In situ investigations of the formation of a (MoVW) $_5O_{14}$ type mixed molybdenum oxide catalyst

MAX-PLANCK-GESELLSCHAFT

E. Rödel, R. Schlögl, T. Ressler

Department of Inorganic Chemistry

Fritz-Haber Institute of the MPG Faradayweg 4-6, D-14195 Berlin, Germany

Goals:

 Development & characterization of model systems for catalysts industrially applied in the selective oxidation of propene

 Elucidation of the function of different metal centers for phase

Approach:

- Mo₅O₁₄ type structure as model system for more complex mixed oxide catalysts
- Studies on the local structures of the metal centers during phase evolution of the Mo_5O_{14} structure
- Investigations on the stability of the

Methods:

• In situ XRD (CuK_{α}) in Bragg-Brentano geometry, Bühler HDK combined with MS

• In situ XAS at HASYLAB, Hamburg. In situ XAS cell combined with online monitoring of gas phase composition by MS

formation and stabilization

Lattice constants (MoVW)₅O₁₄:

experimental data calculated data

a = 22.763 Å

c = 3.985 Å

1500-

1000

500 -

sity

Mo₅O₁₄ phase

The precursor to the $(Mo_{0.68}V_{0.23}W_{0.09})_5O_{14}$ was prepared by spray-drying of aqueous solutions of ammonium heptamolybdate, ammonium metatungstate and vanadyl oxalate.

Heating in ① synthetic air to 623 K followed by ② heating in helium to 713 K.

2

The XANES at the V K edge. The pre-edge peak height goes through a minimum at 500 K. This is attributed to a minimum of the average valence of V in the precursor.

2000 **2**θ[°] 20 2θ[°] The long range ordered structure of the bulk is completely described with the

 Mo_5O_{14} structure using refined lattice constants and site occupancy factors. The site occupancy factors indicate site preference for the different elements incorporated.

4000

The metals contained in the catalyst under investigation have different characteristic coordination geometry and atomic radii. They may prefer one or the other coordination geometry of oxygen ligands and (de-)stabilize the short metal-metal distances at the pentagonal bipyramidal block units.

Isothermal redox experiment at 773 K

Heating of sample to 773 K in inert, at 773 K reduction in 10% propene followed by re-oxidation in 20% oxygen.

(MoV)₅O₁₄ at RT ອ<u></u> 0.5 (MoVW)_O, at RT 00 19.95 20.00 20.05 20.10 Photon energy [keV <u>ନ</u>୍ଥ 0.5 -VO referenc 5.52

Photon energy [keV]

experiments Isothermal redox show reduction of $(MoV)_5O_{14}$ and $(MoVW)_5O_{14}$ into a MoO_2 type structure. Re-oxidation of (MoVW) oxide in 20% oxygen results in the initial Mo_5O_{14} phase. In case of the reduced (MoV) oxide re-oxidation leads to a MoO_3 type structure with vanadium incorporated.

 \bigcirc

Redox properties of two Mo_5O_{14} structured samples with different cation composition at 773 K. Only the (MoVW) oxide containing tungsten is re-oxidized to the initial Mo_5O_{14} structure (left), the (MoV) oxide forms a MoO_3 type structure (below).

In situ XAS

Lattice constants (MoV)₅O₁₄:

experimental data calculated data

a = 22.876 Å

b = 3.998 Å

In situ XRD

Conclusions

Apparently, the presence of tungsten in the oxide systems stabilizes the Mo_5O_{14} type structure and prevents complete oxidation even under conditions of sufficient oxygen mobility and high oxidation potential of the gas phase. Furthermore, tungsten in the MoO_2 type material obtained from the reduction of $(MoVW)_5O_{14}$ exerts a structure-directing effect under oxidizing conditions resulting in the re-formation of the Mo_5O_{14} type structure. Compared to the MoO_2 type material obtained from reduction of $(MoV)_5O_{14}$, the re-oxidation of tungsten containing metal dioxide to $(MoVW)_5O_{14}$ corroborates the redox-stabilizing effect of tungsten in molybdenum based catalysts under selective oxidation reaction conditions.

HASYLAB is acknowledged for providing beamtime for this work