

Abteilung Anorganische Chemie Fritz-Haber-Institut der Max-Planck-Gesellschaft Faradayweg 4-6, 14195 Berlin

Physicochemical Characterization: IR and UV-vis Spectroscopy

Friederike C. Jentoft

Mitteldeutscher Katalyseverbund Universität Leipzig October 30, 2006

Outline

1. Introduction

When to use (UV-vis and IR) spectroscopy in heterogeneous catalysis research?

2. Measurement of solid materials Transmission and Diffuse Reflection

3. Examples

Catalyst and catalyst surfaces Characterization of sites through adsorption of probe molecules Spectroscopy during catalysis

MIR - NIR - vis - UV

electronic transitions, vibrations (rotations)

A Catalyst Life – When to Use Spectroscopy?

- Preparation of a Solid (a Heterogeneous Catalyst)
 Formation of a solid from solution (e.g. precipitation, sol-gel method)
 Modification of solid (e.g. preparation of a supported catalyst)
- Catalyst Characterization
 Catalyst structure, surface functionalities
 Surface sites: non-reactive interactions with probe molecules
- 3. During Catalytic ReactionGas phaseLiquid phase
- 4. Aged / Spent Catalyst

Changes to structure & surface functionalities, deposits on surface Remaining surface sites

A Catalyst Life – When to Use Spectroscopy?

- Preparation of a Solid (a Heterogeneous Catalyst)
 Formation of a solid from solution (e.g. precipitation, sol-gel method)
 Modification of solid (e.g. preparation of a supported catalyst)
- Catalyst Characterization
 Catalyst structure, surface functionalities
 Surface sites: non-reactive interactions with probe molecules
- 3. During Catalytic ReactionGas phaseLiquid phase
- 4. Aged / Spent Catalyst

Changes to structure & surface functionalities, deposits on surface Remaining sites

From An Experimental Point of View

- Spectroscopy of a solid preparation steps, product, spent material
- Spectroscopy of solid and surrounding gas phase
 Probing sites on fresh/spent catalyst (RT or low T, p of probe small)
 During catalytic reaction: in situ (p usually atm or larger, T > RT)
- Spectroscopy of solid and surrounding liquid Preparation steps: formation / modification of solid During catalytic reaction: in situ (suspension or thin film phase boundary)

place sample in sample holder/accessory in sample compartment of spectrometer

- if no special measures are taken, sample compartment + parts of the spectrometer are in air
- > gas phase N_2 , O_2 : no absorption bands in (UV)-vis-NIR-MIR
- \succ gas phase CO₂, H₂O: rotational vibrational bands in NIR and MIR

- can correct for air absorption through reference measurement provided there is no change in composition with time
- modern spectroscopy software can make a calculated correction

- can correct for air absorption through reference measurement provided there is no change in composition with time
- > modern spectroscopy software can make a calculated correction

Spectroscopy of Solid in Controlled Gas Atmosphere

Spectroscopy of Solid in Controlled Gas Atmosphere

Spectroscopy of Solid in Controlled Gas Atmosphere

> Absorbing gases, dynamic conditions (catalysis): often problem

© F.C. Jentoft FHI Berlin 2006

Spectroscopy of Solid and Liquid Surrounding

Absorbing liquids, dynamic conditions: very difficult!

Possible Transitions

Heterogeneous Catalysts = Solids

- Inorganic materials: salts, oxides, carbon, metals...
- Resins (functionalized polymers)

Characterization	Vibrations	Electronic transitions
Catalyst bulk	Lattice, structural units	Band gap energy of semiconductors
Catalyst surface	Stretching and deformation vibrations of functional groups, vibrations of supported species: metal complexes	Charge transfer and d-d transitions of metal complexes, metal particles
Adsorbates	Functional groups	Must have chromophores

Spectral Interpretation - Analoga

Catalyst	Reference compounds in Organic and Inorganic Chemistry
Catalyst surface functional groups (-OH, -COOH, -SO ₃ H, - NH ₂)	Functional group fingerprints
Supported metal complexes	Metal complexes in solution
Adsorbed inorganic or organic molecules	Gas or liquid phase spectra of free molecules

Example

Methylene blue in aqueous solution

Methylene blue adsorbed on TiO₂

Example

© F.C. Jentoft FHI Berlin 2006

Spectroscopy with Powder Samples

- how to measure spectra of a powderous solid?
- absorption as a function of wavelength, qualitatively and quantitatively

Interaction of Light with Sample

how to deal with reflection and scattering?

How to Deal with Reflection (1)

fraction of reflected light can be eliminated through reference measurement with same materials (cuvette+ solvent)

Transmittance

if luminescence and scattering are negligible:

$$1 = \alpha + \tau + \rho$$

 $\begin{array}{ll} \alpha & \mbox{absorptance, absorption factor, Absorptionsgrad} \\ \tau(T) & \mbox{transmittance, transmission factor, Transmissionsgrad} \\ \rho & \mbox{reflectance, reflection factor, Reflexionsgrad} \end{array}$

if we manage to eliminate reflection:

 $1 = \alpha + \tau$

in this case, the absorption properties of the sample can be calculated from the transmitted light

Transmitted Light and Sample Absorption Properties

c: molar concentration of absorbing species [mol/m⁻³] κ : the molar napierian extinction coefficient [m²/mol]

 $\int_{0} \kappa c \, dl$ separation of variables and integration sample thickness: I

Transmitted Light and Sample Absorption Properties

$$\tau = \frac{I}{I_0} = e^{-\kappa c l} = 1 - \alpha$$

$$A_e = B = \kappa \ c \ l = -\ln(\tau)$$

$$A_{10} = \varepsilon \ c \ l = -\log(\tau)$$

Lambert-Beer Law

napierian absorbance Napier-Absorbanz

(decadic) absorbance *dekadische Absorbanz* standard spectroscopy software uses A₁₀!

extinctionE (means absorbed + scattered light)absorbanceA $(A_{10} \text{ or } A_e)$ optical densityO.D.all these quantities are DIMENSIONLESS !!!!

Self-Supporting Wafers

Catalysts may absorb strongly!

Limitations of Transmission Spectroscopy

Catalysts are fine powders (high surface area) and may scatter strongly

Scattering

- scattering is negligible in molecular disperse media (solutions)
- scattering is considerable for colloids and solids when the wavelength is in the order of magnitude of the particle size

	Wavenumber	Wavelength
Mid-IR (MIR)	3300 to 250 cm ⁻¹	3 to (25-40) µm
Near-IR (NIR)	12500 to 3300 cm ⁻¹	(700-1000) to 3000 nm
UV-vis	50000 to 12500 cm ⁻¹	200 to 800 nm

scattering is reduced through embedding of the particles in media with similar refractive index: KBr wafer (clear!) technique, immersion in Nujol

But.....Reaction with Material Used for Embedding

- reaction with diluent possible
- dilution usually not suitable for experiments at high T/ with reactive gases

Can We Use the Reflected Light?

- instead of measuring the transmitted light, we could measure the reflected light
- can we extract the absorption properties of our sample from the reflected light?

Reflection of Radiation

Diffuse Reflection

- intensity of diffusely reflected light independent of angle of incidence (isotropic)
- due to multiple reflection, refraction, and diffraction (scattering) inside the sample

- need theory that treats light transfer in an absorbing and scattering medium
- want to extract absorption properties!

scanning electron microscopy image

A Simplified Derivation of the Schuster-Kubelka-Munk (or Remission) Function

$$R = \frac{J}{I}$$

$$dI = -I K dl - I S dl + J S dl$$
$$dJ = -J K dl - J S dl + I S dl$$

with K, S: absorption and scattering coefficient [cm⁻¹]

Divide equations by I or J, respectively, separate variables, introduce R=J/I

$$\int_{R_0}^{R_{\infty}} \frac{2dR}{R^2 - 2R(1 + \frac{K}{S}) + 1} = S \int_{0}^{l} dl$$

Integrate via partial-fraction expansion

assume black background, so that $R_0 = 0$ make sample infinitely thick, i.e. no transmitted light (typical sample thickness in experiment ca. 3 mm)

$$R_{\infty} = \frac{S}{K + S + \sqrt{K(K + 2S)}}$$

2 constants are needed to describe the reflectance: absorption coefficient K scattering coefficient S

$$F(R_{\infty}) = \frac{\left(1 - R_{\infty}\right)^2}{2R_{\infty}} = \frac{K}{S}$$

Kubelka-Munk function remission function

for $K \rightarrow 0$ (no absorption) $R_{\infty} \rightarrow 1$, i.e. all light reflected for $S \rightarrow 0$ (no scattering) $R_{\infty} \rightarrow 0$, i.e. all light transmitted or absorbed

Kubelka-Munk Function

- mostly we measure R'_∞, i.e. not the absolute reflectance R_∞ but the reflectance relative to a standard
- > depends on wavelength $F(R'_{\infty})_{\lambda}$
- corresponds to extinction in transmission spectroscopy
- in case of a dilute species is proportional to the concentration of the species (similar to the Lambert-Beer law):

$$F(R'_{\infty}) \propto \frac{\varepsilon c}{s}$$

Spectroscopy in Transmission

reference "nothing"
= void, empty cell, cuvette
with solvent

spectrum: transmission of catalyst vs. transmission of reference

- ➢ in IR transmission is widely applied for solids
- > in UV-vis transmission is rarely used for solids (zeolites!)

Diffuse Reflectance Spectroscopy

- need element that collects diffusely reflected light
- need to avoid specularly reflected light
- need reference standard (white standard)

White Standards

- ➤ KBr: IR (43500-400 cm⁻¹)
- ➢ BaSO₄: UV-vis
- ➤ MgO: UV-vis
- Spectralon: UV-vis-NIR

Spectralon® thermoplastic resin, excellent reflectance in UV-vis region © F.C. Jentoft FHI Berlin 2006

Methods and Collecting Elements

Methods

- diffuse reflectance UV-vis spectroscopy (DR-UV-vis spectroscopy or DRS)
- diffuse reflectance Fourier-transform infrared spectroscopy (DRIFTS)

Collecting Elements

- integrating spheres (IR and UV-vis-NIR)
- ➢ fiber optics (UV-vis-NIR)
- mirror optics (IR and UV-vis-NIR)

Diffuse Reflection & Macroscopic Surface Properties

randomly oriented crystals in a powder: light diffusely reflected

- flattening of the surface or pressing of a pellet can cause orientation of the crystals, which are "elementary mirrors"
- causes "glossy peaks" if angle of observation corresponds to angle of incidence
- solution: roughen surface with (sand)paper or press between rough paper, or use different observation angle!

Specular Reflection: Angular Distribution

the intensity of the specularly reflected light is largest at an azimuth of 180°

Integrating Sphere

- > the larger the sphere the smaller errors from the ports
- > the larger the sphere the lower the intensity onto the detector
- ➤ typically 60-150 mm diameter
- coatings: BaSO₄, Spectralon (for UV-vis)

How to Avoid Specular Reflection

- specular reflection is strongest in forward direction
- collect light in off-axis configuration

Praying Mantis Optical Accessory (Harrick)

- first ellipsoidal mirror tocuses beam on sample
- second ellipsoidal mirror collects reflected light
- > 20% of the diffusely reflected light is collected

Fiber Optics for UV-vis

- light conducted through total reflectance
- Fiber bundle with 6 around 1 configuration: illumination through 6 (45°), signal through 1
- avoids collection of specularly reflected light

Bilder: Hellma (http://www.hellma-worldwide.de) and CICP (http://www.cicp.com/home.html)

Catalyst Bulk & Catalyst Surface

Support with functional groups

Support + dispersed species

Comparison Transmission - Diffuse Reflectance (IR)

- spectra can have completely different appearance
- transmission decreases, reflectance increases with increasing wavenumber

Comparison Transmission - Diffuse Reflectance

vibrations of surface species may be more evident in DR spectra

Dispersed V_xO_y Species (DR-UV-vis)

- CT bands at 359 and 376 nm: isolated octahedrally co-ordinated V⁵⁺ species
- > CT bands at 468 and 535 nm: octahedraly co-ordinated V⁵⁺ species in V_2O_5 clusters (XRD shows crystalline form of V_2O_5)