

Investigation of hydrothermally synthesized MoVTeNb mixed oxide catalysts for selective oxidation of propane to acrylic acid

A. Celaya Sanfiz, F. Girgsdies, T. W. Hansen, R. Jentoft, O. Timpe, J. B. Wagner, A. Trunschke, R. Schlögl Fritz Haber Institute of the Max Planck Society, Department of Inorganic Chemistry, 14195 Berlin, Germany S. T. Lee, M. H. Looi, S. B. A. Hamid NanoC, 47810 Petaling Jaya, Malaysia

Objectives Preparation of pure M1 phase by applying hydrothermal synthesis.

- The selective oxidation of propane to acrylic acid has created a great interest due to economic and environmental advantages
- · Currently the best catalyst for this reaction is a Mo-V-Te-Nb¹⁾ oxide mixture, mainly composed of two phases (M1 and M2)²⁾, prepared by the so-called "slurry method"
- Preparation method as well as activation conditions are crucial for the catalytic performance.
- · In order to understand the functionality of MoVTeNb mixed oxide catalysts, single-phase material is needed.

Introduction

- Hydrothermal synthesis is a well established method for the preparation of single-phase M1 MoVTeNb oxide catalysts3)
- materials during the different preparation steps.
- · Analysis of relations between structural characteristics and catalytic activity

· Study of evolution of homogeneity and morphology of the

SEM & EDX

	Fig. 2 SEM & EDX of precursors materials			
Fig. 1 XRD patterns of the precursors	Ni: 564 % Mo: 604 % Te: 114 % V: 244 % Ni: 684 %Ni: 684 % Ni: 684 % Ni: 684 %Ni: 684 % Ni: 684 % Ni: 684 %Ni: 684 % Ni: 684 %Ni: 684 % Ni: 684 %Ni: 684 % Ni: 684			
-2201	With DDA1 % No: 1564 % V: 24At % No: 1564 % No: 1564 % V: 24At % No: 1564 % V: 24At %			
	Mc: 13A / 8 1461 No: 58A / 8 V: 20A / 8 No: 58A / 8 Te: 12A / 8 No: 48A / 8 Te: 12A / 8 Y: 19A / 8 No: 48A / 8 No: 58A / 8 No: 58A / 8 No: 48A / 8 No: 58A / 8 No: 58A / 8 No: 48A / 8 No: 58A / 8 No: 58A / 8 No: 48A / 8 No: 58A / 8 No: 48A / 8 V: 28A / 8 No: 48A / 8 No: 48A / 8			
	No: 13At % Mo: 55At % V: 20At % V: 20At % V: 20At % No: 23At % No: 23At %			
2teta Precursors of phase mixtures show sharper reflexes	No: 1941 % Te: 1641 % V: 1841 % V: 1841 %			
show sharper relieves	No: 27At % Mo: 86At % V: 15At %			

Precursor	Stochiometry of starting solution, [Mo](mol/I)	Mo	V	Те	Nb
2301	Mo ₁ V _{0.33} Te _{0.23} Nb _{0.125} 0.2M	64±12.6%	17 ±6.9%	9±4.4%	10±4.7%
1461	Mo ₁ V _{0.33} Te _{0.23} Nb _{0.125} , 0.4M	53±2.5%	22 ±6.0%	14±1.3%	11±4.6%
1422	Mo ₁ V _{0.25} Te _{0.23} Nb _{0.125} , 54 ±4.1% 16 ±1.5% 7 ±4.2% 0.256M		24 ±4.5%		
Catalyst	Phases				
	M1=55.7 %		26 ±10.3%	12 ±6.5%	10 ±6.9%
2420	M2 29.9%	E2 ±10 E%			
2430	Mo ₅ O ₁₄ =6.4 %	52 ±10.578			
$\frac{2+30}{M_{0,95}M_{0,97}O_5} = 8.0\%$					
	M1=58%	50.444	00.15.7	45.10.0	
1464 M1=58% M2=42% 5	52 ±4.4	23 ±5.7	15 ±2.8	10±3.5	
939	M1= 100%	51 ±4.3%	15 ±1.3%	11 ±2.8%	23±5.1%

Fig.	3	SEM	&	EDX	of	activated	materials	

Phase-pure M1 material can be prepared by hydr esis applying a Mo/V/Te/Nb molar ratio of 1/0.25/0.23/0.125

The final phase composition and chemical homogeneity of the activated catalyst is not generally determined by the nanostructure and homogeneity of the precursor

Catalytic Properties ♦ C₃:O₂:N₂:steam (% molar): 0.85:1.9:15.2:12 ♦ T = 673K ♦ GHSV = 1200 h⁻¹ ♦ mass balance: ± 10 % Reaction conditions Table 2 heat treatments and catalytic test of pure M1 phase sample Composition of initial solution: Mo1V0.25Te0.23Nb0.124 heat treatments sor catalyst BET precur Хсзна SAA Y_{AA} (m²/g) selectivity to acrylic acid, % code code (without calcination) Ar, 873K, 2 h 929 939 2.2 38 73 28 air, 598K, 1 h 3.9 79 41 1434 52 Ar, 923K, 2 h air. 598K, 1 h 1422 air, 5988, 2 h Ar, 923K, 2 h air, 528K, 1 h 1650 44 n.d. 56 79 1761 n.d. 18 70 13 Ar, 873K, 2 h 1760 598K 1 h 10 15 20 25 30 35 40 45 50 55 1765 n.d. 4 57 4 Ar. 923K, 2 h sion of propane % * Activity of MoVTeNb oxides shows no correlation with a certain phase Pure M1 phase leads to similar selectivity to AA but to a very different conversion of propane. Table 3 lattice parameters of the pure M1 phase samples Code a/Å c/Å Crystallite size / nm 220

TPR

At reaction temperature (673K) the d lower for the phase-pure M1 material.

- By 923K the overall hydrogen consumption is the lowest the phase-pure M1 sample.
- The selectivities to acrylic acid are inversely related to the cibility at re

* There appears to be an optimal unit cell volume for high yields of acrylic acid

1434

1761

2000 2000 2000

