Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Catalytic ammonia oxidation on platinum: mechanism and catalyst restructuring at high and low pressure

MPG-Autoren
/persons/resource/persons21320

Baerns,  Manfred
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Imbihl, R., Scheibe, A., Zeng, Y. F., Günter, S., Kraehnert, R., Kondratenko, V. A., et al. (2007). Catalytic ammonia oxidation on platinum: mechanism and catalyst restructuring at high and low pressure. Physical Chemistry Chemical Physics, 9(27): 700866, pp. 3522-3540. doi:10.1039/b700866j.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0011-025B-D
Zusammenfassung
Catalytic ammonia oxidation over platinum has been studied experimentally from UHV up to atmospheric pressure with polycrystalline Pt and with the Pt single crystal orientations (533), (443), (865), and (100). Density functional theory (DFT) calculations explored the reaction pathways on Pt(111) and Pt(211). It was shown, both in theory and experimentally, that ammonia is activated by adsorbed oxygen, i.e. by Oad or by OHad. In situ XPS up to 1 mbar showed the existence of NHx(x= 0,1,2,3) intermediates on Pt(533). Based on a mechanism of ammonia activation via the interaction with Oad/OHad a detailed and a simplified mathematical model were formulated which reproduced the experimental data semiquantitatively. From transient experiments in vacuum performed in a transient analysis of products (TAP) reactor it was concluded that N2O is formed by recombination of two NOad species and by a reaction between NOad and NHx,ad(x= 0,1,2) fragments. Reaction-induced morphological changes were studied with polycrystalline Pt in the mbar range and with stepped Pt single crystals as model systems in the range 10–5–10–1 mbar.