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We present a simple analytic approximation for evaluating the ensemble-averaged orientation or

alignment of a beam of molecules subjected to a strong static or radiative �eld. This approximation is

based on the eigenproperties which polar or polarizable molecules exhibit in the strong-�eld, harmonic-

librator limit, and on the Boltzmann statistics of the free rotor states which adiabatically correlate with the

harmonic librator states. For either the permanent or induced dipole case, the resultant formula involves

just two dimensionless parameters which characterize the strength of the molecule-�eld interaction and the

rotational temperature. The net polarization of a molecular beam thus obtained is shown to be in an

excellent agreement with the exact values computed numerically from �rst principles. The validity range

of the approximation includes the large-interaction, high temperature regions of the parameter space where

�rst-principle calculations are onerous.

PACS: 32.60.+i Zeeman and Stark effects, 39.10.+j Atomic and molecular beam sources and techniques
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2.1 Permanent dipole interaction

1. Introduction

2. Eigenproperties of molecules in strong nonresonant electric �elds

When subject to an external �eld, an ensemble of molecules becomes polarized. The degree

to which this polarization takes place depends on the interaction of the individual molecules with

the �eld, as well as on the distribution of the molecules over the molecular states available.

The problem of the polarization of an equilibrium ensemble of magnetic or electric dipoles

interacting with a static electric or magnetic �eld was �rst treated by Langevin [1] and Debye

[2], and subsequently by Van Vleck [3]. Their work, which covered the high-temperature, low-�eld

limit case, was extended by Friedrich and Herschbach [4] to encompass essentially all �eld strengths

and temperatures. In addition, Friedrich and Herschbach tackled the case of the induced-dipole

interaction, ignored in previous treatments. In all this work, the populations of the molecular

states in the �eld were derived from Boltzmann factors based on eigenenergies which the molecules

attain in the �eld. Thus the approximations reaped from these treatments pertain to ensembles of

molecules that reach equilibrium within the �eld.

In this paper we deal likewise with the polarization of an ensemble of polar or polarizable

molecules interacting with an electrostatic or radiative �eld; however, here we consider the instance

when the populations of the molecular states in the �eld are given by the populations of the �eld-free

rotor states. This situation corresponds to the case of beam molecules which enter adiabatically into

an electric or radiative �eld from a �eld-free region. Needless to say, such a situation is encountered

in many current experiments.

The analytic approximation for the net polarization that we here develop is based on the

eigenproperties of molecules in the strong-�eld, harmonic-librator limit, and on the Boltzmann

statistics of the free rotor states which adiabatically correlate with the harmonic librator states.

The approximation gives rise to simple, yet accurate formulae for the net orientation and

alignment of a molecular beam. Their applicability range is assessed by a comparison with exact

numerical calculations.

In an electrostatic �eld , a polar molecule with a body-�xed electric dipole moment

is subject to a permanent-dipole potential

(1)

with a dimensionless parameter which measures the dipole�s maximum potential energy
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2.2 Induced dipole interaction

in terms of the rotational constant of the molecule, and is the polar angle between the

molecular axis and the direction of the �eld [5]-[7]. Since, in the basis of the �eld-free states ,

the operator couples states with same but with �s that differ by the eigenstates

are of �eld-free rotor states for a �xed value of and a range of �s. Because

states of both even and odd parity contribute to such a linear superposition, the hybrid states have

, and thus can be in the space-�xed frame. The eigenproperties of the

states created by the pendular potential (1) can be found by standard numerical methods. In the

high-�eld limit, , these states coincide with those of a two-dimensional angular harmonic

oscillator ( ) whose equidistant eigenenergies are

(2)

The eigenstates, at any , are labeled by and the nominal value of the angular momentum

of the �eld-free rotor state ( ) that adiabatically correlates with the hybrid function, see

Figure 1. Thus each state is characterized solely by its and and the value of . In the

harmonic librator limit, the uncertainly principle for pendular oscillations can be cast in the form

. This implies that, for a given state , achieving a narrow angular

con�nement requires a wide range of �s in the hybrid wavefuntion. The orientation of the molecular

axis in a given state is characterized by the expectation value , the

. Note that arccos is the angular amplitude of the molecular axis; hence

the greater the orientation cosine the smaller the angular amplitude. By the Hellmann-Feynman

theorem, the orientation cosine is given by [6]. Thus, from eq. (2),

the orientation cosine in the harmonic librator limit is simply

(3)

In an external electric �eld, the electronic distribution of any molecule (or atom) becomes

distorted to some extent. This distortion, governed by the molecular polarizability, results in an

induced dipole moment. For experimentally feasible static �elds, such induced moments are very

weak, typically only on the order of D (Debye). However, far stronger induced moments, well

above D, can now be produced by intense laser �elds, using either pulsed lasers or supermirror

techniques to build up a cw cavity mode. This approach is applicable regardless of whether or not

the molecule is polar (or paramagnetic).
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In a nonresonant laser �eld, a molecule is subject to an induced-dipole potential

(4)

where is the angle between the molecular axis and the -�eld of the laser beam [8],[9]. Here

, and the dimensionless parameters , proportional to components

and of the polarizability parallel and perpendicular to the molecular axis and to the laser

intensity , measure the maximum potential energy of the induced dipole in terms of

the rotational constant, . The corresponding eigenproperties are readily evaluated by standard

methods. The isotropic part of the potential, , lowers all states uniformly, and the anisotropic

part, governed by , introduces a double-well corresponding to the end-for-end symmetry of the

induced -dipole interaction. Since the operator couples states with same but with �s

that differ by or the resulting hybrid states are superpositions of �eld-free rotor states of

either even or odd parity, and so have a . These states can only be but not

oriented.

In the high-�eld limit, , the range of is con�ned near a potential minimum and

the corresponding Schrödinger equation reduces to that for a two-dimensional angular harmonic

oscillator (harmonic librator) with eigenenergies

for even

for odd (5)

The states are, again, labeled by the good quantum number and the nominal value of the

angular momentum of the �eld-free rotor state ( ) that adiabatically correlates with the hybrid

function, see Fig. 1. The uncertainty principle for the harmonic pendular oscillations can be cast

in a form similar to that for the permanent-dipole case.

The spatial anisotropy of the molecular axis distribution is characterized by the expecta-

tion value , the . The angular amplitude of the

molecular axis is then . In the harmonic librator limit, we obtain from eq.

(5) the alignment cosine

for even

for odd (6)

The nonresonant radiation can also be delivered as a pulse of intensity

where denotes the peak intensity and the pulse time pro�le, with the pulse
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duration. Here we have assumed that the oscillation frequency is far removed from any molecular

resonance and much higher than the rotational periods. As a result, and so

becomes a function of time. The analysis [10] of the time dependence shows that in the short-pulse

limit ( ), the interaction is non-adiabatic and the pendular states recur after the pulse had

passed, making it possible and feasible to obtain molecular alignment under �eld-free conditions.

In the long-pulse limit ( ), the interaction is and pendular states faithfully follow

the �eld as if it were static at any instant. It is this latter case that we�ll limit our considerations

to.

When a molecular beam enters into the range of an electrostatic �eld, the populations of

the �eld-free rotational states are adiabatically transferred to the hybrid states created by the �eld.

A similar adiabatic population transfer takes place when the beam molecules are irradiated by a

laser pulse whose duration exceeds . In either case, each initial rotational state is being

redistributed ( ) into states within the �eld with a statistical weight given by the

Boltzmann factor

(7)

which depends on the reduced rotational temperature

(8)

and the rotational partition function,

(9)

Here is the rotational temperature of the beam molecules and is their rotational constant.

We note that the distinguishing feature of our treatment here is that the molecules maintain

their free-rotor Boltzmann factors while in the �eld. In other words, the eigenenergies the molecules

acquire in the �eld do not enter their Boltzmann factors. This is exactly the situation encountered

in the case of an adiabatic population transfer of beam molecules from a �eld-free to a high-�eld

region in the absence of a relaxation mechanism (such as collisions): in such a case the molecules

will not establish any new equilibrium populations in the �eld.

Figure 1 shows a correlation diagram between the free-rotor states and the harmonic

librator limits for the permanent dipole interaction and the induced-dipole interaction, see caption.

It is according to this scheme that the populations of the free-rotor states are distributed among the

hybrid states. Note the characteristic differences in the level structure of the permanent
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and induced dipole cases, such as the opposite ordering of the states for a given and the

and spacings of the respective harmonic librator levels.

The (i.e., the ensemble average of the orientation cosine) is given by

(10)

We�ll now make use of the analytic expression for the orientation cosine in the harmonic

librator limit, eq. (3), and substitute it into eq. (10). As a result, the sum over in eq. (10)

becomes explicit and, moreover, can be carried out in closed form:

(11)

In order to complete our closed-form evaluation of the net orientation cosine, we�ll replace the

summation over by integration over a continuous variable , . As a result,

(12)

where we made use of

(13)

i.e., that at high reduced rotational temperatures the rotational partition function coincides with

the reduced rotational temperature.

The (i.e., the ensemble average of the alignment cosine) is given by

(14)
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Substituting for the alignment cosine from eq. (6) allows the sum over to be, again,

evaluated in closed form:

(15)

where the �rst two terms on the right-hand side of the �rst line correspond to states with

odd and the last two terms to even. Now, again, we�ll replace the summation over by

integration over a continuous variable , , and obtain as a result,

(16)

The validity of the analytic expressions (12) and (16) for the net orientation and alignment

of molecules in a beam can be best assessed by a comparison with the corresponding exact numerical

calculation. Such a comparison is made in Figure 2 for the net orientation and in Figure 3 for the net

alignment, over a wide range of reduced temperatures and interaction parameters or . The

numerical calculations were carried out by diagonalizing the corresponding Hamiltonian matrix,

extracting the eigenvectors, computing the orientation/alignment cosines for each individual state,

and, �nally, carrying out the summations over the and states according to eqs. (10) or (14).

Such a computation is quite onerous: for instance, at and , about a hundred

matrices need to be diagonalized in order to obtain a result that converges within .

From Figs. 2 and 3 we see that the agreement of our approximation (shown by the grey

curves) with the exact calculations (shown by black curves) becomes excellent at about

for the net orientation and at about for the net alignment.

One may wonder about the reasons for the wide applicability of formulae (12) and (16).

Obviously, at high-enough values of or , all states populated at a given will become harmonic

librator states. This is indeed the regime where our formulae are exact. What may come as a
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surprise is how low a value of or at a given is required to reach the harmonic limit. This is

well illustrated already for the ground state (i.e., ): apart from the singularity at ,

the ground-state harmonic librator orientation/alignment cosine comes close to an exact value at

, indicating that from the value on, the state is securely

bound in the parabolic neighborhood of either of the pendular potentials (1) or (4). Similarly for

higher states populated at higher . The most probable value of at a given is

(17)

which reveals that states of up to about need to be hybridized in order to attain the harmonic

limit. And they do ... Indeed, evaluating the net polarization in the harmonic librator limit as we

did gives us a better sense for the effect of the pendular potentials and the onset of the harmonic

limit.

The somewhat different validity ranges of formulae (12) an (16) can be accounted for by

noticing the difference in the spacings of the harmonic librator levels for the permanent- and

induced-dipole cases, cf. eqs. (2) and (5): this is greater for the induced dipole interaction than for

the permanent dipole by a factor of at , cf. Fig. 1. Hence a correspondingly greater

value of needs to be applied in order to reach the harmonic limit for the induced-dipole case

(namely, ) than for the permanent-dipole interaction ( ).

We note that a series expansion for of formula (12) works as well as the formula

itself at . The expansion (up to 1st order in ) takes the form

at large (18)

Even better, for the net alignment, a series expansion for of formula (16) works as

well as the formula itself at all . The expansion (up to 1st order in ) takes the form

(19)

Therefore, formulae (19) and (16) can be used interchangeably.

In deriving formulae (12) and (16), we made use of the Euler-Maclaurin formula to replace

sums by integrals [11]. Interestingly, the remainder in the Euler-Maclaurin formula is smaller for

the net-polarization formulae than it is, e.g., for the rotational partition function, eq. (13). In

fact, within the validity range of formulae (12) and (16). Moreover, the

deviation of the integral from the sum is such that the resultant approximation (grey curves in

Figs. 2 and 3) comes closer to the exact result (black curves) than it would have if it were based

on the numerically evaluated sums.
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In our previous work [12] we provided nomograms that summarize the attainable values of

the interaction parameters and as a function of �eld strength or laser intensity for a variety

of molecules. Since �eld strengths kV/cm can be attained in electrostatic �elds, values

on the order of , sometimes even , can be obtained. For instance, for the trimer (HCN) ,

whose rotational constant is small and dipole moment large, a value of has been achieved

[13],[14]. Available cw lasers combined with build-up cavities give promise of delivering up to

W/cm at a narrow beam waist. This corresponds to a �eld strength of about V/cm, sufficient

to induce a dipole moment on the order of D in a typical small molecule such as Cl . Pulsed

lasers can deliver far higher intensities, although spectroscopic or trapping experiments will usually

not want to exceed about W/cm in order to avoid ionizing the molecules. The corresponding

values of the parameter then fall between and for typical small molecules.

Table I lists, for a selection of rotational temperatures and rotational constants, the values

of the reduced temperature, along with and the minimum values and of the interaction

parameters and for which formulae (12) and (16) still apply.

We have developed a simple analytic approximation for evaluating the net orientation and

alignment of molecules in a beam. The validity of the resultant formulae at (net orien-

tation, eq. (12)) and (net alignment, eq. (16 )) was established by a comparison with

an exact numerical calculation. The formulae should �nd wide application in assessing the overall

polarization achieved in molecular beams interacting with external �elds as well as in other situ-

ations where molecules maintain their �eld-free populations while interacting with a �eld. These

include molecules embedded in small He nano-droplets, subjected to an external �eld, as revealed

by the experiments of Nauta and Miller [15].

I�m grateful to Gerard Meijer (Berlin), Wieland Schöllkopf (Berlin), and

Roger Miller (Chapel Hill) for their helpful comments. I dedicate this paper to the memory of

Roger Miller.
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Figure 1: Correlation diagram between the free-rotor states (levels at the center) and the harmonic

librator limits for the permanent-dipole interaction (levels on the left) and the induced-dipole

interaction (levels on the right). The equidistant levels in the harmonic librator limit for either the

permanent- or induced-dipole case are labeled by the librator quantum number and the projection

of the angular on the �eld vector. For the permanent dipole interaction, ; for

the induced dipole interaction, for even and for odd.

Figure 2: Dependence of the net orientation (i.e., ensemble-averaged expectation value of

the cosine of the polar angle between the molecular axis and electric-�eld vector) as a function

of the permanent-dipole interaction parameter (proportional to the strength of the electric �eld)

at different values of the reduced rotational temperature . The exact numerical calculations are

shown by black curves and the model, formula (12), by the grey curves. Once overlap is reached,

only the model results are shown.

Figure 3: Dependence of the net alignment (i.e., ensemble-averaged expectation value of

the square of the cosine of the polar angle between the molecular axis and electric-�eld vector)

as a function of the induced-dipole interaction parameter (proportional to the square of the

strength of the electric �eld or linearly proportional to laser intensity) at different values of the

reduced rotational temperature . The exact numerical calculations are shown by black curves

and the model, formula (16), by the grey curves. Once overlap is reached, only the model results

are shown.
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10 1 7 2 21 35

10 0 1 70 6 210 350

10 0 01 700 19 2100 3500

1 1 0 7 0 2 3 5

1 0 1 7 2 21 35

1 0 01 70 6 210 350

0 38 1 0 3 0 1 1

0 38 0 1 2 7 1 8 14

0 38 0 01 27 4 81 140

� = 0 69

Table I: A sampling of rotational temperatures, , and reduced rotational temperatures, , that

obtain for a selection of rotational constants, , along with the most probable rotational state

, and the minimum values and of the dimensionless interaction parameters for which

formulae (12) and (16) are valid. See text.

[K] [cm ]

The reduced rotational temperature [K]/ [cm ].
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