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The interaction between Hopf and Turing modes has been the subject of active research in recent years.
We present here experimental evidence of the existence of mixed Turing-Hopf modes in a two-
dimensional system. Using the photosensitive chlorine dioxide-iodine-malonic acid reaction (CDIMA)
and external constant background illumination as a control parameter, standing spots oscillating in
amplitude and with hexagonal ordering were observed. Numerical simulations in the Lengyel-Epstein

model for the CDIMA reaction confirmed the results.
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Pattern formation has become a classical issue of interest
in many branches of science ranging from physics, chem-
istry, and biology to social disciplines or even in relation to
some technological applications. Often, patterns are de-
scribed as a result of symmetry-breaking bifurcations from
some featureless state. Two model scenarios in the particu-
lar class of reaction-diffusion (RD) systems are the (uni-
form) Hopf bifurcation to (pure) time-oscillatory regimes
and the (stationary) Turing instability to (steady) spatially
periodic solutions [1]. Given the wide parameter range that
is usually necessary to characterize RD systems, the inter-
est in investigating situations of competing instabilities
appears totally justified. In particular the simplest envis-
aged scenario is that of the interaction between a pair of
pure Turing and Hopf modes near a codimension-two
bifurcation [2]. Under such conditions, a spatially extended
system would be ideally patterned as a lattice, or, more
realistically, composing different phase-coherent patches
of oscillating Turing motifs. This instability coupling is the
issue addressed here both experimentally and by numerical
simulations.

Turing-like patterns were first observed in the form of an
array of spots or an irregular arrangement of stripes in
chemical reactors [3,4]. Quite naturally, thus, and already
15 years ago, the interaction of the Hopf and Turing
instabilities was analytically investigated in the Lengyel-
Epstein model of the chlorite-iodide-malonic acid (CIMA)
reaction [5] and soon later invoked to interpret peculiar
wave phenomena observed in quasi-one-dimensional reac-
tors [6]. Since then the question has been continuously
revisited first in relation to RD models [7,8] and more
recently in relation to superlattice patterns [9] or seg-
mented waves [10]. Oscillatory Turing patterns have
been also evidenced numerically in two coupled layer
systems when oscillations occur in one layer and the other
supports Turing structures [11]. Different from chemical
media, analytical and numerical studies near codimension-
two Turing-Hopf bifurcations have been applied to models
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for semiconductor charge transport [12,13] and to optical
parametric oscillators [14,15].

After such continued theoretical effort, there is still no
clear experimental evidence of the existence of this Hopf-
Turing mixed mode [16,17]. We present in this Letter the
first neat observation of oscillating spots in a hexagonal
lattice using the photosensitive chemical CDIMA
(Chlorine dioxide-iodine-malonic acid) reaction [18] in a
two-dimensional system. Numerical simulations with the
LE model of this reaction confirm the results.

Experiments were performed using the photosensitive
CDIMA reaction with chemical concentrations: [I,], =
0.45mM, [CIO,], = 0.1 mM, [Malonic acid], = 0.9 mM,
[Poly(vinyl alcohol)], = 0.5 g/L, and [H,SO,], = 10 mM.
The setup used is described in Ref. [19].

With these input concentrations, the system is located
within the Hopf domain close to the Turing region. A
spatially homogeneous and constant in time illumination
was used as an additional main control parameter. For low
intensity values [/ = (2200 * 50) X 107® W/cm?], the
chemical system gives rise to phase waves of oscillations
typical of the Hopf instability. If the illumination is sub-
stantially increased the oscillations disappear and steady
Turing patterns become stable [/ = (13500 = 50) X
107 W/cm?]. Further increase of the light precludes
the formation of any pattern [/ = (20000 * 50) X
107 W/cm?].

Below the threshold for Turing patterns we have found,
however, a window where another type of patterns appears.
At a typical external background illumination of intensity
I = (10500 = 50) X 10~% W/cm?, a pattern composed of
spots oscillating in amplitude and hexagonal ordering is
observed. Fig. 1(a) is a sequence of successively taken
snapshots of the reaction layer displaying the oscillating
amplitude of the spots. The spots in hexagonal configura-
tion (A = 0.48 £ 0.05 mm) oscillate in amplitude and
without noticeable position change with a period of 7 =
4.44 = 0.2 min. Oscillations were remarkably stable for
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(a) Snapshots of a region (2.5 X 2.5 mm?) with oscillating spots in front of time. The dashed sinusoidal line was drawn

trying to help the eye to identify the oscillation. (b) Space-time plot of a line of the system in front of time. (c) Local average of the

concentration for an area involving around 7 spots.

the whole time of observation (up to 1 h) without any
significative change in the range of the oscillations,
Fig. 1(b). An average over an area containing a few spots,
as depicted in Fig. 1(c), provides another signature of the
coherent oscillating dynamics. Although some evidence of
phase waves of the oscillation have been observed, the
medium is not large enough to characterize these phase
waves (typical wavelength for phase waves of oscillation
under these chemical conditions is around 4 mm, almost
10 times larger than the characteristic distance between
spots). Typical Hopf frequency for the CDIMA reaction is
around 5 min [20,21], in the same range that the oscillation
in the amplitude of the spots.

The wavelength of the Turing pattern A is larger than the
thickness of the gel where the pattern is observed (0.3 mm).
This ensures that there is no three-dimensional or coupled
layer effects in the observed pattern and that the structure is
indeed effectively two dimensional [17].

Numerical simulations were conducted using the
Lengyel-Epstein model for the CDIMA reaction, modified
to take into account the light sensitivity [18,22].
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Here u and v are the dimensionless concentrations of the
activator (I”) and the inhibitor (ClO, ) species, whereas a,
¢, and o are dimensionless parameters of the chemical
system, and d is proportional to the ratio of diffusion
coefficients. The parameter ¢ plays the role of the illumi-
nation intensity. The RD equations were solved using a
standard discretization for the Laplacian and a Runge-
Kutta method for the temporal integration. The typical
size of the two-dimensional medium was 100 X

100 space units?. The initial condition is prescribed as a
random distribution for both fields around the value of the
unstable center of the limit cycle (for the set of parameter
values used, see caption of Fig. 2, it corresponds to u =
4/3 and v = 15/2). Model parameters conveniently
chosen close to the boundary between the Hopf and
Turing regimes lead to patterns of oscillating spots,
Fig. 2(a), strikingly similar to those observed in experi-
ments. The pattern is composed of a hexagonal array of
white spots steady in the space but oscillating in amplitude.

For the parameters values in Fig. 2(a), oscillatory spots
with period 7 = 9.9 = 0.1 time units in hexagonal con-
figuration (A = 9.5 £ 0.5 space units) have been observed
in simulations lasting for more than a hundred of oscilla-
tions, without noticeable changes on the spot lattice and on
the amplitude of the oscillations. As in the experiments,
phase waves were observed in large systems (500 X
500 space units?). Panels 2(b) and 2(c) are composed simi-
larly to the experimental Fig. 1. Oscillating spots are
statistically robust against initial conditions (more than
90% over 50 randomly chosen realizations of the initial
conditions). As another proof of robustness, similar results
are observed in a range of values of o, between o = 4.1
and o = 4.5 keeping the rest of parameters unchanged.
Beyond this window the spots are not stable anymore but
they either become a transitory solution to Turing patterns
or to global oscillations, depending on the parameters.
Analogously occurred with variations of a.

An alternative parameter analysis concerning the effect
of the illumination intensity is shown in Fig. 3. The value of
¢ is varied from the null value (not shown), where the
numerical system presents global oscillations, to the total
elimination of the spatiotemporal patterns (¢ ~ 3.32). For
low values of ¢, and apart from transients, global oscil-
lations are the preferred solutions, Fig. 3(a). When the
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(a) Snapshots of a region (60 X 60 space units?) with oscillating spots in front of time. The sinusoidal line helps to identify

the oscillation. (b) Space-time plot of a line of the system in front of time. (c) Local average of the concentration for an area involving
around 7 spots. The parameter values were: a = 18, ¢ = 0.3, o0 =4.5, d = 1.07, and ¢ = 3.20, with temporal and spatial

discretization, respectively, Az = 0.0025 and Ax = 0.5.

value of ¢ is increased there is a gradual lacking of spatial
coherence, but the system still oscillates, Fig. 3(b). Further
increasing the parameter for illumination, a regime of
bistability is crossed, Fig. 3(c), before reaching the mixed
mode of oscillating spots, Fig. 3(d), in which we are
interested here. It is worth pointing out that, as expected,
for large enough systems it is rather common to observe
phase waves in the oscillations of the spots as a signature of
spatial decorrelation. Further increase of the light stabilizes
the spots, and the oscillation is completely suppressed,
Fig. 3(e). Finally, above a certain threshold of the parame-
ter ¢, spatiotemporal structures are eliminated and the
system evolves to a featureless state Fig. 3(f). A numerical
phase diagram for the value of the illumination parameter
¢ = 3.2 is shown in Fig. 3(g). There, it can be observed
that oscillating spots appear in the vicinity of the cross

point between Hopf and Turing lines of the linear stability
analysis.

As a small comment let us remark that within the
intermediate bistable region of the above parameter range,
rather complex solutions can be found corresponding to
either coexistence or competition between oscillations and
Turing modes, or oscillations versus oscillating spots.
These types of dynamic regimes are reminiscent of similar
behaviors predicted in Brusselator-like models [7].

In spite of the invested theoretical effort, reviewed in the
introductory part of this Letter, the experimental observa-
tion of mixed Turing-Hopf modes in the form of oscillating
spots, as here reported, had proven elusive in the past. To
our understanding we were able to unveil such a phenome-
non here by advantageously using illumination as an addi-
tional nonequilibrium control parameter of the CDIMA
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FIG. 3. Numerical space-time plot for different values of the parameter ¢ during ¢ = 100 temporal units in a system of 50 X
50 space units?. The dynamics and the values of ¢ for the panels showed in the figure correspond to: (A) global oscillations (¢ =
3.15), (B) inhomogeneous oscillations (¢ = 3.17), (C) bistability (¢ = 3.18), (D) oscillatory spots (¢ = 3.21), (E) Turing patterns
(¢ = 3.25), and (F) steady state (¢ = 3.32). (G) Numerical phase diagram for ¢p = 3.20. Each point is result of a two-dimensional
simulation with random initial conditions: T: Turing, H: Hopf oscillations, S: steady state, B: bistability, @: oscillating spots. Lines
corresponds to the stability analysis for the extended system in one dimension. Black line: Turing, gray line: Hopf. The rest of the
numerical parameters for all the figures are the same as in Fig. 2.
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reaction. Actually, forcing turns out to be a very convenient
strategy to design and control spatiotemporal behavior in
chemical systems, as recently reviewed [23]. In particular,
light forcing applied to the Turing pattern forming CDIMA
reaction has been much investigated during these last
years. Either temporal [24], spatial [25], spatiotemporal
[26], or even random [27] forcing modes have been con-
sidered and the observed patterns interpreted in terms of
resonances between the intrinsic and externally imposed
spatial and temporal length scales. Contrarily, we tend to
believe that, in the situation here, the effect of light forcing
is much more instrumental. In fact, CDIMA concentrations
to observe contrasted Turing-like patterns, in particular,
with reference to poly(vinyl alcohol) (PVA), bring the
system well inside the instability. On the other hand, the
range of PVA concentrations compatible with reasonably
contrasted oscillations is very narrow [28]. This practically
precludes the observation of mixed Turing-Hopf modes in
the absence of photoactivation. Illumination permits a
finer tuning by reducing the medium reactivity and ad-
vantageously permitting us to get close enough to the
codimension-two bifurcation point with still sufficient con-
trast. Moreover, in the numerical simulations of the LE
model the regions of oscillating spots are observed rela-
tively near to the steady-Turing-Hopf intersection, in
agreement with analytic results which predict oscillatory
spots near the point where the curves for steady-Turing and
steady-Hopf bifurcations cross [7].

In conclusion, in this Letter we have reported experi-
mental evidence of the existence of Turing-Hopf mixed
mode in a two-dimensional system. Using the photosensi-
tive CDIMA reaction and homogeneous background illu-
mination as our control parameter, a hexagonal pattern
composed of oscillating spots has been observed. Numeri-
cal simulations which corroborate the experimental results
have been also reported. Our results open the possibility for
testing the theoretical aspects predicted for such systems as
well as new studies in the field of mixed mode patterns.

Experiments were carried out in Santiago de
Compostela. Research was supported by the DGI (Spain)
under Projects No. FIS2004-03006 and No. BQU2003-
05042-C02-01, and Xunta de Galicia (Spain) under
Project No. PGIDITOSPXIC20607PN. D.G. M. acknowl-
edges financial support from the Ministerio de Educacion y
Ciencia in Spain. S.A. acknowledges financial support
from E.U. Network “Universal Principles in
Nonequilibrium Pattern Formation”. We would like to
thank Lingfa Yang, Irving R. Epstein, Anne De Wit, and
Vladimir K. Vanag for useful discussions and comments.

[11 M.C. Cross and P. C. Hohenberg, Rev. Mod. Phys. 65, 851
(1993).

[2] D. Walgraef, Spatio-Temporal Pattern Formation with
Examples in Physics, Chemistry and Materials Science
(Springer-Verlag, New York, 1996).

(31
(4]
(5]
(6]
(71

(8]
(9]

[10]

(18]
[19]
[20]
(21]

[22]
(23]

[24]
[25]

[26]

(27]

(28]

178301-4

V. Castets, E. Dulos, J. Boissonade, and P. De Kepper,
Phys. Rev. Lett. 64, 2953 (1990).

Q. Ouyang and H. L. Swinney, Nature (London) 352, 610
(1991).

A. Rovinsky and M. Menzinger, Phys. Rev. A 46, 6315
(1992).

J.J. Perraud, A. De Wit, E. Dulos, P. De Kepper, G. Dewel,
and P. Borckmans, Phys. Rev. Lett. 71, 1272 (1993).

A. De Wit, D. Lima, G. Dewel, and P. Borckmans, Phys.
Rev. E 54, 261 (1996).

J.D. Dockery and R. J. Field, Phys. Rev. E 58, 823 (1998).
L. Yang, A. M. Zhabotinsky, and I. R. Epstein, Phys. Rev.
Lett. 92, 198303 (2004).

L. Yang, 1. Bernstein, and I.R. Epstein, Phys. Rev. Lett.
95, 038303 (2005).

L. Yang and I.R. Epstein, Phys. Rev. Lett. 90, 178303
(2003).

M. Meixner, A. De Wit, S. Bose, and E. Scholl, Phys.
Rev. E 55, 6690 (1997).

W. Just, M. Bose, S. Bose, H. Engel, and E. Scholl, Phys.
Rev. E 64, 026219 (2001).

M. Tlidi, P. Mandel, and M. Haelterman, Phys. Rev. E 56,
6524 (1997).

P. V. Paulau, I.V. Babushkin, and N.A. Loiko, Phys.
Rev. E 70, 046222 (2004).

P. De kepper, J.J. Perraud, B. Rudovics, and E. Dulos, Int.
J. Bifurcation Chaos Appl. Sci. Eng. 4, 1215 (1994).
Some evidence of coexistence of Hopf and Turing insta-
bility was reported previously by P. De Kepper’s group
(see Ref. [15]). The gel reactor used was considerably
thicker (3.5 mm) than the one used in our experiments
(0.3 mm), allowing, this way, three-dimensional effects.
The reported coexistence was due to the superposition of
patterns in different layers of the system subjected to
different concentration because of the three dimensional-
ity of the gel. Also, no clear interaction between the two
patterns was observed. Therefore, the resulting pattern
was considered more an optical superposition than a
Turing-Hopf mixed mode.

A.P. Mufiuzuri, M. Dolnik, A. M. Zhabotinsky, and I.R.
Epstein, J. Am. Chem. Soc. 121, 8065 (1999).

D.G. Miguez, V. Pérez-villar, and A.P. Muifiuzuri, Phys.
Rev. E 71, 066217 (2005).

D. G. Miguez, R. A. Satnoianu, and A.P. Mufluzuri, Phys.
Rev. E 73, 025201(R) (2006).

D.G. Miguez, G. Izis, and A.P. Mufiuzuri, Phys. Rev. E
73, 016207 (2006).

I. Lengyel and I.R. Epstein, Science 251, 650 (1991).
A.S. Mikhailov and K. Showalter, Phys. Rep. 425, 79
(20006).

A.K. Horvath, M. Dolnik, A.P. Mufuzuri, A. M. Zhabo-
tinsky, and I. R. Epstein, Phys. Rev. Lett. 83, 2950 (1999).
M. Dolnik, I. Berenstein, A.M. Zhabotinsky, and I.R.
Epstein, Phys. Rev. Lett. 87, 238301 (2001).

D.G. Miguez, E.M. Nicola, A.P. Mufiuzuri, J. Casade-
munt, F. Sagués, and L. Kramer, Phys. Rev. Lett. 93,
048303 (2004).

A. Sanz-Anchelergues, A.M. Zhabotinsky, I.R. Epstein,
and A.P. Muiiuzuri, Phys. Rev. E 63, 056124 (2001).
J.J. Perraud, K.I. Agladze, E. Dulos, and P. De Kepper,
Physica (Amsterdam) A188, 1 (1992).



