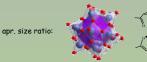


Adducts of Heteropoly Acids (HPA) with Neutral Al(III) Complexes Potential Use as Strong Solid Acid in Catalysis COMBICAT

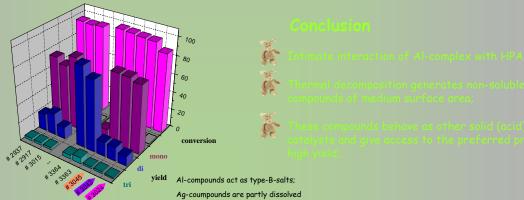
Timpe, O.*; Noor Azman, N. A.[†]; Klaeden, K.*; Trunschke, A.*

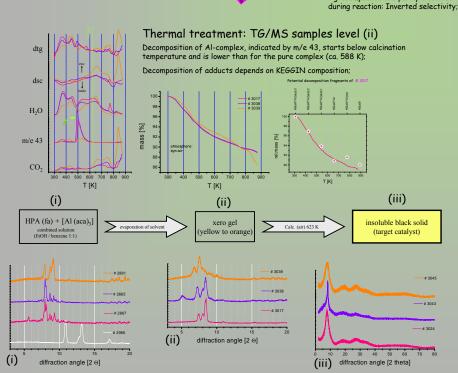

• Department of Inorganic Chemistry, Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, D-14195 Berlin † COMBICAT, University of Malaya, 50603 Kuala Lumpur, Malaysia

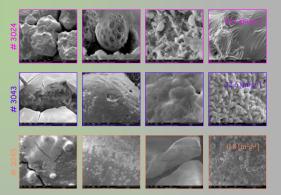
Introduction - Concept - Strategy

fatty acid esters are high value compounds fo ter, as for the product of the exemplified tai ore the mono-ester is the most desired produ na and lubricants. In acid, a high OH-level is favorable

cids (fa) are soluble in a e salts typically rar ces the number of 100 [m²g⁻¹]. The (p dt) centers required for catalysis. As a consequence, the best HPA s protons is substituted


sion of our work was the implementation of Lewis-acidic cations (Al*3) to cru Aluminum salts of HPA are not accessible as precipitates from aqueous solution to the KEGGIN type HPA anion (more than 550 pm). To overcome this difficulty . The convenient acetyl-acetonate [Al(aca)₃] is a neutral complex, insoluble in wa the Al³⁺ in a bul ents. As the icids of KEGGIN-type HPA are readily dissolved in some organic solvents, there is a way to combine the both parts. Inified solution containing HPA and Al(aca)₃ – in the ratio 1:1 – leave behind a kind of xero-gel after complete drying. Thermal nent (calc), at temperatures above the decomposition of the Al-complex, generated insoluble dark materials, which have beer of for the target reaction. As HPA compound, the KEGGIN-type tungsto systems [GeW]. [SiW] and [PW] are used. For irison, in addition to the described Al-based concept, the generation of an analogous Ag-system was tempted, using the nding Ag(aca) complex

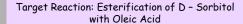


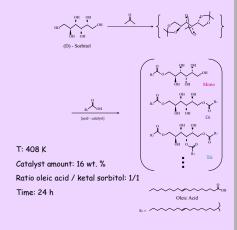

Sample Designation

# 2937	[N(eth)4] (2) [GeW]	
# 2917	[N(prp)4] (2) [SiW]	
# 3015	[N(prp) ₄] (2) [PW]	
# 3364	Ag(aca) ~ [GeW] (calc)	
# 3363	Ag(aca) ~ [GeW] (calc)	
# 3024	$Al(aca)_3 \sim [GeW] (calc)$	(iii)
# 3043	$Al(aca)_3 \sim [SiW] (calc)$	(iii)
		(iii)
# 3017	Al(aca)3 ~ [GeW]	(ii)
# 3038	Al(aca) ₃ ~ [SiW]	(ii)
		(ii) (i)
# 2667	[GeW] (fa)	(i)
# 2665	[SiW] (fa)	(i)
		(i)
		(i)

Catalyst Testing in Target Reaction

Morphology: SEM


In accordance to XRD the material shows no crystalline arrangement;


Morphology is mostly characterized by the coexistence of smooth planes with domaines of highly unordered small particles and especially the absence of larger Al-agglomerations;

EDX revealed the presence of carbon and uniform distribution of elements;

Bulk structure: XRD

Xero-gel (ii) shows features of parent HPA (i) with additional large distances; Pattern of parent Al-complex (i) disappeared upon interaction with HPA (ii); Calcination destroys almost long-range order in the material (iii);

