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Abstract

Dynamics of Stark Acceleration/Deceleration:

Molecules Riding Waves

Fritz-Haber-Institut der Max-Planck-Gesellschaft

Faradayweg 4-6, D-14195 Berlin, Germany

PACS: 32.60.+i Zeeman and Stark effects, 39.10.+j Atomic and molecular beam sources and techniques,

45.50.-j Dynamics and kinematics of a particle and a system of particles, 29.17.+w Electrostatic, collective,

and linear accelerators, 02.30.Nw Fourier analysis.

Koos Gubbels, Gerard Meijer, and Bretislav Friedrich

Stark acceleration/deceleration relies on time-dependent inhomogeneous electric �elds which

repetitively exert an accelerating/decelerating force on polar molecules. Fourier analysis reveals

that such �elds, generated by an array of �eld stages, consist of a superposition of partial waves with

well-de�ned phase velocities. Molecules whose velocities come close to the phase velocity of a given

wave get a ride from that wave. For a square-wave temporal dependence of the Stark �eld, the phase

velocities of the waves are found to be odd-fraction multiples of a fundamental phase velocity ,

with and the spatial and temporal periods of the �eld. Here we study explicitly the dynamics

due to any of the waves as well as due to their mutual perturbations. We �rst solve the equations

of motion for the case of single-wave interactions and exploit their isomorphism with those for the

biased pendulum. Next we analyze the perturbations of the single-wave dynamics by other waves

and �nd that these have no net effect on the phase stability of the acceleration/deceleration process.

Finally, we �nd that a packet of molecules can also ride a wave which results from an interference

of adjacent waves. In this case, small phase stability areas form around phase velocities that are

even-fraction multiples of the fundamental velocity. A detailed comparison with classical trajectory

simulations and with experiment demonstrates that the analytic �wave model� encompasses all the

longitudinal physics encountered in a Stark accelerator/decelerator.
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1. Introduction

Achieving an ever better control over both the internal and external degrees of freedom of

gas-phase molecules has been a prominent goal of molecular physics over the last decades. Molecular

beams, both continuous and pulsed, have been widely used to produce large densities of molecules in

selected quantum states. In these beams, the longitudinal temperature of the molecules is typically

1 K, and the mean velocity of the beam can be varied between about 300 m/s and 3000 m/s by

adjusting the temperature of the source or by using different carrier gases. Control over the spatial

orientation or alignment of molecules in a beam has been achieved by actively manipulating the

rotation of the molecules using electrostatic or magnetic multipole �elds as well as with the help

of laser radiation. The application of inhomogenous �elds has enabled control over the transverse

motion of the oriented or aligned molecules, and thus their state-selection [1]-[3].

The control over the longitudinal motion of molecules in a molecular beam has been greatly

enhanced as well. In 1999, it was �rst demonstrated that an array of time-varying, inhomogeneous

electric �elds can slow down a beam of polar molecules [4]. This so-called Stark decelerator for

neutral polar molecules is the equivalent of a linear accelerator (LINAC) for charged particles. In

a Stark decelerator, the quantum-state speci�c force that acts on a polar molecule subject to an

electric �eld is exploited. This force is rather weak, typically some eight to ten orders of magnitude

weaker than the force that would act on the molecular ion in the same electric �eld. This force

nevertheless suffices to provide complete control over the motion of polar molecules, using techniques

akin to those used for the control of charged particles. This has been explicitly demonstrated by

the construction of two different types of linear accelerators [4],[5], a buncher [6], a mirror [7], two

different types of traps [8],[9] and a storage ring [10] for neutral polar molecules.

A crucial feature of the Stark decelerator is its phase stability. Phase stability, which is at

the core of synchrotron-like charged-particle accelerators as well [11], enables to hold together a

packet of neutral molecules throughout the Stark-deceleration process. Phase-stable operation of

a Stark decelerator, viewed as trapping of neutral molecules in a travelling potential well, was �rst

explicitly demonstrated in experiments on metastable CO [12]. In that work, as well as in later

publications on the deceleration of various isotopomers of ammonia, the one-dimensional equation of

motion for molecules that undergo phase-stable transport was given [12]-[14]. In more recent work,

the coupling between the transverse and the longitudinal motion was included, and the transverse

stability in a Stark decelerator was discussed [15]. In order to obtain the longitudinal equation of

motion, the Stark energy (potential energy) of the molecules was expressed as a function of position
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2. Fourier representation of the electric �eld in a Stark accelerator/decelerator

along the longitudinal decelerator axis, and the change in Stark energy per deceleration stage was

evaluated. As this treatment did not yield a priori an expression for the force on the molecules

as a function of time, assumptions about the time-dependence of the force were made in order

to arrive, in an intuitive way, at the equation of motion. The validity of these assumptions was

checked against trajectory calculations, and it had been concluded that this equation of motion

indeed describes correctly the physics of the phase-stable motion in a Stark decelerator [12]-[14].

Nevertheless, a mathematically rigorous derivation of the equation of motion and an in-depth

analysis of the complex dynamics in a Stark decelerator was still wanting.

A description of the (longitudinal) force acting on the molecules as a function of both their

position in the decelerator and as a function of time could be obtained by expressing the spatial and

temporal dependence of the electric �elds in the decelerator in terms of a Fourier series [16]. This

description, in which the force has been expressed as an in�nite sum of stationary and counter-

propagating waves, contained all the correct physics, but it was not directly evident how to connect

this description to the trajectory calculations or to the actual experiments. In particular, it was not

clear why, in discussing phase stability, it is allowed to only consider the interaction of the molecules

with one of the in�nitely many waves. It was not clear either where the experimentally observed

�rst- and second-order resonances in the decelerator - which have a straightforward interpretation

in the intuitive model [17] - come from in the Fourier-series description.

In this paper, we give a detailed description of the longitudinal motion of molecules in a

Stark accelerator/decelerator. This description is based on the Fourier analysis of the force that

acts on the molecules as a function of position and time [16]. The motion of the molecules in phase

space due to any of the interacting waves, as well as due to their mutual perturbations, is analyzed.

A detailed comparison with trajectory calculations and experiment has shown that the �wave

model� presented here holds up to all the scrutiny applied, and provides a complete and accurate

description of the longitudinal dynamics of polar molecules in a Stark accelerator/decelerator.

Figure 1 shows a prototypical switchable �eld array suitable for accelerating or decelerating

polar molecules. The electric �elds are generated by (rod-electrode pairs, cylindrical

electrodes, or other) longitudinally separated by a distance . In the array, every other �eld stage

is energized and every other grounded. Which �eld stages are energized and which are grounded

determines one of two possible of the array. Fig. 1a shows, for the case of four

�eld stages, the electric �elds that are generated by the two �eld con�gurations. The magnitudes
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of the electric �elds that pertain to the upper and lower �eld con�guration are shown by the red

and blue curves and will be referred to as the red, , and blue, , �eld, respectively. Also shown

is the longitudinal coordinate . A given �eld stage is energized or grounded during a time ,

after which the �elds are , i.e., the �eld stages that were energized become grounded and

the �eld stages that were grounded become energized. Fig. 1b shows the between the

red and blue �elds as a function of time, . An energized �eld stage becomes grounded or vice versa

during a transient time, . For , the temporal alternation between the red and blue �elds

is .

We�ll now represent the spatial and temporal dependence of the , which results from

the switching between the static red and blue �elds, by a Fourier series.

We�ll begin by Fourier-expanding the spatial dependence of the red �eld, which is produced

by �eld stages at positions , with , see Fig. 1a. The strength of the

red �eld is given by

(1)

where are the spatial Fourier coefficients and

(2)

The blue �eld is produced by �eld stages at positions , see Fig. 1a, and so is obtained

from the red �eld by shifting it by , i.e.,

(3)

Taking , the net �eld, , is given by

for

for
(4)

see Fig. 1b.

In order to derive the Fourier representation of the net �eld, we�ll expand eq. (4) in terms

of a temporal Fourier series. By invoking the �well-known� result for a temporal square wave [18],

the net �eld can be written as

(5)

where is the temporal phase such that

(6)
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with the angular frequency. While Fig. 1b shows a time dependence of the �eld with a constant

period (which corresponds to the so called , see below), Figure 2 shows a time sequence

with a varying period (one which corresponds to ). In either case, the square-

wave rises and falls when the temporal phase becomes equal to an integer multiple of .

Substitution into eq. (5) from eqs. (1)-(3) yields

(7)

where we made use of the identity , de�ned the spatial

frequency (wave vector)

(8)

and introduced the

(9)

Note that are all positive integers.

Eq. (7) reveals that the net �eld consists of a superposition of and of

. The propagating waves move with

V

V (10)

from left to right ( sign) and from right to left ( sign). The second line of eq. (10) de�nes the

, V , which is determined solely by the spatial and temporal periods

and .

The path taken here in deriving eq. (7) is a shortcut of the route used to derive the same

equation in our previous work [16]. The time dependence of the temporal period or frequency is

here emphasized right from the outset.

Note that the spatial Fourier coefficients along with the square-wave time dependence

fully characterize the net �eld. While the temporal Fourier coefficients fall only as , the spatial
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ones fall off roughly exponentially with , i.e.,

(11)

where is a decay parameter which depends on the geometry of the �eld array. Hence we can

expect waves with small and larger ; as we�ll see in Section 5, waves with and

account for all the dynamics so far observed.

A molecule with a space-�xed electric dipole moment subject to �eld (7) has

a Stark energy

(12)

In what follows, we�ll consider molecular states whose space-�xed electric dipole moment is inde-

pendent of the electric �eld strength; this is the case when the �eld-molecule interaction is governed

by the �rst-order Stark effect. Molecular states whose space-�xed electric dipole moment is

parallel ( ) or antiparallel ( ) to the electric �eld strength are referred to as or

, respectively. Whereas the eigenenergy of high-�eld seekers decreases with

increasing �eld strength, it increases for the low-�eld seekers. As a result, in an inhomogeneous

electric �eld, such as , high-�eld seekers seek regions of maximum, and low-�eld seekers seek

regions of minimum �eld strength where their eigenenergy is minimal. In the net �eld (7), the

Stark energy becomes

(13)

with

(14)

We note that in the case of a non-linear Stark effect [19], eq. (13) can still be used to represent the

Stark energy; the Fourier coefficients of eq. (13) will, however, no longer be linear in �eld strength.

If the eigenenergy Fourier coefficients, eq. (14), are available as the primary parameters, the nature

of the Stark effect doesn�t need to be considered explicitly [20].

Since the Stark energy plays the role of a potential for the motion of the molecules, the

force, , that the �eld exerts on a molecule of mass is given by
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4. Dynamics of the interaction of molecules with a single wave

4.1 Force exerted by an arbitrary wave

(15)

where

(16)

Thus we see that a molecule subject to force (15) is acted upon by an in�nite multitude of

stationary as well as propagating and counter-propagating waves. However, as we�ll see in Section

4, only a single wave governs the molecule-�eld interaction. Which wave it is is determined by the

difference between the wave�s phase velocity and the velocity of the molecule: only a wave whose

initial phase velocity comes close to the initial velocity of the molecule can become paramount. In

order to �nd out how close this needs to be, we must do the dynamics.

In this Section we�ll examine the dynamics of the interaction of a bunch of molecules with

a single wave. After developing a formalism for describing such an interaction and discussing its

dynamics, we�ll be able to show why, to an excellent approximation, the effect of all the other waves

can be neglected. In Section 5 we�ll consider the full-�edged dynamics and evaluate explicitly the

perturbing effects due to other waves. We�ll also tackle the (marginal) effects due to interfering

waves which interact jointly with a bunch of molecules.

As we can glean from eqs. (7), (13), or (15), an arbitrary propagating wave can be labelled

by a pair of integers, and , and by its propagation direction ( for left to right or for right

to left), i.e., by . Since the molecules move from left to right by convention, in what follows

we�ll consider waves moving from left to right. Thus such an otherwise arbitrary wave travels from

left to right with a phase velocity

V V (17)

cf. eq. (10), and exerts a force on a molecule given by

(18)

with the phase

(19)
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The corresponding acceleration/deceleration then becomes

(20)

A key concept in tackling the molecule-wave interaction is that of a .

This is de�ned as the molecule which maintains a

(21)

with respect to a throughout the acceleration/deceleration process - no matter

what, see Figure 3.

It should be noted that the de�nition of the synchronous phase given here is slightly different

from the de�nition that has been used in earlier descriptions of phase-stability in a Stark decelerator

[12]-[14],[17]. In these earlier studies the synchronous phase was de�ned in terms of the position of

the synchronous molecule relative to the electrodes, and this position was required to be the same

every time the electric �elds were switched from one con�guration to the other. Although this

de�nition takes the full spatial dependence of the Stark interaction into account, it only speci�es

the synchronous phase at the moment when the �elds are switched. In the case when the spatial

and temporal dependence of the Stark interaction is governed by a single wave , the de�nitions

are equivalent.

From eq. (18) it immediately follows that the synchronous molecule is acted upon by a

(22)

and thus has a

(23)

From eq. (23) we see that the acceleration/deceleration rate can be by

. As follows from eq. (21), at , when the �elds are switched for the �rst

time, the synchronous phase is simply

(24)

Therefore, the synchronous phase can be tuned by launching the (or ) when

the synchronous molecule has the desirable longitudinal coordinate . The subsequent switching
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times between the two �eld con�gurations can always be chosen such that the synchronous molecule

will keep the same phase.

With a tunable acceleration/deceleration, the initial velocity of the synchronous molecule

can be increased/decreased to any value

v v (25)

In order to keep the phase of the synchronous molecule constant during acceleration/deceleration,

the phase velocity of the wave that interacts with the molecule needs to be varied. This is done

by applying a switching sequence to the �eld array as the molecule progresses through

it. In other words, the temporal frequency or period of the applied �eld is made time-dependent,

or . As a result, the phase velocity becomes also time dependent, cf. eq. (10). In

this paragraph we�ll show that the phase velocity of the wave is always equal to the synchronous

velocity of the molecule, as one would expect. Furthermore, we�ll evaluate the temporal phase and

hence the timing sequence needed to a molecule synchronous.

From the de�nition of the synchronous phase, eq. (21), we obtain

(26)

from which it follows that

v (27)

By comparing this result with eq. (17), we see that, indeed, the phase velocity is equal to the

synchronous velocity

v V (28)

In what follows we�ll use the following notation for the initial phase and synchronous velocities

v V V (29)

In order to derive an expression for the temporal phase consistent with the condition of a

constant synchronous phase, we invoke eq. (21)

(30)

and substitute for from the �rst integral of eq. (25),

v V (31)
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where the initial position, , was obtained from eq. (24). This yields a temporal phase

V (32a)

which pertains to a square wave that falls/rises only when the following periodic condition is

ful�lled:

V (33)

Eq. (33) de�nes exactly that switching sequence which is required in order to keep the phase of the

synchronous molecule constant and hence for achieving a constant acceleration/deceleration. The

corresponding switching times are given by solving eq. (33) for , with the result

V
V

(34)

which is identical with a result obtained earlier [21]. Figure 2 shows a switching sequence generated

by eq. (33), suitable for decelerating OH radicals.

The equation of motion of a non-synchronous molecule subjected to wave is

(35)

where we made use of equation (18). For the synchronous molecule we have

(36)

A combination of eqs. (35) and (36) yields

(37)

The left-hand side of eq. (37) can be recast in terms of the non-synchronous and synchronous

phase. We have, with the help of eq. (19),

(38)

where is the longitudinal distance between the non-synchronous and synchronous

molecule, see also Fig. 3. Eq. (38) implies the following equations for the time derivatives:

(39)
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However,

(41)

and

(42)

since, by de�nition,

Substituting eqs. (40) and (42) into eq. (37) �nally yields

(43)

with

(44)

Relating the motion of all molecules to a molecule which maintains a constant (synchronous)

phase with respect to a given wave not only greatly simpli�es the equation of motion but reduces

it to a form which is isomorphic with the equation of motion of a , see Figure 4.

Since the biased pendulum problem can be well understood - both mathematically and intuitively

- it offers invaluable lessons about the Stark accelerator/decelerator dynamics [16].

Both the biased-pendulum problem and the Stark accelerator/decelerator have the following

Lagrangian

(45)

where and are constants different for the two problems. The application of Lagrange�s

equation

(46)

immediately yields the correct equation of motion, namely eq. (43).

The �rst term of the Lagrangian (45) is the kinetic energy, the second term is the potential,

(47)

In writing down the potential we split it into the pendulum part, , and the bias part, .

These are plotted for four different cases ( positive/negative, acceleration/deceleration) in Fig-

ure 5. The �gure provides a valuable insight into the dynamics of the studied system(s). Like a
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simple pendulum, a biased pendulum has two equilibrium points, a and an one, the

latter called here a . These are located, symmetrically, at and and

correspond to the positions of the minimum and maximum (modulo of the potential (47), as re-

vealed by taking the �rst and second derivatives of the potential with respect to , see also ref. [16].

The unstable equilibrium point coincides with the outermost turning point, . Angles in excess

of result in a nonuniform accelerating rotation of the pendulum about its axle, propelled by

the falling bias. For the accelerator/decelerator this means that non-synchronous molecules whose

phase would exceed the tipping point will fall out of the potential well due to and thus be lost.

Exceeding the tipping point amounts to disengaging from the acceleration/deceleration process. On

the other hand, the inner turning point, , cannot be exceeded, since the potential at

is repulsive. The phase of a non-synchronous molecule that is con�ned by the potential periodi-

cally oscillates about the synchronous phase, whose value is set by the position of the potential�s

minimum. We also note that for higher acceleration/deceleration rates, the potential minimum

shifts correspondingly and the well becomes shallower, see Figure 6. This leads to a reduction and

shifting of areas where stable oscillations of the non-synchronous phase about the synchronous one

can take place, i.e., the areas of the so called . In what follows we�ll evaluate the

phase-stable areas of the phase space exactly.

Multiplying the equation of motion (43) - where we dropped the subscripts from the

phase for notational simplicity - by and integrating once over time

(48)

yields

(49)

or

(50)

with an integration constant. Eq. (50) represents the trajectory of a non-synchronous molecule

through phase space .

For a bound motion, is determined by the condition , which de�nes the value

of the non-synchronous phase at the outer , see Figs. and . Thus

(51)

A special case occurs when the turning point reaches its maximum, tipping value. This

determines the , which separates the bound and unbound motion in the phase space.
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Along the separatrix, becomes zero at the nearest local maximum of the potential. We distinguish

four cases, corresponding to the four different types of potentials shown in Figs. and .

: , and , pertaining to deceleration.

Along the separatrix, becomes zero at , see also Fig. 5a. Using eq. (51) we obtain

for the corresponding

(52)

Inserting this into eq. (50) gives the expression for the separatrix

(53)

which is plotted for various values of in Figure 7a. For the other cases we can follow exactly the

same procedure.

: , and , pertaining to acceleration.

Along the separatrix, becomes zero at ; see also Fig. 5b. Here

(54)

and the separatrix is given by

(55)

which is plotted for various values of in Fig. 7b.

: , and , pertaining to deceleration.

Along the separatrix, becomes zero at ; see also Fig. 5c. Here

(56)

and so the separatrix is given by

(57)

which is plotted for various values of in Fig. 7c.

: , and , pertaining to acceleration.

Along the separatrix, becomes zero at ; see also Fig. 5d. Here

(58)

and the separatrix is given by

(59)
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which is plotted for various values of in Fig. 7d.

For all other combinations of and there is no phase stability, as also illustrated by

Figure 6. We note that for deceleration (cases 1 and 3) and

for acceleration (cases 2 and 4).

Eq. (43) can be solved analytically for small phase oscillations, i.e., for . In that

case

(60)

and so eq. (43) becomes

(61)

which is recognized as the harmonic oscillator equation for and or

for and . Other combinations of and lead to non-oscillatory,

exponentially diverging solutions of eq. (61), which preclude phase stability.

The harmonic solution of eq. (61) is

(62)

with

(63)

the angular frequency of the harmonic phase oscillations, the initial phase difference, and

the initial temporal phase. The harmonic slow-oscillation frequency is given by

(64)

where we made use of eqs. (44) and (63). This differs for from the result obtained previously

[22].

Thus we see that for small relative phase angles , the non-synchronous molecule oscillates

harmonically about the synchronous one with a frequency . As increases, the anharmonic

terms in the sine expansion become more important and the small-angle approximation becomes

invalid. The onset of the anharmonic terms brings about more complicated, lower-frequency oscil-

lations. At the separatrix, the oscillation frequency drops to zero and beyond the separatrix the

motion becomes unbound with no periodic phase oscillations.
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area of phase stability in the phase space

bunches distribution of positions and velocities

choice synchronous molecule

At this juncture, we�ll make a general point which we�ll use frequently later on. We�ll refer

to the oscillations of the non-synchronous phase about the synchronous one as .

This re�ects the fact that is typically much smaller than . In contradistinction, we�ll refer to

the oscillations at frequency as .

We note that the period of the (slow) oscillations is generally given by

(65a)

and can be evaluated numerically from the �rst integral of the equation of motion (43) and from

the transcendental equations for the turning points and . For harmonic

oscillations,

(66a)

The notion of pertains to periodic solutions of the equation of motion (43).

Physically, these correspond to stable oscillations of the non-synchronous molecule about the syn-

chronous one. The solutions of the equation of motion, given by eqs. (53), (55), (57), and (59),

determine a boundary for the momentum of the non-synchronous molecule, , as a function of

its phase, , that pertains to phase-stable motion. That is to say, together, delimit

an for molecules interacting with a given wave .

Phase stability is a key property of a Stark accelerator/decelerator, which enables handling

other molecules than just the synchronous one. This is what makes the device a practical one,

since of molecules, with a , can then be acceler-

ated/decelerated. Without phase stability, only a single molecule could be handled, namely the

synchronous one [23],[24].

The explicit evaluation of the phase-stable areas, eqs. (53), (55), (57), and (59), clari�es

several issues:

(a) The of the . The distribution of positions and velocities of molecules

in a bunch (typically Gaussian, for a pulsed supersonic beam, ref. [25]) occupies a certain region

of phase space. In order for the accelerator/decelerator to act on most of the molecules in the

bunch, an overlap between the phase space occupied by the bunch and the separatrices for phase-

stable acceleration/deceleration needs to be sought. As the calculations of the separatrices attest,

the synchronous molecule is always at the center of the phase-stable area, cf. Fig. 7. Hence
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4.8 Why does a single-wave do nearly all the job?

(+ 1 1)

( )

(+ ) (+ )

˙ 1 ˙ = 0

� ˙ = ˙ ˙ = = � ˙ = ˙

=
1

( ) =
1 1

= = ˙ = 0

size phase-stable areas accelera-

tion/deceleration rate

dominant wave

�rst-harmonic wave

Higher overtones

a maximum phase-space overlap is achieved when the position and velocity of the synchronous

molecule coincides with the most probable position and velocity of the molecular-beam pulse, see

Figure 8. Thus in an acceleration/deceleration experiment, the synchronous molecule is generally

de�ned by the most probable position and velocity of the molecular-beam pulse.

(b) The of the depends on which, in turn, determines the

. At higher acceleration/deceleration rates, only smaller bunches of molecules

can be handled. The largest bunches of molecules can be handled at zero acceleration/deceleration,

when a bunch is just transported (i.e., guided) through the �eld array.

(c) The . Since is the largest spatial Fourier coefficient, cf. eq. (11), we see

that supports the largest phase-stable area and affords the highest acceleration/deceleration

rate. The corresponding wave, , referred to as the , gives the best yield

according to this 1-D treatment. are normally not used in experiments, but the

effects of many have been observed [17]. In Section 5 we�ll examine in more detail the relative sizes

of the phase-stable areas due to different overtones.

So far we limited our considerations to the single-wave dynamics, i.e. to the equation of

motion and its solutions that pertain to a single wave interacting with a bunch of molecules.

Here we�ll show that it is indeed just a single wave that gives a ride to molecules, with the in�nitely

many other waves, eq. (15), playing no role or a marginal one (see Paragraph 5.3 on interferences).

In order to see why this is the case, we�ll look at the effect an arbitrary perturbing wave

has on the phase-stable motion of molecules due to a wave, whose dynamics we

outlined in Section 4.

Before delving into that, however, let�s consider �rst the relationship between the velocities

of the non-synchronous and synchronous molecules for an arbitrary single wave. Since the averages

of the non-synchronous phase and its time derivatives over the oscillation period are identically

equal to zero

(67)

and since, from eq. (39),

v v (68)

we see that

v v v v v v v v (69)
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pilot

molecules which periodically oscillate about a molecule synchronous with

an arbitrary wave will get a ride from that wave!

resonant wave

guide

i.e., the non-synchronous velocity averaged over a phase oscillation is equal to the average synchro-

nous velocity. This in turn shows that the synchronous velocity (pertaining to a given wave) acts as

a for the non-synchronous velocity (pertaining to that same wave) as long as phase stability

is maintained. Therefore,

In what follows we�ll call a wave that gives a ride

to a given bunch of molecules a .

Let�s now approach the problem from the other side and look at the effect of a perturb-

ing wave on the motion driven by a resonant wave. We�ll look at the case of zero accelera-

tion/deceleration, i.e., the case when the switching frequency is constant and the Stark ac-

celerator/decelerator serves as a . This will make our calculations simpler, although the same

arguments would apply to the general case of nonzero acceleration/deceleration. Also, we�ll make

our notation more accurate and, invoking eqs. (17) and (19), write the molecule�s coordinate as

V (70)

The acceleration of a molecule whose motion is resonant with the wave is given by

(71)

where we made use of eqs. (19), (35), and (70). For small oscillations, the unperturbed coordinate

of a molecule riding the wave is

V (72)

as follows from eqs. (38), (62) and (70); its velocity, obtained by taking the time derivative of eq.

(72), is

v V (73)

The harmonic slow-oscillation frequency is given by eq. (63).

We�ll consider now the perturbing effect of the wave on the motion of a molecule

which is riding the wave. The wave perturbs the ride of the molecule by acting

on its coordinate as determined by the wave. Thus the acceleration imparted to a

molecule by the perturbing wave is

(74)
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where we made use of eq. (70) and introduced the frequency

(75)

which is a fast-oscillation frequency, since it is on the order of . Clearly, the time average of the

perturbing force over the perturbation period vanishes

(76)

as follows by substitution of eq. (74) into eq. (76) and integration, under the assumption that

the slowly oscillating phase remains constant over the period . Hence the perturbing force

is seen to average out fast, as a result of which the perturbing wave has no effect on the

phase-stable motion of the molecule.

The velocity, v , and the displacement, , imparted by the perturbing wave can be

obtained by integrating eq. (74). Integrating once (under the assumption of constant) yields

the instantaneous velocity due to the perturbing wave

v (77)

Integrating once more gives the displacement caused by the perturbing force,

(78)

Thus the effect of the perturbing wave on the velocity and on the displacement of the resonant

wave is suppressed by and , respectively. We see that the net effect of the perturbing

wave vanishes because the perturbing wave fails to displace the molecule. This is indeed the reason

why, to an excellent approximation, we are allowed to single out the resonant wave and handle it

separately from the perturbing one(s). It is also the reason why a perturbing wave has no in�uence

on phase stability.

The motion of a molecule resonant with the wave and perturbed by the

wave can now be easily evaluated (for the case of small oscillations) by simply adding eqs. (72)

and (78) or (73) and (77), respectively. This analytic result can be compared with the result of a

numerical integration of the differential equation for a non-synchronous molecule interacting with

the and waves. For example, for the and waves, the equation is

(79)
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4.9 Two (or more) waves travelling with the same phase velocity

and Figure 9 shows the result of the corresponding numerical integration. The initial conditions

are chosen such that the molecule interacts resonantly with the wave, which means that

the wave acts as a non-resonant, perturbing wave. Since the wave dominates the

right-moving waves and since its phase velocity is close to the wave, the perturbing effect of

the wave is much larger than the effect of all the other waves in the Fourier expansion, eq.

(15). And yet, this perturbing effect is seen to be strongly suppressed because of the fast oscillations

with respect to the wave. While the perturbation of the velocity is still noticeable on a

short time scale, see Fig. 9a, the perturbation of the coordinate amounts to just a ripple, see Fig.

9b. We note that the frequency and amplitude of the fast oscillations are correctly predicted by

eqs. (77) and (78), which recon�rms the validity of the assumptions used in in the analysis of the

perturbations.

In the case of acceleration/deceleration, the switching frequency is not constant, but in-

creases/decreases linearly with time throughout the acceleration/deceleration process. Neverthe-

less, the treatment of the perturbations for the case of guiding, as given above in this paragraph,

remains in place for this case as well, since essentially doesn�t change during a fast-oscillation

period (typically by less than 1%) and so can be treated as a constant.

The above treatment only breaks down in the limit V , where the used

assumption no longer holds. In practice, such a situation doesn�t occur, since even if the

molecules are decelerated to velocities conducive to trapping, see ref. [9], still considerably

exceeds , and so the treatment remains in place.

When the resonant and perturbing waves travel at the same phase velocity (i.e., for

, with an odd integer), the perturbing force, eq. (74 ), does average out. In this

case one cannot speak of resonant and nonresonant waves, because all the waves which travel at

this same velocity are equally resonant and will jointly create phase stability. Since, obviously, any

wave has such fellow-traveller waves, , this is actually the usual situation. Figure

10a shows typical relative sizes of two waves with successive , travelling at the same velocity. We

see that the resulting shape of the well is dominated by one of the two waves, namely the one with

the smaller , cf. eq. (11). Hence in order to draw conclusions about phase stability (which is

determined by the shape and depth of the well), we can rely solely on the properties of the

.

However, when calculating switching sequences accurately, the in�uence of the non-dominant
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5. Full-�edged dynamics

5.1 Guiding

wave(s) cannot be fully dismissed, because of the effect it has on the deceleration (typically, a

deviation of a few percent with respect to a single-wave treatment can accumulate over accel-

eration/deceleration stages). Thus when evaluating the acceleration on a dominant wave,

one should replace eq. (23) with the sum

(80)

Note that this sum converges very fast, cf. eqs. (14) and (16). Fig. 10b shows, for the case

of the dominant wave, the modi�cation of the force due to the presence of the resonant

non-dominant waves. We note that in order to achieve an accurate correspondence between and

, several terms in eq. (80) may have to be taken into account.

In Section 4.8, we discussed the dynamics due to a single resonant wave perturbed by a single

nonresonant wave. However, the exact (longitudinal) force that is acting on the molecules, eq. (15),

is due to in�nitely many partial waves, out of which all but one are non-resonant (notwithstanding

the discussion of Paragraph 4.9). In order to fully assess the role of the resonant wave the

non-resonant waves, we evaluated the combined effect due to a large number of waves and compared

it with a single-wave effect. The single-wave dynamics, the full-�edged dynamics and the correction

that needs to be applied to the single wave dynamics in order to reproduce the full-�edged dynamics

can be best visualized in a phase-space diagram. Such a diagram, or , exempli�ed in

Figure 11, shows the average velocities of the molecules as a function of their initial velocity and

initial spatial phase. The link between the average velocity and phase stability is given by eq. (69).

The velocities that the contours correspond to can be read off from the velocity scale on the right.

The cases of guiding (no acceleration/deceleration) and acceleration/deceleration due to a

single wave will be described separately in Paragraphs 5.1 and 5.2. Single-wave dynamics gives

rise to features which occur at odd-fraction multiples, , of the fundamental velocity V . In

Paragraph 5.3 we�ll deal with features which occur at even-fraction multiples of the fundamental

velocity V . These features arise from the interference of (typically) two adjacent waves.

The phase portrait shown in Fig. 11 was obtained from a numerical integration of the full

equation of motion

(81)

with given by eq. (15) and the temporal phase of the waves given by eq. (32a) with
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corresponding to guiding. We found that increasing the number of waves included in

the computation beyond didn�t lead to any changes of the phase portraits in

the range of the initial velocities and positions shown. Moreover, we found that the phase portrait

of Fig. 11 agrees perfectly well with the one obtained from trajectory simulations which, in turn,

perfectly reproduces experiment [17]. Therefore, for all intents and purposes, the phase portrait

of Fig. 11 can be considered to be exact. The phase portrait captures all the complexity of the

dynamics in question and makes it possible to see at a glance the phase-stable areas due to various

waves. We remind ourselves of the fact that while the spatial Fourier components of decrease

exponentially with increasing , the temporal Fourier components decrease only as . Therefore,

phase-stable areas corresponding to waves with can hardly be discerned but those with

can still be easily observed in the phase-space area depicted.

Figure 12 shows in panels (a) and (b) detailed views of the phase stable areas due to the

�rst harmonic wave and due to the wave (note that and for

the example of low-�eld seeking states considered here). The main features can be understood, for

the case of guiding, from eqs. (53) and (57), respectively. Before we apply these, we realize that,

generally, the phase , eq. (19), yields a molecular velocity

v V (82)

and an initial position of the molecule

at (83)

Eqs. (53) and (57), simpli�ed for the case of guiding, become

(84)

and

(85)

Their combinations with eq. (82) give the separatrices

v V (86)

and

v V (87)

for the cases represented by waves and , respectively. The separatrices obtained

from eqs. (86) and (87) are shown in Fig. 12 by the white curves. The equations capture all the
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qualitative features of the respective phase-stable areas seen in Figs. 11 and 12: (1) the phase

stable areas occur at velocities V ; (2) the velocity (i.e., vertical) width of a phase-stable area

for a given is proportional to , because , eq. (44); (3) the velocity width of a

phase-stable area for a given is proportional to , cf. eqs. (11) and (44); (4) when the

spatial phase, , varies between to , then the initial phase varies

between to ; as a result, the phase-stable area corresponding to an wave consists

of ��shes� when the (horizontal) initial spans the interval of to ; (5)

for , the nodes occur at ; for , the nodes occur at

A closer inspection of Fig. 12 reveals that the agreement between the separatrix obtained

from either eq. (86) or (87) with the exact phase portrait is not perfect. The agreement can be

improved to the point of perfection by correcting for the effect of the nonresonant waves. This

we do by applying the approach developed for a single perturbing wave in Section 4.8 to all the

perturbing waves, starting with eq. (15). As a result

�v v

(88)

where �v is the velocity change of the molecules riding the resonant wave due to the effect

of all the nonresonant waves (so the summation is over all for which ).

Truncating the summation at and , we obtain for ,

�v

(89)

This is shown by the green line in Fig. 12 for . The yellow line shows the velocity v

�v , and is seen to be in full agreement with the phase-stable area obtained from

the full-�edged calculation. No correction was needed for the position , as the effect of the

nonresonant waves is diminished by a factor proportional to , see eq. (78) and Fig. 9b, and so

does not show on the scale of the �gure.
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The phase portraits obtained for guiding can be easily generalized to the case of accel-

eration/deceleration, by incorporating in the numerical calculations a temporal phase, eq. (32a),

corresponding to an accelerating/decelerating wave. Figure 13 attests to this being the case: panels

(a) and (b) show the same parts of the phase space as panels (a) and (b) in Fig. 12, but for

and , respectively, and both for deceleration. The white curves show the separatrices

v V (90)

and

v V (91)

obtained from the general formulae (53) and (57), the green lines the correction due to the nonres-

onant waves, eq. (89), and the yellow lines the corrected separatrices. Again, the agreement with

the exact phase portraits is excellent.

A close look at Fig. 11 reveals small regions of phase stability centered at �strange� ve-

locities, such as V or V These phase-stable areas cannot arise from single-wave interactions,

since, as we saw above, single waves travel at phase velocities V with and odd. Here we�ll

show that the phase-stable areas occurring at even-fraction multiples of V actually arise from the

interference of two waves with and odd.

We reach this conclusion in , outlined below for the case of guiding. , we

transform the equation of motion of a molecule at a position subject to two arbitrary waves

and

(92)

cf. eq. (35), to a frame moving with velocity

V V (93)

where the two waves act on the molecule with the same frequency

(94)

Note that is a fast oscillation. The molecule�s position in such a frame is

V (95)
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The transformed equation of motion thus becomes

(96)

where we made use of the equality .

, we integrate eq. (96) under the condition that the spatial phase remain constant

with respect to the temporal phase ; this is consistent with our aim to �nd stable, slowly

oscillating solutions. For the constant spatial phase we take the value the spatial phase

acquires at an arbitrary time, . Thus we obtain

(97)

where is an integration constant, which can be evaluated by integrating both sides of eq. (97)

over a fast oscillation period, . This yields

(98)

Now integrating eq. (97) for constant yields

(99)

where we made use of eq. (98). Here is another integration constant, which can be evaluated

by integrating eq. (99) over a fast-oscillation period

(100)

Note that eqs. (97) and (99) are valid at time . In particular, for eq. (99) yields

(101)

Since the time was chosen arbitrarily, eq. (101) holds at , which makes into a

; we�ll denote it by again ( ). Furthermore, we�ll solve eq. (101) iteratively. The

inequalities and (cf. Paragraph 4.8) along with eq. (101) imply that

(102)
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from which it follows that already the �rst iteration (i.e., , on the right-hand side)

generates an accurate solution

(103)

where the quantities and are shorthands for the �rst and second term, respectively.

, we insert eq. (103) into the equation of motion (96) and invoke the following trigono-

metric approximations

(104)

As a result, we obtain the equation of motion in the form

(105)

Taking an average of eq. (105) over the fast-oscillation period yields

(106)

Eq. (106) is a second-order differential equation for which reveals that a molecule that has a

coordinate with respect to a synchronous molecule travelling at a velocity V is subject

to a sine-shaped restoring force which leads to slow stabilizing oscillations. This comes about in

exactly the same manner as in the case of a single-wave interaction.

, we realize that the waves and act jointly as a single wave

. As this wave moves at the phase velocity V V , cf. eq. (93), we can ascribe

it a phase

(107)

Plugging eqs. (93) and (95) into eq. (107) then gives

(108)
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which implies

(109)

Substitution from eq. (108) and (109) into eq. (106) yields the �nal result:

(110)

where we set

(111)

and

(112)

Eq. (110) is of the same form as eq. (43) for a single-wave interaction (in the case of

guiding, with ). Therefore, all the results (for guiding) obtained from eq. (43) are equally

valid for the interference dynamics.

Figure 14 illustrates the interference dynamics of a molecule interacting with the

and waves which propagate at phase velocities V and V respectively. The dynamics

was obtained by numerical integration of eq. (92), with the initial condition set such that v

V V . Note the similarity between Fig. 9 and 14. The former pertains to a non-synchronous

molecule interacting resonantly with the wave and non-resonantly with the wave. As

a result, the molecule�s velocity slowly oscillates about V with superposed fast oscillation due

to the perturbation by the perturbing wave. Fig. 14 shows a similar dynamics, but now the

slow, stable velocity oscillation is centered around V . Hence the and waves act

individually as perturbing waves, but act jointly as a single stabilizing wave propagating at

V .

We note that the frequency and amplitude of the fast oscillations are correctly predicted by

eqs. (97) and (103).

Equipped with eq. (110), we can now return to Fig. 11 and check whether the �strange�

features occurring at even-fraction multiples of the fundamental velocity can indeed be explained

by our analytic model of the Stark accelerator/decelerator.

First, we observe that the phase-stable areas are found at the velocities V , V , and V .

Zooming-in would reveal many more phase stable areas, e.g., at V or V . The stability at all
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these velocities follows directly from eqs. (93) and (110). Table I lists pairs of waves that give rise to

a given phase-stable area due to interferences. Thus we see that, for instance, the stability at V

results from the interference of the and waves, and at V from the interference of the

and waves. Next, we observe that the phase-stable area at V exhibits two ��shes,�

whereas phase stability at V exhibits four. Also this is in full agreement with our treatment, and

follows immediately from the -factor in the argument of the sine in eq. (110). The sign of the

prefactor explains correctly whether the interference effect exhibits a node or an antinode

at . Last but not least, we can evaluate the slow-oscillation frequency in the harmonic limit,

cf. eq. (63), from

(113)

where the absolute value accommodates the cases of negative or .

Let us zoom-in in Fig. 11 on the phase-stable area occurring at V , and use it as a testing

ground for the accuracy of our treatment of the interference effects. A magni�cation of this phase-

stable area is displayed in Figure 15a. The white curve shows the separatrix obtained from eqs.

(86) and (107) for the resonant wave. We see that it correctly renders

the size of the separatrix but not quite its shape. As in the case of single-wave dynamics, in order

to obtain a full agreement between our theory and the exact result we have to take into account

the in�uence of the perturbing waves. This in�uence can be taken into account in exactly the same

way as before, i.e., by means of eq. (89). We have to substitute into it for and

for , which gives

�v

(114)

We see that in this particular case, the sum over vanishes and so the correction given by eq. (114)

takes quite a simple form. The correction is shown by the green curve in Fig. 14a. The yellow curve

is a sum of the white and green curves, and is seen to agree perfectly with the exact separatrix.

We thus arrive at the conclusion that our analytic model accounts perfectly well for the observed
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phase stability at even-fraction multiples of the fundamental velocity, in terms of interferences of

waves with odd.

Above, we treated the dynamics due to two interfering waves. In particular, we showed

that the and the waves jointly create phase stability at V . But these are not

the only waves that create stability at this velocity! An interference wave, just as a single wave, is

always accompanied by fellow traveller waves. For example, the and waves also

create phase stability at V , as do the and the waves, etc.

Taking into account all combinations of the waves that generate phase stability at

V , we obtain for the total coefficient

(115)

where we note that eq. (115) is in complete agreement with eq. (24) of ref. [17]. The combined

effect of the fellow-traveller waves is small. In total, they give rise to a correction of about %

to the value of obtained by considering the and waves only. This results in

a correction of % for the corresponding separatrix. Therefore, in evaluating the phase stable

areas around V , we could rely solely on the interference wave arising from the combination of the

and waves.

The same discussion can be applied to phase stability at V , which is not due just to the

and waves, but also to the and waves, the and

waves, etc. Taking into account all combinations of the and waves that generate

phase stability at V , we obtain for the total coefficient

(116)

which is in full agreement with eq. (26) of ref. [17]. Again, the correction due to the fellow-traveller

waves has no signi�cant effect on the size of the separatrix as evaluated from the combination of

the and waves only.

Accelerating/decelerating on an interference wave is somewhat trickier than it is on a single

wave. The main reason is that the coefficient, eq. (111), which depends on , becomes

itself time dependent through the time dependence of . This needs to be taken into account
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when re-deriving expressions for v and from the condition of a constant synchronous phase

with respect to the wave.

First we realize that the acceleration imparted to the synchronous molecule by the interfer-

ence wave is given by

(117)

where we made use of eqs. (23), (94), and (111) and so is seen to depend on time. This time

dependence does not affect the derivation of the interference dynamics (Paragraph 5.3.1) since

doesn�t change appreciably during a fast-oscillation period. Eq. (117) can be integrated to yield

the synchronous velocity, which must equal the phase velocity:

v V V

V (118)

The time derivative of eq. (118) can be recast into a differential equation for

(119)

which can be easily solved by direct integration. With the initial condition we obtain

(120)

From eq. (120), the temporal phase becomes

(121)

which generates the switching sequence required for accelerating/decelerating on an interference

wave

(122)

The switching sequence obtained from eq. (121) was used in a full-�edged calculation for the case

of deceleration (at ) to generate the phase portrait shown in Figure 14b. Also shown is

the separatrix (white curve) obtained by substituting into eq. (53). We note that

the value of at is minimal, and so determines the depth of the potential well that

captures the molecules which, in turn, determines the area of phase stability (note that any increase

of the well depth during deceleration is of no avail). Also shown are the perturbations by all the
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6. Conclusions

5.3.4 Multiple interferences

other waves (green curve) and the net separatrix (yellow curve). Again, an excellent agreement

between the latter and the full-�edged calculation is found. Deceleration on an interference is of

little practical interest, since the corresponding deceleration rates and phase-stable areas are puny.

Furthermore it is quite easy to generalize the treatment of the interference effect to more

than two waves. This can be done by treating the interference wave on the same footing as a single

wave and letting it interfere with another single wave, in exactly the same way as the two single

waves that gave rise to the interference. This results in tiny, probably unobservable effects.

Stark acceleration/deceleration is a phase-stable process that enables full control of the

translational motion of quantum-state-selected polar molecules. The acceleration/deceleration

process abounds in rich dynamics, which has been accurately captured by an analytic model pre-

sented in this paper. The model is based on a Fourier analysis of the time-varying inhomogeneous

electric �eld produced by a Stark accelerator/decelerator, which reveals that the �eld consists of an

in�nite multitude of stationary and counter-propagating waves with well de�ned phase velocities.

The ensuing physical picture set forth by the �wave model� is that molecules injected into the

accelerator/decelerator ride the waves.

In this paper, we tackled explicitly the interaction of the injected molecules with an arbitrary

wave in the Fourier expansion, and obtained an analytic description of the acceleration/deceleration

dynamics which is both intuitive and exact. We found that the dynamics is dominated by the

interaction of the molecules with a single wave. This wave is distinguished from all the other waves

by its phase velocity, which is such as to come close to the velocity of the molecules (resonant

wave). We studied explicitly the effect of the non-resonant, perturbing waves on the resonant-wave

dynamics and showed that it is heavily suppressed, with little consequence for phase stability. We

also showed that two (or more) waves can interfere with one another and act jointly as a single

wave that gives rise to a phase-stable motion of the molecules.

We compared the dynamics derived from the �wave model� with Monte Carlo trajectory

simulations of the acceleration/deceleration dynamics, which in previous work had been found

to be in perfect agreement with experiment. This comparison showed that every tiny detail of

the observed rich phase-space structures could be accounted for by invoking either single-wave

dynamics, or perturbations by non-resonant waves, or interference dynamics.
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The link between various regions of phase stability and experimental observations was stud-

ied earlier [17]. However, the �wave model� led us to reinterpret the �rst- and second-order res-

onances, identi�ed in the previous work, in terms of single-wave and interference dynamics. We

were able to extend the previous study and show that arbitrary overtone waves can be used for

deceleration. This was subsequently corroborated by experiment [26].

Thus we conclude that the �wave model� encompasses all the longitudinal dynamics that

arises in a Stark accelerator/decelerator.
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: A prototypical switchable �eld array that generates �elds suited for accelerating or

decelerating polar molecules. The �eld stages are longitudinally separated by a distance . Every

other �eld stage is energized and every other grounded. There are two possible �eld con�gurations.

(a) Electric �elds generated by the two �eld con�gurations (for the case of four �eld stages). The

electric �elds that pertain to the upper and lower �eld con�gurations are shown by the red and

blue curves and are referred to here as the red, , and blue, , �elds, respectively. Also shown

is the longitudinal coordinate ; (b) Alternation between the red and blue �elds as a function of

time, . A given �eld stage is energized or grounded during a time , after which the �elds are

switched, i.e., the �eld stages that were energized become grounded and vice versa. An energized

�eld stage becomes grounded or vice versa during a transient time, . The �gure pertains to the

case of guiding, for which the period is constant. The case of a varying period is shown in Fig.

2. See also text.

: The time dependence of the �eld pertaining to the case of deceleration, for which the

period is a function of time, . The case of a constant period is shown in Fig. 1. The

timing sequence, generated by eq. (33), is suitable for decelerating OH radicals on the

wave with from an initial velocity of m/s to a �nal velocity of m/s. in the

decelerator presented in refs. [15] and [17]. The upper panel shows the corresponding dependence

of the switching half-period, The points mark the time difference between two subsequent

switching times. See Paragraph 4.3.

: A synchronous (full circle) and a non-synchronous (circle) molecule subjected to the

�eld of a wave moving at a phase velocity V (all motion is from left to right).

The change of the velocity, v , of a synchronous molecule is such that its phase with respect to

the traveling �eld remains constant. This is the case when v V . The velocity, v, of a non-

synchronous molecule and its phase, , change with time. Also shown are the spatial coordinates

of the synchronous and nonsynchronous molecule, and , respectively.

: Realizations of a plane biased pendulum: a bob of mass is �xed to a rigid suspension

of length which is attached to an axle of diameter ; wound around the axle is a string that carries

a bias of mass . A plane biased pendulum is a one-dimensional system, whose only coordinate

is the angle between the vertical axis and the bob suspension . The stable and unstable

equilibrium points are located symmetrically with respect to a plane perpendicular to the direction

of the axis at angles and , respectively. The stable-equilibrium angle of the biased

pendulum corresponds to the synchronous phase of the Stark accelerator/decelerator.
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: The potential of a biased pendulum or, interchangeably, of an accelerator/decelerator,

eq. (47) (red curve) along with the pure pendulum potential (blue curve) and the potential

of the bias (black curve). Also shown are the minimum (stable) and maximum (unstable)

equilibrium points. One can see that the unstable equilibrium point coincides with the outermost

turning point, , in the biased-pendulum potential. Angles in excess of result in a nonuni-

form accelerating rotation of the pendulum about the axle, propelled by the falling bias. On the

other hand, the inner turning point, , cannot be exceeded, since the potential at is

repulsive. The cases of acceleration and deceleration for and are shown in panels

(a)-(d), as labeled. The potential is expressed in terms of its amplitude , see eqs. (13) and

(14).

: Biased pendulum or, interchangeably, Stark accelerator/decelerator potential for

a range of values of the stable equilibrium point or, interchangeably, of the synchronous phase,

. For , the stable and unstable equilibrium points coincide and the potential cannot

support any bound states. The potential is expressed in terms of its amplitude , see eqs. (13)

and (14).

: The separatrices, determined from eqs. (53), (55), (57), and (59), as functions of

the synchronous phase, . Contours demarcate domains in phase space ( ) where stable

oscillations take place. Note that plays the role of a (dimensionless) momentum

and the angle of its conjugate coordinate. Depending on the sign of and on the sign of

(acceleration or deceleration), four cases are distinguished and shown in panels (a)-(d).

: Phase-space distribution of a molecular beam as it enters a Stark accelerator/decelerator.

The best overlap between a phase stable area (black ��shes�) and the molecular beam pulse (swarm

of dots) is obtained when the synchronous molecule matches the mean position and velocity of the

beam molecules.

: Dynamics of a non-synchronous molecule riding the wave and perturbed by the

wave. The dynamics was determined by numerically integrating the differential equation

of the molecule interacting with the two waves, for initial conditions that make the wave

resonant and the wave perturbing. Both the longitudinal velocity, v , panel (a), and the

longitudinal position, v , relative to the synchronous molecule moving at a velocity v , panel

(b), exhibit slow oscillations superposed by fast oscillations. The slow oscillations arise from the

single-wave interaction of the molecule with the resonant wave and are described by eqs. (72)
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and (73). The fast oscillations are due to the perturbing wave and are described by eqs.(77)

and (78). While the in�uence of the non-resonant wave on the velocity is signi�cant, its effect on

the position is strongly suppressed. The timescale is given in terms of the slow oscillation

period

: (a) Relative magnitude of the electric �elds due to the wave and the wave

(black dotted curves), which are travelling at the same velocity. These relative magnitudes are

typical for two waves with successive and the same velocity. We see that the net �eld (red

curve) is determined predominantly by the wave, i.e., the one with the smaller value of .

The conclusions about phase stability can be reached by considering solely this wave. (b) Typical

relative magnitudes of the force due to the , , and waves (black dotted curves),

which are all travelling at the same velocity. Since a small deviation in the force can accumulate

when calculating a switching sequence comprising many stages, one should rely on the net force

(red curve) rather than on the dominant term, cf. eq. (80).

: Global phase portrait showing the phase stable areas due to the various waves (case

of guiding). The contours pertain to average velocities of OH-molecules plotted as a function

of their initial velocity v and initial spatial phase ; the link between the average velocity and

phase stability is given by eq. (69). The contour plot is obtained by numerically integrating the

full equation of motion (81) for waves with a temporal phase and switching sequence given

respectively by eq. (32a) and (33) corresponding to guiding ( ) at V m/s. The

phase portrait is in perfect agreement with Monte Carlo trajectory simulations which, in turn, are

in perfect agreement with experiment. See also text.

: Detailed view of the phase stable areas of Fig. 11 around (a) V and (b) V (the

case of guiding). The contours pertain to average velocities of OH-molecules plotted as a function

of their initial velocity v and initial spatial phase . Zooming-in at the global phase portrait

allows for an accurate comparison of the full-�edged numerical result with the analytic treatment

of the dynamics. The white curves show the separatrices calculated from eqs. (86) and (87) for a

resonant, single-wave interaction. The green curves are obtained from eq. (89) and comprise the

perturbations due to all the other, non-resonant waves. The yellow curves combine the two and are

seen to render a perfect agreement with the full-�edged calculation. See also text.

: Detailed view of the phase stable areas around (a) V and (b) V for the case of

deceleration. The contours pertain to average velocities of OH-molecules plotted as a function
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of their initial velocity v and initial spatial phase . The contours were obtained by numerically

integrating the equation of motion (81) for waves, with a temporal phase and switching sequence

given respectively by eq. (32a) and (33) corresponding to deceleration ( ). Panel (a)

shows the full-�edged numerical calculation for deceleration on the �rst-harmonic wave with

. Panel (b) shows the full-�edged numerical calculation for deceleration on the

wave with . The white curves pertain to the separatrices obtained for a resonant,

single-wave interaction, as given by eqs. (53) and (57). The green curves are obtained from eq.

(89) and comprise the perturbations due to all the other, non-resonant waves. The yellow curves

combine the two and are seen to be in perfect agreement with the full-�edged calculation. See also

text.

: Interference dynamics of a non-synchronous molecule interacting with the wave

and the wave which jointly create phase stability at V . The dynamics was obtained by

numerically integrating the equation of motion (92) for a molecule interacting with the two waves,

with the initial condition v V . Both the longitudinal velocity, v , panel (a), and the relative

position, V , panel (b), exhibit slow oscillations superposed by fast oscillations. The

two interfering waves and act jointly as a single wave, giving rise to slow oscillations

of period . Note the similarity with Fig. 9; see also text.

: Detailed view of the phase stable area around V for the case of guiding (with

), panel (a), and of deceleration (with ), panel (b). The contours pertain to

average velocities of OH-molecules plotted as a function of their initial velocity v and initial spatial

phase . The full-�edged numerical calculations are compared with the analytic result for the case

of the interference of the -wave with the -wave, which give jointly rise to a -wave.

The white curves show the separatrices (at ) obtained from eq. (53) for and

, and with and as given by eqs. (107) and (112). The green curves were

obtained from eq. (114) and comprise the perturbations due to all non-resonant waves. The yellow

curves combine the two and are seen to be in excellent agreement with the full-�edged numerical

calculation. The temporal phase and switching sequence used for deceleration, panel (b), is given

respectively by eq. (121) and (122). We note that the coefficient is negative for the case of

low-�eld seekers, considered in this calculation. See also text.
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