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Kurzfassung

Die vorliegende Doktorarbeit beschiftigt sich mit wechselwirkenden nichtlinearen Oszil-
latoren. Es werden nichtlokal gekoppelte Oszillatoren untersucht, deren Wechselwirkung
langreichweitig und abstandsabhéngig ist. Zur mathematischen Modellierung der oszil-
latorischen Dynamik solcher Systeme wird die komplexe Ginzburg-Landau-Gleichung
(CGLE) verwendet, die eine allgemeingiiltige Beschreibung von Reaktions-Diffusions-
Systemen nahe der Hopf-Bifurkation liefert. Die CGLE wird zur Beschreibung der lang-
reichweitigen Wechselwirkung mit einer zusitzlichen Gleichung gekoppelt, welche die
langsame zeitliche Entwicklung einer weiteren diffundierenden passiven Komponente
beschreibt. Aufgrund ihrer groBBen Diffusionskonstante ist die durch die passive Komponente
vermittelte Kopplung nichtlokal. Das Ein-Oszillator-System weist Birhythmizitét auf, d.h.
zwei Grenzzyklen mit unterschiedlichen Amplituden und Frequenzen koexistieren. Die li-
neare Stabilitdtsanalyse der Phasenapproximation des raumlich ausgedehnten Systems zeigt,
dass die zwei Grenzzyklen unterschiedliche Stabilititseigenschaften in Bezug auf die Pro-
pagation kleiner Storungen besitzen. Die numerische Losung der Gleichungen zeigt zahl-
reiche Strukturen auf, wie homogene Oszillationen, Phasen- und Amplitudenturbulenz, auf-
brechende Spiralen sowie Synchronisations- und Desynchronisationsausbriiche.

Wir schlagen vor, dass — neben bekannten Oszillationsvorgédngen in der Biologie wie z.B.
glycolytische Oszillationen oder Kalzium-Wellen — eine selbstorganisierte raum-zeitliche
Strukturbildung im Bereich biologischer Systeme aufgrund von Synchronisation der Kon-
formationszyklen der Enzyme zustande kommen kann. Ein Modell, in dem allosterische En-
zyme durch Diffusion kleiner regulatorischer Produktmolekiile miteinander wechselwirken,
wird vorgestellt. Jedes Enzym wird als Phasenoszillator beschrieben: Ein einzelner katalyti-
scher Vorgang ist eine zyklische Sequenz von Konformationsinderungen. Durch eine solche
Abfolge struktureller Anderungen kann ein Substratmolekiil in ein Produktmolekiil umge-
wandelt werden. Entweder bindet das abgegebene Produktmolekiil an ein anderes Enzym,
und beeinfluft damit dessen katalytische Aktivitit, oder es zersetzt sich. Diese Riickkopp-
lung bewirkt die Synchronisation der Enzymzyklen, so dass die Produktkonzentration mit
einer Zeitperiode in der Groenordnung der Dauer einer einzelnen katalytischen Reaktion os-
zilliert. Die Enzympopulation kann auch in mehrere Gruppen zerfallen (Clusterbildung). In

einem ausgedehnten System, in dem keine Durchmischung durch Produktdiffusion erfolgt,
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tritt eine Kodimension-2 Hopf-Wellen-Bifurkation auf. Numerische Simulationen zeigen die
Entstehung raum-zeitlicher Strukturen wie stehender oder propagierender Wellen, Ripples,

Kreiswellenmuster und Spiralwellen.



Abstract

The aim of this thesis is to investigate systems of interacting nonlinear oscillators. We ana-
lyze nonlocally coupled oscillators where the interaction among the dynamical units is long-
ranged and distance-dependent. In the proposed model, the oscillatory dynamics are given by
the complex Ginzburg-Landau equation, which provides a general description of reaction-
diffusion systems close to the Hopf bifurcation. The system is further coupled to a passive
component which is diffusing as well, and inertial. This second field has a much larger dif-
fusion constant than the first one, thus it provides an effective nonlocal coupling. The single
oscillator-system displays birhythmicity, i.e. the coexistence of two stable limit cycles with
different amplitudes and frequencies. Linear stability analysis of the phase approximation
of the extended system shows that the two limit cycles have different stability properties
against propagation of weak perturbations. Numerical solution of the equations displays pat-
terns such as uniform oscillations, phase and amplitude turbulence, spiral breakup, bursts of
synchronization, and bursts of desynchronization.

We suggest that, besides the known oscillatory phenomena in biology such as gly-
colytic oscillations and calcium waves, a novel type of self-organized spatio-temporal be-
havior could arise from synchronization among enzyme molecules. We propose a sys-
tem of product-activated allosteric enzymes interacting through diffusion of small product
molecules with regulatory function. We describe an enzyme as a phase oscillator: An indi-
vidual catalytic event is a circular motion in the enzyme’s conformational space. This se-
quence of structural changes allows conversion of one substrate molecule into one product
molecule. The released product can then either bind to another enzyme and regulate its ac-
tivity, or decay. This feedback mechanism causes synchronization of the enzymatic cycles,
resulting in oscillations of the product concentration on the time scale of the duration of an
individual catalytic reaction. The enzyme population can also split into clusters. In the ex-
tended system where product diffusion does not allow complete mixing, a codimension-2
Hopf-wave bifurcation is found. Numerical simulations reveal the existence of patterns such

as standing and travelling waves, ripples, pacemakers, and spirals.
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Chapter 1

Introduction

Self-organization is an intriguing phenomenon: It denotes the capability of a system to de-
velop an ordered state. Such an order can be found in the temporal evolution of the system
(for example, the emergence of an oscillatory trend), or even in the formation of spatially
organized structures (like propagation of concentration waves in oscillatory chemical reac-
tions). The spontaneous emergence of order is fascinating, because it appears to contradict
the expectation that any system evolves towards a stationary, homogeneous state. Such a
state is perceived as the normal and most likely condition for any physico-chemical system,
because the second law of thermodynamics predicts spontaneous evolution towards disor-
der for closed systems. However, many dynamical systems of major interest are not closed
at all: They can only be understood by considering their property of being persistently in-
teracting with the external environment. Such exchange of energy and matter renders self-
organization possible. The system is kept active and prevented from falling into an inert

equilibrium state [1].

All living beings owe their functional activity to such an exchange, which is known as
metabolism. In this way, they manage to export entropy outwards, and keep order inside. As
clearly formulated by Schrodinger [2]: “What an organism feeds upon is negative entropy.
Or, to put it less paradoxically, the essential thing in metabolism is that the organism succeeds

in freeing itself from all the entropy it cannot help producing while alive”.

The investigation of systems in out-of-equilibrium conditions has become a very im-
portant field of research. Many different systems are known to be able to display pattern
formation when kept in an active state. The examples include chemical reaction-diffusion
systems [3, 4], electrochemical systems [5], hydrodynamical systems [6, 7], semiconduc-

tors [8], granular media [9], and optical systems [10, 11]. Living organisms are regarded as
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an especially interesting class of self-organizing systems [12—14], as it is proven by the large
number of studies on glycolytic oscillations [15-21], circadian rhythm [22-24], dynamics
of the cardiac tissues [25, 26], collective behavior of microorganisms [27], and inter- and
intracellular calcium dynamics [28-31]. Moreover, the application of the knowledge of dy-
namical systems in biology and medicine is giving rise to new therapeutic approaches, such
as the treatment of Parkinson’s disease by means of neuronal desynchronization [32,33], or
the indications for the development of new drugs based on the collective dynamical instabil-

ities in living cells [31].

The theoretical modeling of these phenomena has highlighted the existence of general
mechanisms underlying self-organization in all of these different systems. This observation
is the basis of an interdisciplinary approach denoted as synergetics which was introduced
by H. Haken [34]. The fundamental idea is that self-organization arises as a consequence of
interactions of dynamical units. The cooperation of such dynamical units is characterized by

some universal features, regardless of the peculiar details characterizing the specific system.

Thus, interactions among individual active elements play a central role. A relevant feature
of such coupling, in the case of spatially extended systems, is its range. The two opposite
cases of globally coupled systems (where the interaction uniformly affects all elements) and
locally coupled systems (where each element directly influences only its neighbors) have
been extensively studied [35—42].

Recently, Kuramoto et al. have stressed that there is also an intermediate regime, which
can be defined as nonlocal coupling, where the descriptions provided in the two other cases
break down [43—-49]. One speaks about nonlocal coupling when the interaction range is larger
than the distance between two neighboring active units, but still significantly smaller than
the extension of the whole system. Such nonlocal coupling is found to arise in a general
way when a population of dynamical elements is coupled through an additional diffusive
substance. This regime is featured by the presence of exotic behaviors like the emergence of

spatially discontinuous patterns, and requires a new approach.

In this thesis, we introduce a model where local and nonlocal coupling are simultaneously
acting: An active oscillatory field is coupled to a second, passive field; both species are
diffusing, but the second one has a much larger diffusion constant. This causes the coupling
through it to be nonlocal. Moreover, the nonlocal coupling is assumed to be inertial. We

investigate the model both analytically and numerically.

In the domain of biological systems, nonlocal coupling can be present as well. A known



example is a system of living cells, acting as dynamical units, communicating nonlocally
with each other through some diffusive chemicals [43]. However, the same dynamics can be
figured on a completely different scale. Single proteins behave in some cases as nonlinear
oscillators [50, 51], and can therefore be viewed as active elements. Moreover, their func-
tioning can be affected by the presence of small molecules with regulatory function. Thus,
a population of proteins, for instance enzymes, can be interacting through diffusion of small
regulatory molecules. This system has been theoretically investigated as a prototype model
to explore the possibility of self-organization phenomena on a molecular level. In particu-
lar, the case of a small system with homogeneous distribution of regulatory molecules was
studied [52-56]. It was found that the enzymes can undergo synchronization: the interac-
tion is able to drive them to operate coordinately. This gives rise to oscillations which are
essentially different from the above-mentioned periodic phenomena such as glycolysis and
calcium waves. While those oscillations emerge from slow temporal variations of the reaction
equilibrium conditions, the synchronization takes place on a molecular level here. It requires

microscopic self-organization and out-of-equilibrium conditions for individual proteins [57].

In this work, we examine the case of a larger reaction volume where not only temporal
variations of the system state, but also spatio-temporal patterns can be observed. The system
consists of a population of allosteric enzymes. They catalyze a single reaction whose result
is the formation of a product molecule. This molecule in turn is able to regulate the catalytic
activity of the enzymes. The system is described by means of delayed partial differential
equations. We analyze the bifurcation scenario and the one- and two-dimensional patterns

emerging in the system.

The thesis is organized as follows. In Chapter 2 nonlinear oscillators are presented. We
introduce the concept of self-sustained oscillations and give a description of the reduction
method known as phase dynamics approximation. We describe the phenomenon of birhyth-
micity. We introduce the concept of systems of interacting oscillators focusing in particular
on the distinction between local, global, and nonlocal coupling. Some of the main theoretical

and experimental results on the three different interaction types are reviewed.

In Chapter 3 we present a model for a system of interacting oscillators with inertial
nonlocal coupling, where the oscillatory dynamics are provided by the complex Ginzburg-
Landau equation (CGLE). We analyze the single oscillator behavior by showing that it dis-
plays birhythmicity: there is one rapid and one slow limit cycles. We introduce the phase
dynamics approximation for the interacting system to investigate diffusional instabilities. We

show numerical results for the one- and two-dimensional systems. Among other patterns, we
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emphasize the presence of a new type of intermittent turbulence which can emerge in the
form of bursts of synchronization on a turbulent background or bursts of desynchronization

on a synchronized background.

In Chapter 4 we first review some known examples of self-sustained oscillations in bi-
ological systems. We focus on the possibility of self-organized synchronization of enzymes
operating as molecular machines in a living cell. We give an overview of the basic concepts
of enzyme dynamics, with particular emphasis on the property of allostery, and on the role

of conformational transformations.

In Chapter 5 we present a model for a system of product-activated allosteric enzymes
coupled through product diffusion. We discuss the characteristic time and length scales of
the system. We study the bifurcation scenario of the mean-field model to investigate the
conditions for the occurrence of synchronization. In particular, we focus on the emergence
of a codimension-2 Hopf-wave bifurcation in the extended system, where complete mixing
of the regulatory molecules cannot be assumed. We show typical one- and two-dimensional

patterns obtained through numerical simulations.

The results are summarized in Chapter 6.



Chapter 2

Background

2.1 Oscillations in active nonlinear systems

Systems operating far from thermodynamical equilibrium are characterized by strong energy
flows. Energy is consumed, dissipated and continuously supplied to such a system, so that a
thermodynamical description, based on the conservation of physical quantities at equilibrium
states, is not suitable to understand their nature. To stress their difference with respect to
conservative systems, they were originally called dissipative systems [1], but the name active
systems is used as well, which seems to better convey the important feature that energy is not

only consumed, but also supplied, in order to maintain a certain degree of activity.

A fascinating feature of active systems is their capability to show oscillatory dynamics,
in the form of self-sustained oscillations. Oscillatory behavior is also present in Hamiltonian
systems, as the most immediate example of a linear pendulum reveals. Nonetheless, the

nature of oscillations is essentially different in the two cases.

Let us compare the dynamics of these systems in the phase space (see Fig. 2.1). In the
case of the linear pendulum, the initial condition will select one orbit in the phase space. The
periodic motion is reflected by the fact that the trajectory is a closed curve. The initial con-
dition, i.e. the perturbation applied to the rest state, selects the amplitude of the oscillations
and the energy, which is conserved during the motion and is represented by the area enclosed

in the phase-space trajectory.

Self-oscillations in active systems represent instead attractors in the phase space. This
means that, starting from any initial condition, the system will eventually end up by per-
forming a periodic motion on a given orbit. This orbit only depends on the parameters of the

system, and, since it will be reached from any initial state, it is called a limit cycle. A limit



Background

Figure 2.1: Trajectories in the phase space for a Hamiltonian system (harmonic pendulum:

left) and a dissipative system (Van der Pol oscillator: right). The motion equations of the
harmonic pendulum are: dd%( =—wX,F= % [sz 24 (%)2} — 1. The equation of the Van

der Pol oscillator is: ‘%{ = —pu(X?—1)% — X. A,B,C are three different initial conditions.

cycle reached from three different initial conditions is shown for the Van der Pol oscillator
in Fig. 2.1. These self-sustained oscillations are only possible because of the interplay of
energy supply and energy dissipation in the system. The balance between the energy income
and outcome determines the amplitude of the oscillations. Mathematically, such systems are

described by means of nonlinear equations.

Active nonlinear systems, capable to display self-sustained oscillations, are the subject of
the present work. Below we consider in more detail such a limit-cycle oscillator, following
references [37,39].

Let us first take a generic dynamical system, described by the ordinary differential equa-

tion:
dX
— =F(X). 2.1
& (X) (2.1)
Here X is a vector field whose components { X7, X5, ..., X,,} represent, for instance, con-

centrations of different chemical species. The vector function F(X) describes interaction
between different components and is in general a nonlinear function. The dynamics of the
field X also depends on some independent parameters, representing external conditions or
intrinsic characteristics of the system. In the present case, we assume that the relevant pa-

rameter is unique (denoted in the following by p), and we call it the control parameter.
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Thus, (2.1) should be written as:

dX
— =F(X;p). 2.2
o — FXp) (2.2)
Depending on the value of p, the dynamics of the field X might change. For instance, the
stationary state:

X(t) = Xy = const (2.3)

defined by the condition:
F(X;p) =0 (2.4)

might change its stability properties. By assumption, there is a critical value of p at which it
happens. This specific value p. is called a bifurcation point. When p < p. (Fig. 2.2(a)) the
system has a stable fixed point X: All NV complex eigenvalues \; of the Jacobian matrix J
defined by:

OF;
Jik = 2.5
FTax, (2.5)
have negative real parts. That is, any perturbation of the form:
e(N)eM (2.6)

applied to the stationary state would decay, and the system would eventually get back to the
fixed point. At p = p. (Fig. 2.2(b)) the stationary point looses its stability: The real part of
at least one eigenvalue becomes positive, so that the associated perturbation is no longer de-
caying, but growing with time. We consider a bifurcation where this happens simultaneously

for a pair of complex conjugated eigenvalues, which are called the bifurcating eigenvalues.

The new stationary solution is then given by a periodic orbit whose amplitude is van-
ishing at the bifurcation point and increasing as p becomes larger than p. (Fig. 2.2(c)), the
frequency of the oscillations is given by the imaginary part of the bifurcating eigenvalues.

This bifurcation is known as the Hopf bifurcation.

Close to the bifurcation point, it is possible to treat the system by means of a perturbative
expansion, the distance p — p. being a small parameter which characterizes the state of the

system.

It turns out that, in the vicinity of the bifurcation, the dynamics of the system can be
expressed as a composition of a slow mode and some much faster oscillations. It can be
shown that the real part of the bifurcating eigenvalue is of order p — p,, so that a slow time

scale:
T=(p—pe)t (2.7)
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Figure 2.2: At the Hopf bifurcation, a pair of complex conjugate eigenvalues crosses the
imaginary axis. (a) Before the bifurcation point (p < p.), a stationary stable state exist. (b)
At the bifurcation (p = p,) it looses its stability. (¢) The new stationary solution is a limit
cycle whose amplitude increases as the square root of the distance from the bifurcation point.
The frequency of the limit cycle equals the imaginary part of the eigenvalue (Im\).
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can be introduced.

As a result, the dynamics of the system will be expressed as:

X(t) = Xo 4+ v/p — pe [W(7)U exp(iwgt) + c.c.], (2.8)

where W () is the slowly varying complex amplitude. Before going into the details of its
dynamics, let’s first observe that Eq. (2.8) reveals that our dynamical system X(t) close to
the bifurcation is performing some periodic motion around the unstable fixed point X;. This
periodic motion consists of a fast oscillating process with frequency w, and amplitude |U],
modulated by a slowly varying envelop W (7). The amplitude of the oscillations scales as the

square root of the distance from the bifurcation point.

In what concerns the complex amplitude, it turns out that its evolution is given by the

following ODE:
diw

dt
which is known as the Stuart-Landau equation.

= (14+iw)W — (1 +ia)|W W (2.9)

It describes a circular motion on the complex plane with unit amplitude and constant
frequency w — a, representing the simplest nonlinear oscillator. By expressing the complex

variable W in terms of two real quantities - the amplitude p and the phase @ - as:
W (t) = p(t)e’*® (2.10)
the solution of (2.9) can be written as:

p(t) =1
O(t) =(w—a)t

2.11)

The most important point to be stressed at this stage is that the emergence of a slow time
scale as well as the dynamics of the envelope IV expressed by Eq. (2.9) are universal and
do not depend on the specific dynamical system under consideration. The dependence on the
details of a particular system are contained in the parameters of Eqgs. (2.8) and (2.9). These

parameters wy, U, w, and « are uniquely determined by the function F(X; p).

The universal behavior of systems close to a bifurcation point is not restricted to the
Hopf bifurcation, and is a fact which plays a fundamental role in all the theory of dynamical
systems. In the present case, the outline of the derivation of the Stuart-Landau equation was
aimed to define the objects which we call oscillators, by sketching the guidelines of one of

the most general ways in which oscillatory dynamics my appear.
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X

Xi

(a) (b)

Figure 2.3: (a) A phase variable constantly increasing with time can also be defined for
unharmonic limit cycles. (b) The definition of phase can be extended to the neighborhood G
of a limit cycle C, so that it can also be used to describe the dynamic of a perturbed limit
cycle oscillator. Reproduced from [37].

When an oscillator is as simple as in Eq. (2.9), it can be viewed as a clock performing
cyclic motion with constant velocity. In such a case, we can reduce the degrees of freedom
of the system to only one important variable: the phase. As it has already been observed, for
Eq. (2.9) the oscillation amplitude does not vary (it is constant and equal to unity), so that
the state of the oscillator is completely determined once its angular position within the cycle
is given. This is the information the phase variable ® provides us with. In the present case,

the phase description of our oscillator is:
$ = const. (2.12)

Remarkably, a phase variable with the same dynamics as in Eq. (2.12) may be defined for any
stable periodic orbit, not necessarily displaying circular harmonic motion. Moreover, such
definition can be generalized to a neighborhood of the limit cycle in the phase space, in such a
way that a phase description can still be used for slightly perturbed limit cycle oscillators (see
Fig. 2.3). In his first paper [35] Winfree used the name generalized relaxation oscillators,!
and defined them as “devices which execute their fluctuations at a variable rate but within

strictly fixed limits of amplitude”.

Despite the simplicity of the phase dynamics description, phase oscillators can also be

'This denomination has however been abandoned in favor of the term phase oscillators. Indeed, at present
the name relaxation oscillators is rather used to indicate strongly unharmonic oscillations.
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used to model complex processes. For example, under specific conditions even molecular
machines can be described as phase oscillators. A single protein is a complex molecule
with a large number of degrees of freedom, which can undergo structural changes. In some
cases, however, these conformational motions follow a well defined path. Such path in the
high-dimensional space of all possible conformational states of the molecule is an analog
of a limit cycle of a dynamical system. This analogy will be discussed in more detail in
Chapter 4.

The concept of a simple clock is however not always suitable to describe real oscilla-
tions in biological and chemical systems. Indeed, the oscillatory behavior can also mani-
fest itself through much more complicated dynamics. Let us return to the discussion of the
Stuart-Landau equation (2.9). We have observed that this equation describes the system in
the vicinity of a Hopf bifurcation. Further variation of the control parameter p can lead to
new bifurcations. One of the typical cases is the period-doubling bifurcation: The oscilla-
tions become more complicated and the minimal repeated temporal pattern consists of two
subsequent oscillations (see Fig. 2.4). A sequence of period-doublings can occur, thus lead-
ing to an increase of the oscillation period. For still larger values of the control parameter,
periodicity of the motion is lost and the trajectory is chaotic. In the case of a period-doubled
trajectory or of a chaotic oscillator, the phase description is not suitable because the position

of the system in the attractor cannot be determined by means of a single phase coordinate.

Oscillatory dynamic is not the only possible outcome of nonlinear equations. Indeed,
nonlinear systems are in general classified within three categories: bistable, excitable, and
oscillatory [39,40]. Bistable systems are characterized by the existence of two different sta-
ble states. Excitable systems posses a unique stable fixed point; however, if they are affected
by a perturbation which overcomes a certain threshold amplitude, they are able to perform
an excursion in the phase space before returning to the stable fixed point. That is, they do not

relax immediately to the stationary state, but keep the excitation for a finite time.

2.2 Birhythmicity

A different example of complex oscillations is provided by the case of birhythmicity. The
word birhythmicity was first introduced by Decroly and Goldbeter [58] to describe the co-
existence for the same parameters of two different stable limit cycles. The system they have
studied was a biochemical two-step reaction. The product of the first reaction is used as

substrate by the second reaction. Each step is catalyzed by an allosteric enzyme (cf. Sec.
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(a) (b) (c) (d)

Figure 2.4: Example of a sequence of period-doubling bifurcations leading to turbulence.
A set of numerical solutions of the Réssler system: X = —(Y + 2), Y = X + %, 7z =
% + Z(X — ) is shown. The control parameter 1 is set equal to 2.8(a), 2.9(b), 4.1(c), 4.25(d).
Between (a) and (b) a period-doubling bifurcation occurs: The minimal pattern to be repeated
in the time-series consists of two successive oscillations with different amplitudes. This is
seen in the (X, Y") phase-plane. A simple closed orbit is replaced by a trajectory where the
[0 — 27) range of the angular coordinate must be covered twice before it gets closed. The
trajectory is not self-intersecting in the three-dimensional (X, Y, Z) plane. At higher values
of u, further period-doublings occur, and the trajectory ends up by being aperiodic.
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+ +

S P 5 P,

Figure 2.5: Two-step biochemical reaction [58]. A substrate (S) is supplied at rate v and con-
verted into a product (P;) through a reaction catalyzed by enzyme E,. The catalytic activity
of E; is enhanced by the increasing concentration of P; (i.e. E; is allosterically activated by
its own product P;). P; is then converted to P, through the reaction catalyzed by Es, which
is in turn an allosteric enzyme activated by P,. The latter is then removed at constant rate k.

100 =
.o %

Figure 2.6: Bistability of oscillatory
modes [58]. The time series of the 0 ———
substrate concentration is displayed. 0 600 1,200 1,800
Starting from slightly different initial ~ 100
conditions, after a transient of about .
700 s, two different limit cycles are « 50
reached by the system.

% 600 1,200 1,800

Time, see

4.2.1) activated by its own reaction product. The initial substrate is supplied at a constant
rate and the final product is continuously removed. The reaction scheme is sketched in Fig.
2.5. Choosing the product removal rate k, as the control parameter, one can see that the sys-
tem undergoes a cascade of period-doubling bifurcations leading to chaotic dynamics. But in
a relatively narrow region before the occurrence of such period doublings, the system shows
coexistence of two stable limit cycles. Numerical investigations have shown that two types
of oscillations (which differ from each other by their amplitudes and frequencies) can be

obtained by starting from different initial conditions (Fig. 2.6).

One year later, Alamgir and Epstein [59] described an experiment in a continuous stirred
tank reactor where two chemical reactions were coupled to each other with the same scheme
proposed by Decroly and Goldbeter. Two reactions were chosen which were already known
to display oscillatory dynamics, namely the C1O; 17! and the BrO; —1* reactions. The two
reactions interacted with each other via two different couplings (iodide reacts with bromate
to yield bromide, and furthermore the reaction ClO; -BrO; -Br™ is oscillatory itself). Like

in the theoretical predictions in Ref. [58], the systems displayed birhythmicity in a narrow
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parameter region before the onset of chaotic oscillations, where the control parameter was
the removal rate of 7. The reaction could be driven by on-time perturbations from one to

the other oscillatory state.

After that, a large number of models showing birhythmicity was proposed, mostly in
the context of oscillations in biological systems [12]. In the domain of chemical oscilla-
tors, an interesting theoretical example was presented by Hocker and Epstein [60]. The sys-
tem consists of two coupled subsystems, each of them of the FitzHug-Nagumo type. The
FitzHugh-Nagumo systems can have a unique stable fixed point or display either bistability
or oscillatory dynamics depending on the parameters. If the two coupled systems are such
that one of them is bistable while the other is oscillatory, birhythmicity can arise, provided
that the coupling between the two systems is not too strong. As in [58], under further increase
of the control parameter (here, the coupling strength) chaotic behavior is found. Eventually,
very strong coupling suppresses all exotic dynamics by driving the system to a unique simple

limit cycle.

Birhythmicity in the famous Belousov-Zhabotinsky reaction [61-66] has not been inten-
sively studied. Exceptions are the experimental observations by Lamba and Hudson [67] and

a theoretical study based on the Oregonator model [68].

Recently, Stich et al. [69-71] have investigated the behavior of systems at the onset of
birhythmicity. A systematic derivation of the normal form of the pitchfork-Hopf bifurcation
was performed. This bifurcation corresponds to the simultaneous appearance of bistability
and oscillations (see Fig. 2.7) leading to the coexistence of two stable limit cycles. Through
variation of a control parameter, a stable fixed point looses its stability and oscillations arise.
Through variation of a second parameter, the fixed point becomes unstable by the appearance
of two other stable stationary points. The simultaneous variation of both parameters leads to

the emergence of two different stable limit cycles.
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Figure 2.7: Schematic representation of the pitchfork-Hopf bifurcation (from [70]). Solid
dots represent stable fixed points, open dots unstable fixed points, solid circles stable limit
cycles, dashed circles unstable limit cycles.
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2.3 Systems of interacting oscillators

Next we consider a set of /V interacting oscillatory elements. Such a system is described by

a set of IV coupled evolution equations:

dX,,
F:Fm(Xm)+Gm(X1,X2,...,XN), m=1,...,N. (2.13)
The function F,,, gives the local dynamics of the individual oscillator X,,,. We have named
G,,, the coupling function representing the interaction exerted on the oscillator m by the rest
of the system. In this picture, the system is seen as a collection of distinct subunits, possibly

representing separated objects, influencing each other by means of some interaction.
The coupling function G,,, can often be expressed as a composition of pairwise terms,
and Eq. (2.13) can therefore be written as:

dx al
—Z =F,,(X X, Xk). 2.14
dt m( m) + ngk’( ms k:) ( )

k=1

Let us consider a system where the oscillators are located on a regular one-dimensional
lattice. Such an array is thus characterized by the total number of oscillators /V and by the
distance h separating two neighboring oscillators, the total length of the chain is thus L =
Nh.

The continuum limit is obtained when the space separating the oscillators becomes van-

1shingly small, while the total size of the system is kept constant:

N — o (2.15)
h — 0 (2.16)
L = Nh = const. 2.17)

The system consists then of an infinite number of oscillators, with continuous spatial distri-
bution. Such continuous picture is much more convenient, for example, for the description of
oscillating chemical reactions. In this case, the reaction solution is an extended continuous

medium, whose local dynamics are of the oscillatory type.

A convenient way to classify different types of interactions in systems of oscillators is
according to the range over which the interaction extends. We shall distinguish between local,
global, and nonlocal couplings. Below we consider these three types separately, assuming for

simplicity that the oscillators are arranged in a regular one-dimensional array.
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2.3.1 Local coupling and the complex Ginzburg-Landau equation

Let us consider a one-dimensional system of identical oscillators, that is the local dynamics

F,, is the same for each element: F,,, = F form =1,2,..., N.

The interaction is local when each oscillator only experiences the influence of its first

neighbors. That is, the equations describing the system are:

dX m+1
P _ px,, k(Ko X1). 2.18
& ( )+k:zm:1g g k) (2.13)

In many cases, the interaction g,,,,, is a spatially constant, linear function which can be written

as:

dX m~+1
m_ F(X,, K(X; — X,,), 2.1
& = F( >+k;_1 (X = X) (2.19)

where K is a constant n X n matrix where n is the dimension of the vector field X.
This type of coupling is by far the most common, as it arises in a natural way for a large
number of physical systems [3,37]. Let us consider the coupling terms in Eq. (2.19):

K (X1 — X + X1 — Xon). (2.20)

In order to take the continuum limit, we must substitute the discrete array index m with a
continuous one dimensional coordinate x, the distance between two neighbors is the param-

eter h introduced above. First, we define a new interaction matrix as:
D = h’K. (2.21)
Thus we get for Eq. (2.20):

D

ﬁ[X(l’ +h)+ X(x — h) —2X(z)]. (2.22)
Now the limit 2 — 0 has to be considered, which simultaneously entails (2.15, 2.16, 2.17).
To the first orders in 2 we obtain for Eq. (2.22):

D 0X  h?9*X 0X  h?9*X
— X h—+ ——— 4+ X(z) —h— 4+ ——— — 2X =
h? (z) + or + 2 Ox2 +X(z) or + 2 Ox2 (z)
9*X
: 2.23
Ox? (2.23)
Thus, the continuous version of system (2.19) reads:
0X 9
—(z,t) = F(X(x,t)) + DV*X(z,t) (2.24)

ot
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which is a system of diffusively coupled oscillators. Often, if the components of X represent

concentrations, the matrix D will be diagonal.

Models of the type (2.24) are called reaction-diffusion systems since they are mostly
used to describe chemical reactions. In this case, the components of the field X represent
concentrations of different chemical species. The term F(X(z,t)) includes then contribu-
tions from various local reactions. For instance, a contribution of the type aX; (z, t) Xy (z, t)
describes a reaction between components X; and X, occurring at constant rate «, a contribu-
tion 3X?(x,t) corresponds to an autocatalytic reaction with rate 3, while —y X, means that
component X, has a first-order decay kinetics with the constant rate . On the other hand,
DV?2X(z, t) accounts for diffusion, which is the macroscopic manifestation of the Brownian

motion of individual molecules [72—76] and is therefore responsible for matter transport.

Kuramoto starts his famous book [37] with the words: “Mathematically, a reaction-
diffusion system is obtained by adding some diffusion terms to a set of ordinary differential
equations which are first-order in time”. Like in the case of a single oscillator, for extended
systems with diffusional coupling it is possible to derive the normal form at the Hopf bi-
furcation point, that is the universal dynamics of reaction-diffusion systems close to the
emergence of uniform oscillations. The