arXiv:cond-mat/0510084v1 [cond-mat.soft] 4 Oct 2005

Nonequilibrium pattern formation in chiral Langmuir monolayers with
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Nonequilibrium Langmuir monolayers including a fraction of chiral molecules and subject to trans-
membrane flow are considered. The flow induces coherent collective precession of chiral molecules.
Our theoretical study shows that splay interactions in this system lead to spatial redistribution of
chiral molecules and formation of spiral waves and target patterns observed in experiments.
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Studies of pattern formation in nonequilibrium soft
matter are essential for understanding the operation of
biological cells and for potential applications ﬂ] Bio-
logical membranes including active molecular pumps or
channels can develop shape oscillations and show persis-
tent wave propagation ﬁ, E] If a membrane contains
rotating molecular motors, interactions between them
may lead to the development of regular arrays with the
crystalline order M] Phase separation in two-component
lipid layers is responsible for budding and replication of
vesicles ﬁ ] Closely related to biomembranes, Lang-
muir monolayers are formed by organic lipid or am-
phiphilic molecules disposed on a liquid-gas interface ﬂ]
Nonequilibrium patterns of traveling orientation waves in
illuminated two-component Langmuir monolayers, where
illumination leads to transitions between different confor-
mational states of molecules, have been experimentally
and theoretically investigated E, E, m, |ﬁ|l]t) Recently,
Tabe and Yokoyama have demonstrated that Lang-
muir liquid-crystal monolayers including chiral molecules
("molecular rotors”) are easily brought to and main-
tained at nonequilibrium conditions by transmembrane
flows ﬂﬂ] If there is a gradient of small molecules across
a Langmuir monolayer, i.e. their concentrations in the
liquid and the gas are different, this produces a flow of
such molecules through the monomolecular layer. Such
transmembrane flow gives rise to coherent collective pre-
cession of molecular rotors. Experiments using reflected-
light polarizing microscopy have revealed that the preces-
sion is not uniform and complex orientational wave pat-
terns are observed. This behavior is apparently universal;
it has been verified for a number of chiral chemicals and
different experimental conditions ﬂﬂ]

In this Letter, we construct a phenomenological theory
of spatiotemporal pattern formation in chiral Langmuir
monolayers with transmembrane flows. An important
role in such systems is played by splay coupling between
local concentration of chiral molecules and the orienta-
tional field ﬂﬁ, m, E] We show that, in the pres-
ence of transmembrane flow, this coupling gives rise to

nonequilibrium wave patterns in the orientational field
and spatial redistribution of chiral molecules inside the
monolayer. The target patterns, seen in the experiments
ﬂﬂ], should thus be accompanied by aggregation of chi-
ral molecules in the periphery of the patterns. Other
wave patterns, such as traveling stripes and rotating spi-
ral waves, are also possible.

We study a model of an orientationally ordered two-
component Langmuir monolayer representing a mixture
of chiral and achiral molecules (in the experiments ﬂﬂ]
the chiral molecules were making up only 10% of the
monolayer). The local state of the monolayer is de-
scribed by the variable ¢, giving the local fraction of chiral
molecules, and by the director vector n that represents
the projection of the molecular tilt onto the monolayer
plane. The Landau free energy of the system is

F = [[3K(Vn)? +kgTclnc+ kgT(1 —¢)In(1 - ¢)
+%G(Vc)2 + AcV - n} dzdy. (1)

The first term corresponds to the elastic energy of orien-
tational ordering (K is the Frank elastic constant). The
next two terms determine the lattice-gas entropy con-
tribution to the free energy (T is the temperature and
kp is the Boltzmann constant), and the following term
(with the coefficient G) takes into account weak ener-
getic interactions between chiral molecules which favor
their uniform spatial distribution. The last term in the
expression for free energy describes splay interactions in
the system. It provides coupling between the scalar con-
centration field ¢ and the vector orientational field n ﬂﬁ],
the parameter A specifies the strength of splay interac-
tions [16].

The kinetic equation for the local concentration ¢ of
chiral molecules is
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where D is their diffusion constant. The kinetic equations
for the director field n are
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In addition to the relaxation terms (I" is the relaxation
rate constant for orientational ordering), we have phe-
nomenologically included into these equations, following
Ref.[12], a term that describes planar precession of the
director vector. This precession is caused by the trans-
membrane flow and its frequency 2 is linearly propor-
tional to the flow intensity (as seen in the experiments
[12]). Because of the flow terms, the system cannot relax
to the state of thermal equilibrium and oscillations and
active wave propagation become possible.

Rescaling time and spatial coordinates as t —
t(kgTT)~! and r — r(K//fBT)l/2 and using the angle
variable ¢ defined by n = (cos ¢, sin ¢), kinetic equations
@) and @) can be written in the form

c=v[Ve—gV (c(1-¢) V) + AV (c(1 - )V(V - r&})
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The coefficients in these equations arev = D(KT)~™1, g =
GK=', A\ = A/(kgTK)"? and w = Q(kgTT)~'. Note
that the total amount of chiral molecules is conserved
and average spatial concentration cy of these molecules
is a parameter of the system. According to equation (),
splay coupling to the director field leads to physical forces
acting on chiral molecules and to the viscous flow of these
molecules in the monolayer plane. On the other hand,
spatial gradients of concentration c¢ lead, according to
equation (@), to local rotation of the director vector n.

When transmembrane flow is absent (w = 0), these
kinetic equations describe relaxation to thermal equi-
librium. The stationary equilibrium state is uniform
if splay interactions are sufficiently weak. If the splay
interaction strength A\ exceeds the critical value \.. =
[co(1 — co)]fl/z, the uniform state becomes however un-
stable with respect to growth of spatial modes with the
wavenumbers 0 < k < Emax, where k2, oc (A — Aep)/g.
This instability has previously been investigated and is
known to lead to the formation of an equilibrium peri-
odic stripe pattern |[13]. In this equilibrium pattern, both
the local concentration and the director orientation are
periodically varying along a certain direction.

To investigate nonequilibrium pattern formation in-
duced by transmembrane flow, numerical simulations of
the model @) and @) using the explicit Euler scheme
with constant coordinate and time steps were performed.
In all simulations, periodic boundary conditions were ap-
plied.

When the transmembrane flow is introduced (w # 0),
we see that the equilibrium stationary stripe pattern be-
gins to move at a velocity that increases with the flux
intensity w. Figure 1 shows profiles of concentration and
azimuthal angle across a traveling stripe pattern. Note
that the shape of the stripes and their spatial period are
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FIG. 1: Profiles of concentration ¢ (solid) and azimuthal
angle ¢/2m (dashed) in a traveling stripe pattern for c¢o =
0.2,y =0.1, g =1, A = 3, and w = 0.005. The arrow shows
the direction of motion.

not significantly different from the respective equilibrium
pattern at w = 0..

If a simulation is started with random initial condi-
tions for the azimuthal angle field ¢, regular stripes are
not formed. Instead, the system undergoes relaxation
to an equilibrium state with many spiral-shaped orien-
tational defects. Application of the transmembrane flow
to a system in this state leads, after a transient, to com-
plex self-organized wave patterns. Several examples of
such patterns for different parameter values are shown in
Figl and movies [1§].

The central region in the pattern shown in Fig.2a is
periodically emitting orientation waves. Repeated gener-
ation and outward propagation of these waves is seen in
the space-time diagram FigBl which displays evolution of
the azimuthal angle distribution along the diagonal cross
section indicated by the dashed line in Fig.2a. The waves
spread out in the large central region and run into the
periphery part of the pattern, occupied by stripes with a
shorter wavelength. The corners of the medium in Fig.2a
are occupied by spiral-shaped stripe structures (because
periodic boundary conditions are used, they represent
four parts of the same compact pattern). This stripe
structure represents a wave sink, as can be seen from the
space-time diagram in FigBl (the sink occupies the upper
part of this diagram) and by examining the respective
movie [18§]. While a target pattern is seen in the cen-
ter for the azimuthal angle distributions (right panel), a
spiral wave occupying the central region is seen in the
concentration distribution (left panel in Fig. 2a).

Figure 4a displays a superposition of three subsequent
snapshots of concentration profiles of chiral molecules
along the diagonal line in Fig. 2a. Additionally, we
show here the concentration profile ¢(z) smoothed over
the spatial scale Az = 56 (roughly the stripe period)
and averaged over the time interval of 10000. Although
spatial variations are substantial, we find that, on the
average, the central region of the target pattern is de-



FIG. 2: Distributions of concentration (left panels) and az-
imuthal angle (right panels) in self-organized wave patterns
obtained starting from random initial conditions for systems
with the parameters: (a) ¢co = 0.1,\ = 3.4,w = 0.01,v =
10,9 =10 and (b) ¢o = 0.1, A =3, w=0.015 v =0.01,g =1
and (¢) co = 0.9, A = 34,w = 0.015.,v = 0.01, g = 10, The
linear size of the medium is L = 800 (a) and L = 200(b and c).
The concentration is displayed in gray scale with the darker
color corresponding to lower concentration values.

FIG. 3: Space-time diagrams displaying evolution of the
azimuthal angle along the diagonal cross section shown by
dashed line in Fig.2a. Time runs from left to right in the hor-
izontal direction, the total shown time interval is 7" = 10000.
The target pattern and the wave sink (above) are seen.
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FIG. 4: (a) Snapshots of concentration profiles c(z,t) along
the diagonal dashed line in Fig.2a for three subsequent time
moments (color online: red, green, blue); the black solid curve
shows the average smooth profile ¢(z). (b) Effective local crit-
ical splay interaction A.-(z) along the same line.

pleted of chiral molecules which become concentrated in
the curled stripes in its periphery.

The spatial redistribution of chiral molecules allows
to qualitatively explain the emergence of target-shaped
wave patterns. When a stripe pattern, caused by splay
interactions, is formed, it tends to hinder the angular
rotation forced by the transmembrane flow. Therefore,
oscillations develop only in the areas free from the stripes.
As we have seen above, the critical splay interaction
strength, needed for the formation of stripes, depends on
the concentration as A.-(¢) = [¢(1 — c)]_l/ % If the con-
centration is not constant and smoothly varies in space,
the critical conditions will be determined by the local con-
centration. As seen from Fig.4a, the concentration varies
rather rapidly inside the stripe regions. If we smooth the
concentration profile and substitute ¢(z) instead of ¢ in
the expression for the critical splay interaction strength,
we obtain the effective dependence A..(x) displayed in
Fig. 4b. For comparison, the horizontal dash line shows
the value of A in the respective simulation. Thus, in-
side the central area we have A < A..(z), which explains
why stripes are absent here. The boundary where the
stripes first develop is roughly determined by the condi-
tion A < Acr(2). In the region filled with stripes, A ()
lies below A, so that the uniform state is unstable. Of
course, this argument is only approximate because the
stripes are not at equilibrium. However, the effect of
transmembrane flow on the stripe pattern is relatively
weak, as we have already noticed.

The simulation shown in Fig. 2a has been performed
assuming strong diffusion of chiral molecules (v = 10).
When diffusion is weaker (¥ = 0.01 in Fig. 2b), deple-
tion of chiral molecules in the central region and their
accumulation inside the stripe structure in the periph-
ery become strongly pronounced. Now, the characteristic



wavelength of the stripes in the periphery of the target
pattern is much shorter than the wavelength of the equi-
librium stripe pattern for ¢ = ¢y. This is because the
wavelength of the stripe pattern decreases when the dif-
ference |[A— A (z)| becomes larger. The stripes move only
very slowly in the periphery under these conditions. The
large central region can contain rotating spiral waves, as
seen in Fig. 2b.The splay intensity strength A = 3 in this
simulation was below the critical strength A\, = 3.33---
corresponding to ¢y = 0.1. This means that the uniform
state remains stable with respect to small perturbations.
However, strong initial perturbations can still lead in this
case to the formation of steady wave patterns. The spiral-
shaped stripe pattern in Fig. 2b is similar to the equilib-
rium spiral patterns [17]. Note that a number of topo-
logical orientational defects are present in the pattern
shown in Fig. 2a, but all of them, except one, belong to
the dense stripe region in the periphery.

So far, only patterns for low average concentrations of
chiral molecules have been discussed. In contrast to this,
the wave pattern shown in Fig. 2c corresponds to a high
concentration of chiral molecules (¢g = 0.9). Analyzing
this pattern, several significant differences are seen. The
concentration of chiral molecules is now increased inside
the uniform central region and decreased in the region
occupied by the stripes. The difference in the spatial
distribution of chiral molecules for ¢g = 0.9 can be ex-
plained if we notice that A.(¢) = [¢(1 — c)]_l/2 depends
non-monotonously on concentration ¢ and increases with
concentration when ¢ > 0.5. Therefore, inside the central
region the formation of stripes is prevented because the
condition A < A.-(z) again holds, now because the chi-
ral molecules have aggregated in this region, pushing the
achiral component into the stripe-filled periphery region.

Thus, we have shown that splay interactions, based
on coupling between the orientational and concentration
fields, determine principal properties of nonequilibrium
wave patterns in chiral Langmuir monolayers subject to
the transmembrane flow. The theory explains target-
shaped and spiral wave patterns observed in the experi-
ments [12, [19]. It relates the formation of such patterns
to nonequilibrium spatial redistribution of molecular ro-
tors, tending to aggregate in the areas occupied by slowly
traveling, densely packed stripes.

Biomembranes are closely related to Langmuir mono-
layers and we expect that similar results should hold,
under appropriate conditions, also for the membranes in-
cluding a fraction of chiral molecules. The transmem-
brane flow in such systems is created by a gradient of con-
centration of small molecules or ions that leak through
the membrane. The leakage may bring the membrane to

nonequilibrium conditions, giving rise to traveling waves
and complex self-organized wave patterns. Importantly,
chiral molecules (and, possibly, some passive inclusions)
can then be transported and spatially redistributed in a
membrane as a result of wave propagation.

The authors acknowledge stimulating discussions with
Y. Tabe and H. Yokoyama. Computer simulations
were performed using a parallel supercomputer in the
Yukawa Institute for Theoretical Physics. One of us
(T.S.) acknowledges financial support through a grant
for young scientists from the Ministry of Education, Cul-
ture, Sports, Science and Technology in Japan.

[1] A. S. Mikhailov and E. Ertl, Science, 267, 476 (1995)

[2] S. Ramaswamy, J. Toner, J. Prost, Phys. Rev. Lett. 84,
3494 (2000);

[3] H.-Y. Chen, Phys. Rev. Lett. 92, 168101 (2004)

[4] P. Lenz, J.-F. Joanny, F. Jiilicher, J. Prost, Phys. Rev.
Lett. 91, 108104 (2003)

[5] P. B. S. Kumar, G. Gompper, and R. Lipowsky, Phys.
Rev. Lett. 86, 3911 (2001).

[6] K. Takakura and T. Sugawara, Langmuir 20, 3832 (2004)

[7] V. M. Kaganer, H. Mohwald, and P. Dutta, Rev. Mod.
Phys.71, 779 (1999)

[8] Y. Tabe and H. Yokoyama, Langmuir 11, 4609 (1995).

[9] R. Reigada, F. Sagues, and A. S. Mikhailov, Phys. Rev.
Lett. 89, 038301 (2002)

[10] R. Reigada, A. S. Mikhailov, and F. Sagues, Phys. Rev.
E 69, 041103 (2004)

[11] T. Okuzono, Y. Tabe, and H. Yokoyama, Phys. Rev. E,
69, 050701 (2004)

[12] Y. Tabe and H. Yokoyama, Nature Materials, 2, 806
(2003)

[13] J. V. Selinger, Z. G. Wang, R. F. Bruinsma, and C. M.
Knobler, Phys. Rev. Lett. 70, 1139 (1993)

[14] T. Ohyama, A. E. Jacobs, and D. Mukamel, Phys. Rev.
E 53 2595 (1996)

[15] R. D. Kamien and J. V. Selinger, J. Phys.: Condens.
Matter 13 R1 (2001)

[16] If a monolayer consists of chiral molecules, the splay term
generally is AcV - n’ where n’ is obtained from n by ro-
tation by some fixed angle . Since all other terms in the
free energy are, however, invariant with respect to such
rotation, it is not important for pattern formation and
we put here a = 0.

[17] J. V. Selinger and R. L. Selinger, Phys. Rev. E 51, R860
(1995)

[18] The videos of simulations corresponding to Fig-
ures 2a and 2b are reached at the homepage

(http://home.hiroshima-u.ac.jp/shibata/Noneq/index.html).

[19] Rotating spiral waves have also been observed in the ex-
periments (Y. Tabe, private communication).


http://home.hiroshima-u.ac.jp/shibata/Noneq/index.html

