cannot proceed, while reaction R1 continuously converts X1

into X4.

State III. For the majority of the time, N4 = 0, and reaction R1 ceases.
In the absence of any reactions, the X1 molecules accumulate. An X2 molecule
flowing in may trigger reactions R2 and R3 and convert X1 into X3.

In the continuum limit, the concentrations cannot reach 0 due to the constant inflows,
and the system remains at state I when V is sufficiently large, as shown in Fig. 4 (a),
even though the concentrations fluctuate and vibrate around the fixed point.

With a small V , however, the other states appear. For example, the time series
of Ni with V = 1 is shown in Fig. 4 (b). At around t = 6500, the system is in state
I, and it switches to state II at around t = 6700. It then alternates between states II
and III. The system spontaneously switches among these states. If V is considerably
smaller, state I is rarely observed, as shown in Fig. 4 (c).

The distribution of xi is shown in Fig. 5. A transition is observed with a decrease
in V . For a large V , the distribution shows a peak at around x1 = 12 and x4 = 8×102,
corresponding to the fixed point of the rate equation. For a small V , the distribution
of x4 shows peaks at around x4 = 1.0 × 103 and x4 = 0, corresponding to state II
(x1 ≈ 20, x4 ≈ 1.0 × 103) and state III (mostly x4 = 0), respectively.

As mentioned above, these states are classified based on the reactions that cease;
in other words, the states are classified based on the part of the network that actually
functions. In state I, all the reactions in the network function; in state II, the
autocatalytic loop does not function; and in state III, the conversion of X1 into X4

ceases. The transitions to states II or III can be viewed as the disconnection of some
parts in the reaction network. Such transitions are possible only if Ni reaches 0,
and therefore, molecular discreteness is essential. The extinction of the X2 and X4

molecules makes the system switch to states II and III, respectively.
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The question that arises here is as follows: In general, which chemicals can switch
states in a network? In our model, molecule X1 cannot serve as a switch, even though
N1 sometimes reaches 0 in the case of V = 1. First, for a molecule species to function
as a key for switching, Ni should be maintained at 0 for a longer time than that
for other reactions. For X1, there is considerable inflow, and the inflow rate is not
affected if N1 reaches 0. Thus, N1 cannot remain at 0 for a long time, and X1 cannot
switch the dynamics. Second, a key chemical for a switch should be located within the
reaction paths and the extinction of the molecule disconnects some reaction paths.

Stochasticity in gene expression is widely studied with regard to the problem
of a small number of molecules in a biological system. It is often assumed that two
states—on and off—are switched by a single regulatory site. The controlling chemicals
and controlled chemicals can be clearly separated.

In contrast, our result shows that chemical species, which are usually abundant,
may sometimes work as a stochastic switch. In this sense, molecules that are common
or ions such as Ca2+ (see [15, 18]) may cause stochastic effects. The role of a chemical
may change with time.

4. Discussion

In this study, we have demonstrated that molecular discreteness may induce transitions
to novel states in autocatalytic reaction systems, which may result in an alteration of
macroscopic properties such as the average chemical concentrations.

In biochemical pathways, it is not uncommon to find that the number of molecules
of a chemical is of the order of 102 or less in a cell. There are thousands of protein
species, and the total number of protein molecules in a cell is not very large. For
example, in signal transduction pathways, some chemicals work at concentrations
of less than 100 molecules per cell. There exist only one or a few copies of genetic
molecules such as DNA; furthermore, mRNAs are not present in large numbers. Thus,
regulation mechanisms involving genes are quite stochastic. Naturally, molecular
discreteness involves such rare chemicals.

In the second part of this paper, we have shown that the molecular discreteness
may change the dynamical behavior of reaction networks. The reaction network is
virtually disconnected by the extinction of certain chemicals, which is not possible
in the continuum limit. Although the network studied here is a small model, similar
phenomena can exist in a complex reaction network with a large number of chemicals
and reactions. We have also investigated random networks of catalytic reactions
Xi+Xj → Xi+Xk (j 6= k). In such systems, the dynamics of chemical concentrations
also depend on the system size V . In a small system, many of the chemical
species become extinct (Ni = 0), and the actual reaction network is disconnected
into fragments, which may be occasionally reconnected by inflow or generation of
a molecule. The onset of change in the concentrations due to disconnection or
reconnection is stochastic and sudden. In the continuum limit, in contrast, the
concentrations gradually converge to a fixed point in most cases (or to a limit cycle
or other attractors). The simple model in this paper can be viewed as a switching
element of such a network; however, the exact conditions that determine whether a
chemical works as a stochastic switch or not should be addressed in future.

We observed the transitions in the distribution of the concentrations xi with
respect to the change in the system size V . Multiple transitions can also occur,
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especially if there are many chemical species for which the number of molecules is
sometimes (but not necessarily always) small.

In this paper, we consider reactions in a well-stirred medium, where only the
number of molecules is taken into account for determining the system behavior.
However, if the system is not mixed well, we need to take into account the diffusion
of molecules in space. From a biological viewpoint, the diffusion in space is also
important because the diffusion in cells is not always fast when compared with the
time scales of the reactions. If the reactions are faster than the mixing, we should
consider the system as a reaction-diffusion system, with discrete molecules diffusing
in space. The relation between these time scales will be important, as indicated by
Mikhailov and Hess [19, 20]. With regards to these time scales, we recently found that
the spatial discreteness of molecules within the so-called Kuramoto length [2, 21], over
which a molecule diffuses in its lifetime (lapses before it undergoes reaction), can yield
novel steady states that are not observed in the reaction-diffusion equations [22, 23].
Spatial domain structures due to molecular discreteness are also observed [23]. See
also [24, 25] for relevance of the discreteness in a replicating molecule system.

The discreteness-induced effect present here does not depend on the
characteristics of the reactions. Furthermore, it may be applicable to systems beyond
reactions, such as ecosystems or economic systems. The inflow of chemicals in a
reaction system can be seen as a model of intrusion or evolution in an ecosystem: for
both systems, discrete agents (molecules or individuals) may become extinct. In this
regard, our result is relevant to the studies of ecosystems, e.g., extinction dynamics
with a replicator model by Tokita and Yasutomi [26, 27]; strong dependence of the
survival probability of new species in evolving networks on the population size was
reported by Ebeling et al. [28]. The discreteness of agents or operations might also
be relevant to some economic models, e.g., artificial markets.

Most mathematical methods that are applied to reaction systems cannot
appropriately describe the discreteness effect. Although the utility of simulations
with the progress in computer technology has become convenient, it would also be
important to develop a theoretical formulation applicable to discrete reaction systems.
On the other hand, in recent years, major advances have been made in the detection
of a small number of molecules and the fabrication of small reactors, which raises the
possibility to experimentally demonstrate the discreteness effect predicted here.

We believe that molecular discreteness has latent but actual importance with
respect to biological mechanisms such as pattern formation, regulation of biochemical
pathways, or evolution, which will be pursued in the future.
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