
Dynamics of Stark

Acceleration/Deceleration:

Molecules Riding Waves

Koos Gubbels





Dynamics of Stark Acceleration/Deceleration:

Molecules Riding Waves

Koos Gubbels

Master’s Thesis

Department of Molecular and Laser physics

Radboud University Nijmegen

26th January, 2006

Research performed at:

Fritz-Haber-Institut der Max-Planck-Geselschaft

Department of Molecular Physics

Faradayweg 4-6

14195 Berlin

Under daily supervision of: Dr. Bretislav Friedrich

Thesis supervisor: Prof. dr. Gerard Meijer





Thanks

The past ten months I did research for my master’s thesis at the Molecular Physics department

of the Fritz-Haber-Institut der Max-Planck-Gesellschaft in Berlin. I had a great time there.

Not only because Berlin is a very lively city and the Germans are very humoristic people, but

mostly because I loved doing research, especially at this particular institute. The atmosphere in

the department was great; everybody was very open, interested, fun and helpful. I experienced

that a pleasant working environment can have a very positive influence on the quality of your

work. For this I really have to thank the whole department.

But there are some people who played a special role in the realization of this thesis.

First of all, I would like to express my deep gratitude to Bretislav Friedrich, who was my daily

supervisor at the Fritz-Haber-Institute the past year. We worked together very closely and

fruitfully on the wave model of Stark deceleration, which resulted in a paper (to be submitted

soon) and this thesis. Bretislav, thank you very much for teaching me everything about cold

molecules and physical modelling, for all the interesting historical anecdotes (scientific or not)

you shared with me over a cup of cappuccino and for all the other things you have done for me;

I enjoyed it a lot.

I was also very lucky with Gerard Meijer as a second supervisor, responsible for the

quality and the final judgement of my thesis. Gerard, your exceptional qualities as a physicist,

teacher and motivator are well-known and don’t need any further explanation. But in addition

I found it very special that a director of such a big department, who is so busy, always finds

time to be scientifically and (maybe even more important) personally involved with everybody

in the department. I am very grateful for having been able to profit from that.

Furthermore, I need to mention my two roommates at the institute, Bas van de Meer-

akker and Joop Gilijamse, who played a particular important role in making my stay at the

institute a very pleasant one. Bas, thank you very much for answering all my questions and for

sharing all your impressive knowledge about the Stark decelerator, which makes you almost a

third supervisor for this thesis. Without your help, I would have never been able to make all

those links between the wave model and the actual experiments. Joop, thank you very much

v



for the very nice experiment we performed (see Paragraph 4.5) and for keeping me informed

about the latest developments down under in the lab. I also really admire you for staying so

positive and cheerful in a year that Ajax almost lost every week, while PSV was conquering

Europe.

And of course I want to thank all the other people in the department. Nicolas Van-
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Chapter 1

General Introduction

Physics is the branch of science that studies the most general laws that govern the material

world around us. In performing their mission, physicists make extensive use of two useful sets

of tools, namely measuring instruments and mathematics. A measuring instrument allows a

physicist to directly extract quantitative information from nature. This is called an experiment.

Mathematics allows physicists to formulate a set of rules describing a certain regime in nature.

This is called a model or a theory. There exists a rich interplay between theory and experiments.

In order to understand experiments, theory is needed, and, conversely, in order to prove a

theory, experiments are needed. Furthermore, new theoretical discoveries often lead to new

experimental observations, which is also true for the other way around.

The demands that a good model or theory has to fulfill vary widely. First of all, a model

has to be internally consistent. Second, it has to be in accurate quantitative agreement with

the results coming from experiments. A model is especially convincing, if it is able to predict

new phenomena that have never been observed before. This is the reason why most physicists

like the Standard Model, since it accurately predicted the existence of several particles, before

they were ever observed in nature. Third, a model is judged on the amount of phenomena it

can explain using the same set of assumptions, which is called unification. A good example is

the statistical description of thermodynamics where a very broad range of phenomena can be

explained by assuming that the underlying system consists of a hughe number of tiny particles.

Sometimes, the criteria by which a model is judged, can also be quite subjective.

‘Beauty’ can play an important role in appealing to the physics community. A model is con-

sidered to be ‘beautiful’ when it is based on very few assumptions, the derivations are done

without (too many) approximations and the resulting equations are simple. Other appealing

features are symmetry, originality, intelligibility and visualizability. A good example of a theory

that became popular because of its visual properties is Feynman’s diagrammatic approach to
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quantum field theory.

This thesis is also about a model, namely the wave model of Stark deceleration. A Stark

decelerator is an apparatus that produces slow molecules by applying time-varying inhomogeous

electric fields to a a molecular beam pulse [1]. Fourier analysis reveals that the time-varying

electric fields give rise to an infinite multitude of running waves propagating through the decel-

erator [2]. The goal of this thesis is to give a full description of the longitudinal dynamics in a

Stark decelerator by tackling analytically the effect of every individual wave on the motion of

the molecules. Also the analytic results of the wave model will be extensively compared with

the results from numerical simulations and experiments.

But first we put the research with the Stark decelerator in a broader context and briefly

discuss the motivation for studying cold molecules. Furthermore, we’ll have a quick look at

the most used techniques for producing cold molecules, which will bring us automatically to

Stark deceleration. We’ll discuss the previous work with the Stark decelerator in more detail

to obtain a framework in which this thesis can be placed. This introduction will be concluded

with an outline for the rest of the thesis.

1.1 Applications of Cold Molecules

Cold molecules are slow molecules. Or, more accurately, since the notion of slowness is relative:

cold molecules have a small width in their velocity distribution. As in the case of a molecular

beam, the small velocity spread of cold molecules can also be centered around a high mean

velocity in the lab frame. Still, whenever in this thesis cold molecules are mentioned, it will be

assumed that they are moving slowly in the lab frame. This in contrast to a molecular beam,

where molecules are cold in a moving frame.

Since cold molecules move slowly in the lab frame, they provide long interaction times

with measuring devices, such as detection lasers. As a result, the resolution of spectroscopic

measurements using cold molecules can be improved by orders of magnitude [3]. Furthermore,

slow molecules can be confined in space by using electrostatic or magnetic traps, increasing

the interaction times with measuring devices even more. This also creates the possibility of

determining long lifetimes of metastable states [4], that cannot be measured using conventional

molecular beam methods.

Since cold molecules give rise to high spectroscopic resolution, they are suitable candi-

dates for metrology experiments and sensitive symmetry tests. An example of such a symmetry
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test is the search for the electric dipole moment (EDM) of the electron, as predicted by physics

beyond the Standard Model. Such an EDM would violate time reversal symmetry and could

be related to the asymmetric distribution between matter and anti-matter in the Universe [5].

A polar molecule, like YbF, is a particularly suitable system for measuring a possible EDM,

because it provides a large enhancement of an applied electric field. As a result, an unpaired

electron in YbF gives rise to an equally enhanced energy shift, provided it has an EDM [6]. So

far, the EDM has not been found, although the experimental upper bound has already reached

the range in which theory predicts the EDM to be. By decelerating and trapping the YbF

molecules, the experimental resolution will be further increased, resulting in an even lower up-

per bound on the EDM. This will either lead to the discovery of the EDM or to a falsification

of theories beyond the Standard Model.

The improved spectroscopic resolution of cold molecules can also be used to search for

possible traces of the weak interaction in chiral molecules. The weak interaction violates mirror

symmetry (parity) and could therefore result in a difference between the energy spectra of left-

and right-handed chiral molecules [7, 8]. Such a difference then might explain the preference of

biochemical systems for left handed amino acids, which up to now has not been understood.

In 1923, Louis de Broglie showed that particles can be attributed a wavelength that

is inversely proportional to their momentum. As a result, slow particles have a large wave-

length. At room temperature, the de Broglie wavelength of a small molecule is typically 0.1

Å, i.e. smaller than the size of the molecule. But for small (ultra)cold molecules at 1 mK

the wavelength is on the order of 100 Å, considerably exceeding molecular dimensions. As the

wavelength of the particles increases, their quantum mechanical wave character takes over. A

particularly exciting regime is entered, when the wavelength of the particles starts exceeding

the inter-particle separation. In the 1990’s, this regime was reached with atoms, which led to a

revolutionary transformation of atomic physics marked by milestone experiments, such as the

observation of Bose-Einstein condensation (BEC) [9], Fermi degeneracy [10], the demonstration

of an atom laser [11] and of non-linear atom optics [12, 13]. Molecular physics is undergoing

a similar transformation, where molecules could provide extra dimensions to the experiments

mentioned above, because of their richer structure than atoms.

For example, polar molecules possess a body fixed dipole moment, which would give

rise to an anisotropic dipole-dipole interaction in a molecular BEC. By playing around with

trap shapes, the dipole interaction can be made either attractive or repulsive, influencing the

stability of the BEC [14]. As a result, the interaction in the BEC can be experimentally tuned,

giving new possibilities to control macroscopic quantum states [15].
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The increased wavelength of (ultra)cold molecules also has profound consequences for

their chemical behavior. Collision experiments in the (ultra)cold regime will be governed by

quantum mechanical effects and all kinds of resonances in the resulting cross sections have

been predicted [16, 17]. Since a Stark decelerator can state selectively decelerate molecules

to arbitrary final velocities, it is particularly well suited to probe this regime. In a crossed

molecular beam setup, the predicted resonances could be studied in great detail as a function

of the center-of-mass collision energy.

This last experiment represents the general potential of a Stark decelerator in offering

full control over the translational motion of gas phase molecules, particularly in the low veloc-

ity range [18]. Controlling both the internal and the external degrees of freedom of gas-phase

molecules has been a prominent goal in molecular physics during the last decades. Molecular

beams, both continuous and pulsed, have been used throughout to produce large densities of

molecules in selected quantum states. In these beams, the longitudinal velocity spread corre-

sponds to a temperature of typically 1 K, and the mean velocity of the beam can be varied

by adjusting the temperature of the source or by using different carrier gases. In this way,

beams have been obtained with a velocity typically in the 300 m/s to 2000 m/s range, but not

much lower. Since a Stark decelerator succeeds in deceleration all the way down to zero velocity

[19, 20], the technique allows for molecular beam experiments in a whole new range of velocities.

Finally, the trapping of ultracold polar molecules in a optical lattice has been proposed

for realizing a quantum computation scheme [21]. In this design, the electric dipole moment of a

polar molecule, oriented along or against an applied electric field, acts as a qubit, the quantum

mechanical counterpart of a bit. Coupling between different qubits can be realized through the

electric dipole-dipole interaction.

1.2 Production of Cold Molecules

In every day life people think of cooling in terms of a decrease in temperature. In physics we

rather associate cooling with an increase in phase space density, which can be defined as [22]

D = nΛ3 (1.1)

where n is the number density and Λ = (2π~2/mkT )1/2 is the thermal de Broglie wavelength.

Therefore, cooling techniques that increase the phase space density are referred to as real cool-

ing, in contradistinction to cooling techniques which only lower the temperature at the expense
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of the number density.

1.2.1 Laser Cooling and Association of Cold Atoms

One method to produce cold molecules is starting out from cold atoms and associating them

to form cold molecules. Over the past decades, great progress has been made in cooling atoms,

mainly due to the successful implementation of laser cooling [23]. This technique is based on

the momentum transfer that occurs when an atom absorbs and re-emits a photon. In a suitable

setup, the applied laser light acts as a friction force for the atoms, damping their motion

and increasing the phase space density. The atoms have to undergo thousands of absorption-

emission cycles before they reach ultracold temperatures. As a result, laser cooling can only

be applied to atoms for which a ‘closed’ absorption-emission cycle can be found. This means

that the atoms are only allowed to decay into exactly the same state from which they were

excited. As a result, laser cooling is only applicable to a select group of atoms and essentially

inapplicable to molecules.

When the laser cooled atoms are paramagnetic, they can be confined in a magnetic trap,

where they establish a thermodynamic equilibrium. By subsequently lowering the depth of the

trap, the hottest atoms are allowed to escape, after which the remaining atoms re-thermalize at

a lower temperature. This is called evaporative cooling and it leads to a considerable increase

of phase space density [24]. Using these techniques, the first atomic BEC was observed in 1995,

consisting of 104 rubidium atoms with a density of 1012 atoms/cm3 at a temperature of 170 nK

[9]. This corresponds to a phase space density of about 3× 10−1.

Cold atoms can be associated to form cold molecules in several ways: by using pho-

tons (photo-association); by using a scattering resonance that is tunable with a magnetic field

(Feshbach resonance); or by three body recombination of cold atoms. In 2003, application of

a Feshbach resonance led to the first observation of molecular BEC’s in K2 and Li2 [25, 26].

So far, only the production of ultracold homonuclear alkali dimers has been demonstrated with

this technique. Since Feshbach resonances also have been found in dual-species traps [27, 28],

this technique might lead soon to the production of ultracold polar bi-alkali dimers.

Photo-association of atoms has already resulted in the formation of bi-alkali dimers,

like RbCs [29, 30]. Although the photo-associated dimers are translationally ultracold, they are

typically produced in short lived high vibrational states of an electronically excited state. As

a result, laser-stimulated transfer processes have to be applied to bring the molecules to their

ground state [31].
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1.2.2 Buffer-gas Cooling

The main disadvantage of cold atom association is the narrow range of applicability. Laser

cooling can only be applied to a select group of atoms and the difficulty of their association

limits the possibilities even further. A much more general technique to produce cold molecules is

buffer gas cooling. Using cryogenic methods, helium can be cooled to a few hundred milliKelvin,

where it still has a considerable vapor pressure. When hot molecules are injected into the cold

helium gas, they thermalize with its atoms by means of collisions. As a result, the hot molecules

end up with the same temperature as the buffer gas [32, 33].

The cryogenic setup can be extended with a superconducting magnetic trap, that is

capable of confining paramagnetic molecules at the center of the cell. In 1998, buffer-gas

cooling led to the first trapping experiment of neutral molecules. Hot CaH molecules were

produced by laser ablation from a solid target inside the cell, after which about 108 molecules

thermalized with the helium and were trapped in their rovibronic ground state. The obtained

density was 108 molecules/cm3 at a temperature of 400 mK [34].

In principle, every molecule can be buffer-gas cooled, provided that its cross section for

collisions with helium are favorable for thermalization.

1.2.3 Deceleration of a Molecular Beam

Another way to produce cold molecules is to start out from a molecular beam. In the produc-

tion process of a molecular beam, the free jet expansion, molecules are typically cooled to a

(longitudinal) temperature of about 1 K and their density can be as high as 1013 molecules/cm3.

The only thing preventing these molecules from being trapped is their high mean velocity in the

lab frame. Several methods have been developed to decelerate molecular beams and transfer

their favorable properties to the lab frame. Since these techniques themselves do not increase

the phase space density, they are not referred to as cooling techniques. Among them are Stark

deceleration of polar molecules using time-varying electric fields [1], counter-rotation of the

molecular beam source [35], inelastic collisions in crossed molecular beams [36], and pulsed

optical fields for deceleration of polar or polarizable molecules [37].

So far, of these methods only Stark deceleration has resulted in the three dimensional

trapping of neutral molecules [19, 20].

1.2.4 Previous Experimental Work on Stark Deceleration

In the 1960s, for the first time effort was undertaken to develop a Stark accelerator/decelerator

with the goal to reduce the linewidth of a maser [38], or to study high energy molecular collisions
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[39]. The efforts failed, mainly due to a lack of flexibility of the constructed machines. In 1999,

Bethlem, Berden and Meijer demonstrated for the first time that a beam of neutral polar

molecules can be decelerated using time-varying inhomogenous fields, called Stark deceleration.

In their pioneering experiment, metastable CO (a3Π1) molecules were decelerated from 225 m/s

to 98 m/s using 63 field stages [1]. A year later, the Stark decelerator was used to perform

deceleration and electrostatic trapping of ground state ND3 molecules, where 104 molecules

were trapped with a density of 107 molecules/cm3 at a temperature of 25 mK [19].

Subsequent work in Meijers group led to the construction of an electrostatic storage

ring [40] and the development of a buncher. By combining the two, packets of ammonia were

observed to make more than 50 round trips in the ring [41]. Furthermore, longitudinal focussing

of a molecular beam by the buncher resulted in a velocity spread corresponding to a tempera-

ture of 250 µK [42]. Inspired by the success of the first decelerator, an up-scaled version was

constructed, consisting of 108 field stages. With this decelerator OH radicals were trapped [20]

and subsequently the long radiative life time of the first vibrationally excited state of OH was

determined [4].

The experiments mentioned above have all been performed with molecules in so called

low field seeking states, which means that such molecules are accelerated towards regions of

minimum field strength. This in contradistinction to molecules in high field seeking states,

which are accelerated towards regions of maximum field strength. As a result, Stark decelera-

tion is more difficult for high field seekers which have a tendency to crash into the electrodes,

where the electric field strength is maximal. By using dipole lenses as field stages, this problem

can be overcome. A prototype of such an alternate gradient (AG) decelerator was able to focus

and decelerate metastable CO molecules in a high field seeking state [43]. Combining the AG

decelerator with an AC electric trap [44] provides in principle a method to trap any high field

seeking polar molecule.

Since its introduction in 1999, various other groups have started to pursue implemen-

tation of the Stark deceleration technique. The group of Ye in Boulder, USA, has succeeded

in decelerating OH [45, 46] and H2CO molecules, although electrostatic trapping has not been

reported yet. In Hannover, Germany, the group of Lisdat and Tiemann have recently built

a Stark decelerator to slow down a beam of SO2 molecules, whereas the group of Softley in

Oxford, UK, is still in the middle of the construction process. In London, UK, a long AG

decelerator has just become operational in the group of Hinds, that will be used to decelerate

and trap YbF molecules, helping them in their search for the electric dipole moment of the
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electron.

1.2.5 Previous Theoretical Work on Stark Deceleration

The Stark decelerator for neutral polar molecules is the equivalent of a linear accelerator

(LINAC) for charged particles. In a Stark decelerator, the quantum-state specific force that a

polar molecule experiences in an electric field is exploited. This force is rather weak, typically

some eight to ten orders of magnitude weaker than the force that a corresponding molecular ion

would experience in the same electric field. This force nevertheless suffices to achieve complete

control over the motion of polar molecules, using techniques akin to those used for the control

of charged particles.

A crucial feature of the Stark decelerator is that it can be operated under the conditions

of phase stability. Phase stability, which is the basis for synchrotron-like charged particle

accelerators [47, 48], enables to hold a packet of neutral molecules together throughout the

Stark deceleration process. Phase stable operation of a Stark decelerator, viewed as trapping

of neutral molecules in a travelling potential well, was first studied in connection with the early

deceleration experiments on metastable CO [49]. In that work, as well as in later publications

on the deceleration of various isotopomers of ammonia, the one-dimensional equation of motion

for molecules that undergo phase-stable transport was given [50, 51]. In more recent work, the

coupling between the transverse and the longitudinal motion was included, and the transverse

stability in a Stark decelerator was discussed [52]. To arrive at the longitudinal equation of

motion, the Stark energy (potential energy) of the molecules was expressed as a function of

position along the decelerator axis, and the change in Stark energy per deceleration stage

was evaluated. As this treatment did not yield a priori an expression for the force on the

molecules as a function of time, assumptions about the time-dependence of the force were made

to deduce, in an intuitive way, the equation of motion. The validity of these assumptions were

checked against trajectory calculations, and it was concluded that this equation of motion indeed

describes correctly the physics of the phase stable motion in a Stark decelerator [49, 50, 51].

Nevertheless, a mathematically rigorous derivation of the equation of motion and an in-depth

analysis of the complex dynamics in a Stark decelerator was still wanting.

More recently, another approach was given to derive the equation of motion [2]. In that

work, the (longitudinal) force acting on the molecules as a function of both their position and

time was obtained by expressing the spatial and temporal dependence of the electric fields in

terms of a Fourier series. The Fourier expansion resulted in an infinite sum of stationary and

counter-propagating waves, where the interaction of a molecule with the dominant wave was

treated explicitly. This resulted in an elegant derivation of the equation of motion, although
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several questions remained. For example, it was not clear which role all the other waves in the

expansion played and why, in discussing phase stability, it is allowed to take only one wave

into account. Furthermore, it was not directly evident how to connect the given treatment to

trajectory calculations or experiments. In particular, it was not clear where the experimentally

observed second-order resonances, as first explained by the intuitive model [53], come from in

the Fourier series description.

1.3 This Thesis

In this thesis, we give a full analysis of the longitudinal motion of molecules in a Stark deceler-

ator. The description is based on the wave model [2], which is improved and generalized where

needed. We treat analytically the motion of the molecules through phase space due to any of

the waves in the Fourier expansion, as well as due to their mutual perturbations. Furthermore,

we find an explanation for the experimentally observed second order resonances in terms of

two wave interferences. Throughout the thesis, the link with the actual experimental situation

is made. Finally, we compare the obtained analytical results with numerical calculations and

with an experiment.

The thesis is built up as follows: in Chapter 2 we follow the route from the molecular

Stark effect to a Stark decelerator. This serves as a background for Chapter 3, where we present

the analytic treatment of the longitudinal physics in a Stark decelerator, the main content of

this thesis. Finally, Chapter 4 provides the comparison of the theory with simulations and

experiment.
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Chapter 2

From the Molecular Stark Effect to

a Stark Decelerator

Abstract

A Stark decelerator can be defined as an apparatus that uses time-varying inhomogeneous

electric fields to decelerate a molecular beam pulse. It exploits the molecular Stark effect to

extract energy from the molecules in the pulse. In this chapter we give an extensive treatment

of the Stark effect, where special attention is paid to the OH radical in its X2Π state, which is

the model system used in the various simulations throughout this thesis.

Next, we will describe how a Stark decelerator produces cold molecules in practice.

Stark deceleration always starts from a molecular beam pulse whose production technique, the

free jet expansion, will be considered in more detail. The expansion results in an internally

cold beam pulse, which implies a small velocity spread and molecules predominantly in a single

quantum state. After the expansion, the beam pulse moves at a high velocity in the lab frame.

Stark deceleration provides a method to transfer the favorable properties of a molecular beam

pulse to very low velocities in the lab frame. We will describe an experimental setup that is

used in deceleration experiments of OH radicals.

This chapter should be seen as a theoretical and experimental background for Chapter

3, where the Stark deceleration dynamics is treated, the main topic of this thesis.
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2.1 Molecular Stark Effect

2.1.1 Introduction

Molecules represent very complicated and rich quantum systems. The general expression for

the non-relativistic molecular Hamiltonian in the coordinate representation is given by
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≡ T̂N + T̂e + V̂NN + V̂eN + V̂ee (2.1)

where the Greek subscripts refer to the nuclei of the molecule, the Roman subscripts refer to the

electrons and Z designates the number of protons in a certain nucleus. In the second line of eq.

(2.1) we defined the nuclear kinetic energy, the electronic kinetic energy, the nucleus-nucleus

repulsion energy, the electron-nucleus attraction energy and the electron-electron repulsion

energy. The corresponding time-independent Schrödinger equation needed for calculating the

energy level structure of a molecule

Ĥ|ψ〉 = E|ψ〉 (2.2)

is easier written down than solved. Still, by using appropriate approximations and applying

symmetry considerations great progress has been made in solving eq. (2.2) and addressing the

physical processes behind the complicated energy spectra obtained from molecular spectroscopy.

Extensive treatments of this topic on different levels can be found in several text books [54, 55].

The first step in these treatments is always to apply the Born-Oppenheimer separation.

This approximation exploits the fact that the electrons move much faster than the nuclei, so

that in order to solve for the electronic structure we can treat the nuclei as fixed in space. This

leads to the purely electronic Schrödinger equation

Ĥel|ψel〉 = Eel|ψel〉 (2.3)

where Ĥel is given by

Ĥel = T̂e + V̂eN + V̂ee (2.4)

and where eqs. (2.3) and (2.4) depend only parametrically on the positions of the nuclei rα.

Since the electrons in the molecule adjust their positions instantaneously to those of the

nuclei, their total electronic energy Eel(rα) acts effectively as a potential for nuclear motion.

This leads to a total nuclear potential energy U(rα)

U(rα) = Eel(rα) + VNN (rα) (2.5)

resulting in the nuclear Schrödinger equation

ĤN |χN 〉 = EN |χN 〉 (2.6)
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with ĤN given by

ĤN = T̂N + U(rα) (2.7)

From eqs. (2.6) and (2.7) it follows that the molecule will not only perform rotational and

translational motion like any rigid body, but will also perform vibrational motion under the

potential U(rα). Translational motion is usually not considered since it just pertains to an

overall shift of the internal energy level structure.

Finally, the total molecular wavefunction after the Born-Oppenheimer separation be-

comes

|ψ〉 = |ψel〉|χN 〉 = |ψel〉|χrot〉|χvibr〉 (2.8)

where in the last step we also separated the rotational motion of the nuclei from the vibrational

motion.

As a result of its rich internal structure, a molecule can give rise to an asymmetric

charge distribution, leading to a body-fixed electric dipole moment µ. The application of an

external electric field ε to such a polar molecule leads to the molecular Stark effect, whose

treatment requires an additional term in the molecular Hamiltonian

ĤStark = −µ · ε (2.9)

complicating the situation even more. The electric fields applied in deceleration experiments

are relatively weak, so they leave the electronic and vibrational energy level structures of the

molecule intact. Furthermore, at the used field strengths the induced dipole moment due to

the polarizability of the molecule can be neglected. What remains is the influence of the Stark

interaction term (2.9) on the rotational energy level structure.

2.1.2 Rotational Energy Level Structure of a Rigid Rotor

In order to accurately calculate the rotational energy level structure of a molecule one has to deal

with angular momentum in all its entirety. Molecules possess rotational angular momentum R,

electronic orbital angular momentum L, electronic spin S and nuclear spin I, that can all couple

to each other in various ways. Taking all this into account leads to a very detailed description

of the observed rotational spectra, but for a general understanding of the Stark effect such an

extensive description is not necessary.

Therefore we will start by treating the molecule as a rigid rotor leaving out the electronic

and nuclear angular momenta. The total angular momentum J of the molecule is then equal

to the rotational angular momentum R leading to the following rotational Hamiltonian

Ĥrot = AR̂2
a + BR̂2

b + CR̂2
c = AĴ2

a + BĴ2
b + CĴ2

c (2.10)
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where the subscripts a, b, c denote the projections of the angular momentum operators R̂, Ĵ

on the three principal axes of inertia (a, b, c) and where A, B and C designate the rotational

constants that are inversely proportional to the principal moments of inertia.

Symmetric Tops

When at least two of the rotational constants are equal, we speak of a symmetric top molecule,

whose quantum mechanical treatment has nice analytic properties. Here we will assume an

oblate top, i.e. A = B < C, but keep in mind that the treatment of a prolate top, A < B = C,

goes along the same lines.

In treating the symmetric top, two frames naturally occur: a body fixed molecular frame

(x, y, z) and a space fixed laboratory frame (X,Y, Z). The orientation of the molecular system

relative to the laboratory system is described by three Euler angles θ, φ and χ, which define a

transformation matrix linking an arbitrary vector A in the molecular frame to the laboratory

frame

AF =
∑

g=x,y,z

ΦFgAg

where F ∈ {X, Y, Z} and ΦFg are the elements of the so called direction cosine matrix [56].

The body-fixed axes (x, y, z) of the symmetric top molecule are most suitably chosen to

coincide with its principal axes of inertia (a, b, c). Furthermore, when A = B, it is convenient

to identify the z axis with the c axis, resulting in the following expression for the rotational

Hamiltonian

Ĥrot = AĴ2 − (A− C)Ĵ2
z (2.11)

which is seen to commute with Ĵ2, Ĵz and ĴZ [54]. As a result, a basis of simultaneous

eigenfunctions can be found defined by the following eigenvalue equations

Ĵ2|JKM〉 = J(J + 1)|JKM〉 (2.12)

ĴZ |JKM〉 = M |JKM〉 (2.13)

Ĵz|JKM〉 = K|JKM〉 (2.14)

Ĥrot|JKM〉 = E|JKM〉 = [AJ(J + 1)− (A− C)K2]|JKM〉 (2.15)

where for convenience we set ~ = 1. The rotational energy levels of a symmetric top given by

eq. (2.15) are seen to be degenerate in M . The symmetric top wavefunctions take the following

form

|JKM〉 =
[
2J + 1

8π2

]1/2

eiMφeiKχdJ
MK(θ) (2.16)

where dJ
MK(θ) can be expressed in terms of Jacobi polynomials [56].
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Asymmetric Tops

The asymmetric top does not allow a complete analytic description as the symmetric top does.

Still, with the help of the symmetric top basis set |JKM〉 a general procedure for solving the

asymmetric top can be formulated. The first step is to rewrite the rotational Hamiltonian

Ĥrot = AĴ2
a + BĴ2

b + CĴ2
c = AĴ2

x + BĴ2
y + CĴ2

z

=
(

A + B

2

)
Ĵ2 +

(
C − A + B

2

)
Ĵ2

z +
(

A−B

4

)
[(Ĵ+)2 + (Ĵ−)2] (2.17)

where in the first line we identified the axes of the molecular frame (x, y, z) with the principal

axes of inertia (a, b, c) and in the second line we rewrote Ĥrot in terms of the raising and lowering

operators

Ĵ± = Ĵx ± iĴy (2.18)

These operators have the following effect on the symmetric top eigenfunctions

Ĵ±|JKM〉 = [J(J + 1)−K(K ∓ 1)]1/2|JK ∓ 1M〉 (2.19)

where it is noted that Ĵ− is the raising operator and Ĵ+ is the lowering operator in the molecular

frame. This is due to the anomalous commutation relation

[Ĵx, Ĵy] = −iĴz (2.20)

which is the result of the way the body fixed frame was introduced with respect to the lab

frame [54].

With the use of eqs. (2.12), (2.14) and (2.19) it is straightforward to evaluate Ĥrot

in the symmetric top basis set |JKM〉. Because of the (Ĵ+)2 and (Ĵ−)2 terms, Ĥrot is not

diagonal in this set. By diagonalizing Ĥrot one obtains the rotational energy level structure

and the eigenfunctions of the asymmetric top. In general, this can only be done numerically.

2.1.3 Applying an External Electric Field

The rotational wavefunction of a polar molecule contains information about the orientation of

the molecular axes (and therefore the dipole moment) with respect to the lab frame. In the

absence of an electric field there is no preferred direction in space, which is expressed by the

degeneracy in M of the field-free rotational energy levels. Applying an external electric field to

a polar molecule introduces a preferred direction in space, and we will show in this paragraph

that, as a result, the degeneracy in M is lifted.

When the applied electric field ε is constant in magnitude and is directed along the Z

axis in the lab frame, eq. (2.9) becomes

ĤStark = −ε
∑

i=x,y,z

µiΦZi (2.21)
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where ΦZi are the direction cosines of the molecular x, y, z axes with reference to the space-fixed

Z axis.

Symmetric Tops

Because of symmetry reasons, symmetric top molecules for which A = B only have a dipole

component along the principal c axis, which can be conveniently identified with the molecular

z axis. Then µz = µ and µx = µy = 0, which means that the Stark interaction term is simply

given by

ĤStark = −µεΦZz = −µε cos θ (2.22)

The matrix elements of the cos θ operator can be found in many textbooks, e.g. ref. [57]. The

only nonzero matrix elements 〈J ′K ′M ′| cos θ|JKM〉 are given by the selection rules M = M ′,

K = K ′ and J = J ′, J ′ ± 1. They can be evaluated using the following expressions

〈JKM |ĤStark|JKM〉 = −µε〈JKM | cos θ|JKM〉 = − KM

J(J + 1)
µε (2.23)

〈JKM |ĤStark|J + 1KM〉 = − µε

J + 1

√
[(J + 1)2 −K2][(J + 1)2 −M2]

(2J + 1)(2J + 3)
(2.24)

Because of eq. (2.24), the Hamiltonian Ĥrot + ĤStark will not be diagonal. In order to obtain

the full rotational energy level structure of a symmetric top under the influence of an applied

electric field, Ĥrot + ĤStark has to be diagonalized. This can be done numerically, taking as

many J components into account as the accuracy of the calculation requires.

When the electric field strengths are (relatively) low, like in deceleration experiments,

the mixing of different J levels is small. When furthermore K, M 6= 0, the Stark shift is

dominated by eq. (2.23) and to a good approximation the influence of eq. (2.24) can be

neglected. Eq. (2.23) is said to give rise to the so called first-order Stark effect. The first-order

Stark effect is seen to remove the M degeneracy of the field free rotational levels as given by

eq. (2.15). Upon application of an external electric field, each field free level splits into 2J + 1

different components with a splitting linear in ε, K and M .

Figure 2.1 shows a vector diagram that reveals the geometric interpretation of the first

order Stark effect for a symmetric top in a |JKM〉 state. The projection of the total angular

momentum J on the Z axis has the constant value M , which pertains to the precessional motion

of J about the Z axis. Furthermore, the projection of J on the molecular z axis, Jz, has the

constant value K, which in the lab frame is expressed by the precessional motion of Jz about J.

Now, the Stark effect is the interaction of the dipole moment µ (along z) with the electric field

ε (along Z). From the vector diagram it is clear that on average only the projection of µ on J

interacts with ε. As a result, the first-order Stark effect can be readily obtained geometrically
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Figure 2.1: Vector diagram allowing a geometric interpretation of the first order Stark effect for a

symmetric top molecule in a |JKM〉 state. The projection of the total angular momentum vector J of

length [J(J + 1)]1/2 on the space-fixed Z axis has the constant value M , whereas the projection of J

on the molecular z axis, Jz, has the constant value K. The Stark effect is the interaction of the dipole

moment µ along z with the electric field ε along Z. On average only the projection of µ on J interacts

with ε.

from Fig. 2.1

WStark = −µε cos(Jz,J) cos(J, Z) = −µε
MK

J(J + 1)
(2.25)

From eq. (2.25) it follows that for states with MK > 0 the eigenenergy decreases with

increasing field strength. In an inhomogeneous field a molecule in such a state will seek regions

of maximum field strength, where its eigenenergy is minimal. Therefore these states are called

high-field seeking states. For states with MK < 0 the eigenenergy increases with increasing field

strength. A molecule in such a state will seek regions of minimum field strength. Therefore,

these states are called low-field seeking states.

Upon increasing the field strength, the coupling of the rotational levels, eq. (2.24),

becomes more dominant, leading to second- and higher-order Stark shifts. Eventually, the

interaction with the field will become so strong that the molecule no longer rotates freely in

space, but can only librate about the electric field direction. These states are therefore called

pendular states [58, 59]. All pendular states are high field seeking.

Asymmetric Tops

The Stark effect for asymmetric tops can be treated similarly as for symmetric tops, provided
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that the dipole moment lies along one of the principal axes of the molecule, which is mostly

the case. This axis is then conveniently chosen to be the molecular z axis and eq. (2.22) still

holds. The operator Ĥrot +ĤStark can be readily evaluated in the symmetric top basis set using

eqs. (2.12), (2.14), (2.19), (2.23) and (2.24). Diagonalization of the resulting matrix gives the

rotational energy level structure of an asymmetric top in an electric field. As for the symmetric

top, the Stark effect removes the M degeneracy of the field free lines and split them into 2J +1

different components.

When the body-fixed dipole moment is not along one of the principal axes of the molecule

a choice has to be made. Either one chooses the molecular z axis along the dipole moment, or

one chooses the molecular z axis along one of the principal axes. In the first case, eq. (2.22)

still holds, but eq. (2.17) is not valid anymore. In the second case, eq. (2.17) still holds, but eq.

(2.22) is not valid anymore. Which choice leads to the least cumbersome calculation depends

on the specific molecule.

2.1.4 Rotational energy level structure of the OH radical in its X2Π state

So far, we neglected the electronic and nuclear angular momenta L, S and I. Taking these into

account does not add additional insight into the origin of the Stark effect, but it does lead to a

more accurate description of reality. In this paragraph a detailed discussion of the OH radical

in its X2Π electronic ground state is given, since this molecule is used in the various simulations

throughout this thesis. Furthermore, the treatment is an example for how to calculate molecular

energy levels in general.

For a diatomic molecule, like OH, the rotational Hamiltonian is given by

Ĥrot = BR2 = B(J− L− S)2 (2.26)

where B is the rotational constant and where we neglected the nuclear spin I, since its effect,

the hyperfine structure, is too small to be of any importance for our purposes. Eq. (2.26) can

be rewritten by introducing the following raising and lowering operators

L̂± = L̂x ± iL̂y Ŝ± = Ŝx ± iŜy (2.27)

giving

Ĥrot = B[Ĵ2 − 2ĴzŜz + Ŝ2 − 2(Ĵz − Ŝz)L̂z + L̂2
z − Ĵ+Ŝ− − Ĵ−Ŝ+]

−B[(Ĵ+ − Ŝ+)L̂− + (Ĵ− − Ŝ−)L̂+ − 1
2
(L̂+L̂− + L̂−L̂+)] (2.28)

where we also used eq. (2.19). In the calculation of the rotational energy levels, the second

line of eq. (2.28) can be neglected to a first approximation. The first term of the second line,
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containing L̂−, and the second term, containing L̂+, generate a small coupling between different

electronic states. This results in a small effect called Λ-doubling, to which we will come back

later. The last term does not couple different electronic states and does not depend on J . Its

expectation value just shifts uniformly the rotational energy levels and is therefore ignored.

Since electrons are charged particles, their orbital motion L produces a magnetic field,

which can interact with the spin of the electrons S. This is called spin-orbit coupling and its

effect can be substantial, certainly compared to the rotational Hamiltonian. Therefore it needs

to be taken into account when calculating the rotational energy level structure. This can be

done by introducing the following term

Ĥso = AL · S = AL̂zŜz +
1
2
A[L̂+Ŝ− + L̂−Ŝ+] (2.29)

where A is the spin-orbit coupling constant and where the terms containing L± can again be

neglected in first instance.

In order to solve the rotational energy level structure of a diatomic molecule we ’only’

have to write the operator Ĥrot + Ĥso in a suitable basis set and diagonalize it. The convenient

separation of the molecular basis functions into an electronic, vibrational and rotational part

was already discussed in the introduction to this chapter. It yields

|ψel〉|χvibr〉|χrot〉 = |nΛSΣ〉|v〉|JΩM〉 (2.30)

where the electronic state is also often referred to as |n2S+1ΛΩ〉. The rotational set |JΩM〉 has

already been introduced in Paragraph 2.1.2. Here we adopted the usual notation that in the

case of a diatomic molecule the eigenvalue of Ĵz is labelled Ω rather than K. The electronic set

|nΛSΣ〉 and its labels are characterized by the following set of equations

L̂z|nΛSΣ〉 = Λ|nΛSΣ〉 (2.31)

Ŝ2|nΛSΣ〉 = S(S + 1)|nΛSΣ〉 (2.32)

Ŝz|nΛSΣ〉 = Σ|nΛSΣ〉 (2.33)

Ŝ±|nΛSΣ〉 = [S(S + 1)− Σ(Σ± 1)]1/2|nΛSΣ± 1〉 (2.34)

where n distinguishes between states for which all other electronic quantum numbers are equal.

For the X2Π electronic ground state of the OH radical, we have four basis functions for

each rovibronic level, namely

|X2Π±3/2vJM〉 = |X, Λ = ±1, S =
1
2
, Σ = ±1

2
〉|v〉|Ω = ±3

2
JM〉 (2.35)

|X2Π±1/2vJM〉 = |X, Λ = ±1, S =
1
2
, Σ = ∓1

2
〉|v〉|Ω = ±1

2
JM〉 (2.36)
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By making linear combinations, we can create a convenient, symmetrized basis set

|X2Π3/2vJMe/f〉 =
|X2Π3/2vJM〉 ± |X2Π−3/2vJM〉√

2
(2.37)

|X2Π1/2vJMe/f〉 =
|X2Π1/2vJM〉 ± |X2Π−1/2vJM〉√

2
(2.38)

where the upper (lower) sign corresponds to e(f) parity [54]. By using eqs. (2.12), (2.14),

(2.19), (2.31)-(2.34) Ĥrot + Ĥso can be evaluated in this symmetrized basis set, which gives the

following result (neglecting the terms containing L̂±)

Ĥrot + Ĥso =


 H ′ 0

0 H ′




where each H ′ block corresponds to a different parity e/f and is given by

H ′ =


 −1

2A+ B
[
J(J + 1) + 1

4

] −B
[
J(J + 1)− 3

4

]1/2

−B
[
J(J + 1)− 3

4

]1/2 1
2A+ B

[
J(J + 1)− 7

4

]




where the first row/column corresponds to |X2Π1/2vJMe/f〉, while the second row/column

corresponds to |X2Π3/2vJMe/f〉. Diagonalization of this matrix leads to a quadratic equation,

whose solution is

E± = B[(J − 1
2
)(J +

3
2
)± 1

2
X] (2.39)

where

X =

√
4(J +

1
2
)2 + Y (Y − 4) (2.40)

Y =
A
B

(2.41)

Note that each eigenvalue is doubly degenerate with respect to e/f parity. The corresponding

eigenfunctions are given by

|X2ΠE−vJMe/f〉 = c1(J)|X2Π1/2vJMe/f〉+ c2(J)|X2Π3/2vJMe/f〉 (2.42)

|X2ΠE+vJMe/f〉 = −c2(J)|X2Π1/2vJMe/f〉+ c1(J)|X2Π3/2vJMe/f〉 (2.43)

where

c1(J) =

√
X + Y − 2

2X
(2.44)

c2(J) =

√
X − Y + 2

2X
(2.45)

Eqs. (2.42)-(2.45) reveal that Ĥrot mixes levels with different Ω, which is therefore not a good

quantum number anymore.
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Figure 2.2: Energy level diagram showing the lowest rotational levels of the vibronic groundstate

X2Π, v = 0 of the OH radical. For reasons of clarity the Λ-doublet splitting of each rotational level is

largely exaggerated. Furthermore, the e/f parity and the total parity p corresponding to each energy

level are indicated.

So far the discussion has been very general and it is valid for any diatomic molecule in

a 2Π state. For the specific case of OH, B = 18.515 cm−1 and A = −139.73 cm−1 [60]. Since

|A| À |B|, OH is characterized by a Hund’s case (a) coupling scheme [54]. As a result, the

mixing in eqs. (2.42)-(2.45) is small and Ω is almost a good quantum number. Furthermore,

since A < 0, |X2Π3/2, v = 0, J = 3/2,M, e/f〉 is seen to be the rovibronic groundstate.

Up to now, the terms containing L̂± in eqs. (2.28) and (2.29) have been neglected.

These terms couple the X2Π state weakly to other electronic states differing by one unit of

Λ. Taking this coupling into account results in a small effect, that lifts the degeneracy in e/f

parity and splits each energy level in eq. (2.39) into two components. This is called Λ-doubling.

For a 2Π state no simple analytic expression for Λ doubling exists. For OH, which is a Hund’s

case (a) molecule, the Λ splitting in the 2Π1/2 levels varies linearly in J , whereas the splitting

in the 2Π3/2 levels varies with the third power of J [56]. The resulting splitting in the ground

state of OH is very small, only 0.05 cm−1 [61]. An energy level diagram showing the lowest

rotational levels of the vibronic ground state of the OH radical, including Λ-doubling, is shown

in Figure 2.2.

2.1.5 Stark Effect of the OH Radical in its X2Π State

The dipole moment of a diatomic molecule is always directed along the internuclear axis, which

can be conveniently chosen as the molecular z axis. Upon application of a constant electric field

in the Z direction, ĤStark is given by eq. (2.22). The nonzero matrix elements of the Ĥstark
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operator in the symmetric top basis |JKM〉 were given by eqs. (2.23) and (2.24), where we

remember that for diatomics K is replaced by Ω.

For the OH radical, the mixing in eqs. (2.42)-(2.45) is small and the eigenfunctions

of Ĥrot + Ĥso are to a good approximation given by |X2ΠΩvJMe/f〉. The degeneracy of the

corresponding energy levels in e/f parity is lifted due to Λ doubling, causing a small splitting

of each rotational level into two levels separated by EΛ.

From eqs. (2.23), (2.24), (2.35)-(2.38) the non-zero matrix elements of ĤStark in the

|X2ΠΩvJMe/f〉 basis are readily derived. For the first-order Stark effect

〈X2ΠΩvJMf/e|ĤStark|X2ΠΩvJMe/f〉 = − ΩM

J(J + 1)
µε (2.46)

which is seen to mix levels with different e/f parity. For the second-order Stark effect

〈X2ΠΩvJMe/f |ĤStark|X2ΠΩvJ + 1Me/f〉 = − µε

J + 1

√
[(J + 1)2 − Ω2][(J + 1)2 −M2]

(2J + 1)(2J + 3)
(2.47)

At the electric field strengths used in deceleration experiments, the second-order Stark

effect may be neglected and for the rovibronic groundstate |X2Π3/2, v = 0, J = 3/2,M, e/f〉
the Stark matrix becomes

ĤStark =


 −EΛ/2 −µε MΩ

J(J+1)

−µε MΩ
J(J+1) EΛ/2




where we added the effect of the Λ doubling along the diagonal. Note that the upper level

of the Λ doublet corresponds to f parity [62]. The Stark shift WStark of the ground state Λ

doublet levels is given by

WStark = ±
√(

EΛ

2

)2

+
(

µε
MΩ

J(J + 1)

)2

∓ EΛ

2
(2.48)

and is shown in Figure 2.3. For very low field strengths, ε ≈ 0, eq. (2.48) yields

WStark ≈ ±µ2ε2 M2Ω2

J2(J + 1)2EΛ
(2.49)

which means an initial quadratic rise as a function of the field strength. But as the field

increases, the Λ doubling becomes negligibly small and the Stark shift is, to an excellent ap-

proximation, linear in field strength, cf. Fig. 2.3.

To conclude we stress that applying an electric field to a polar molecule introduces a

preferred direction in space, lifts the degeneracy in M and mixes states with opposite parity.

As a result, the space fixed dipole moment µZ has a non-zero expectation value

〈µZ〉 = µ〈cos θ〉 6= 0 (2.50)

which means that the Stark effect gives rise to the orientation of molecules.
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Figure 2.3: Stark shift of the Λ-doublet levels of the X2Π, v = 0, J = 3/2 rovibronic ground state of

the OH radical as a function of the electric field strength.

2.2 Stark Decelerator

As mentioned in the introduction, during the last years several techniques have been developed

to produce cold molecules. Some of them, including Stark deceleration, are based on decelera-

tion of a molecular beam pulse. In the next paragraph we will see that a molecular beam pulse,

formed by a free jet expansion, is already internally cold, but moves at a high velocity in the

lab frame. Stark deceleration uses the molecular Stark effect to slow down the beam pulse and

to produce cold molecules in the lab frame.

2.2.1 Free-jet Molecular Beam

By a molecular beam we understand an ensemble of molecules having (nearly) the same velocity

vectors. The free-jet molecular beam arises from a supersonic jet expansion. It is produced by

seeding the molecules in a so-called carrier gas, which is kept at high pressure P0 in a container.

Next the gas is expanded into a region of low pressure PV (typically vacuum). This is shown in

Figure 2.4. Near the opening of the container, called the nozzle, the molecules are bombarded

by particles only from one side, resulting in an accelerated motion towards the vacuum. In

the expanding gas, the faster particles keep on colliding with the slower ones creating a much

narrower velocity distribution than originally in the container. A pulsed molecular beam is

obtained by opening and closing the container with a certain frequency. The free-jet expansion

can be described in terms of a hydrodynamic flow of an ideal gas.

We start by introducing a central quantity in our description, namely the Mach number
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Figure 2.4: Schematic view of a free jet expansion resulting in a molecular beam. Molecules are seeded

in a carrier gas, that is kept at a pressure P0 and a temperature T0 in a container. The pressure of the

background is PV . As the gas expands into the vacuum it obtains a supersonic velocity, which leads to

the formation of a so-called zone of silence, where there is no information available about any external

boundary condition. In order to still satisfy the boundary conditions, shock waves have to occur. Also

shown are the pressure P and the temperature T inside the zone of silence, which vary with position in

the jet. The final molecular beam is extracted from the zone of silence by placing a skimmer that only

selects the centerline beam.

M , which is defined as the ratio of the local flow velocity u to the local speed of sound a

M =
u

a
(2.51)

For M < 1, M = 1 and M > 1, we speak of subsonic, sonic and supersonic flow. At the pressure

ratios P0/PV typically used in molecular beam experiments, the flow exits the nozzle with a

supersonic velocity. This means that any information inside the flow, which is transported at

the speed of sound, moves slower than the flow itself. As a result, a central region inside the

expansion arises, called the zone of silence, where no information about any external boundary

conditions is available. From this region the molecular beam is extracted.

The zone of silence can be described as a region of isentropic flow of an ideal gas, which

means neglecting viscous and heat conduction effects. These are good approximations for high-

speed flow, when the characteristic flow time is short compared to the time scales at which such

non-equilibrium processes take place [63]. Since the pressure P is the relevant quantity in the

expansion, the jet is most conveniently described by its enthalpy H(S, P ). For an isentropic

process the enthalpy is given by

dH = TdS + V dP = V dP = dW (2.52)

where V is the volume, S is the entropy and W the flow work done by the expanding gas. As

the gas is subject to a negative pressure gradient, it performs negative work, which can also be
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construed as positive work done on the gas by the applied pressure difference. As a result, the

kinetic energy of the gas flow increases. Using equation (2.52), the conservation of energy can

be expressed as

−∆h = h0 − h = −∆w =
1
2
u2 (2.53)

where h, h0 and w are the enthalpy, initial enthalpy and the work per unit mass. The gas is

assumed to have a negligible initial flow velocity.

The equation of state for an ideal gas is given by

PV = NkT (2.54)

where N is the number of molecules and k the Boltzmann constant. For an ideal gas several

useful equations hold

dh = cP dT (2.55)

cP − cV = k/m (2.56)

cP =
γk

(γ − 1)m
(2.57)

where cP and cV are the heat capacities at constant pressure and volume per unit mass, and m

is the mass of the atom or molecule in the gas. γ is called the Poisson coefficient and is given

by

γ ≡ cP /cV = 1 + 2/D (2.58)

where the last step is valid for an ideal gas whose particles have D degrees of freedom; for atoms

γ = 5/3, whereas for diatomics γ = 7/5. For mixtures a weighted average of the mass, heat

capacities and the Poisson coefficient has to be used. A typical mixture for a molecular beam

contains about 1 % molecules and the rest carrier gas.

Using eqs. (2.52), (2.54), (2.55) and (2.57) it is easy to show that for an ideal, isentropic

expansion

P/P0 = (T/T0)γ/(γ−1) (2.59)

ρ/ρ0 = n/n0 = (T/T0)1/(γ−1) (2.60)

that shows how temperature, pressure, mass density ρ and number density n are related to each

other in the flow. Furthermore, by combining eqs. (2.53), (2.55) and (2.57) we obtain

h0 − h =
γk

(γ − 1)m
(T0 − T ) =

1
2
u2 (2.61)

which allows us to calculate the limiting behavior of the flow velocity as T → 0

lim
T→0

u ≡ u∞ =
[

2γkT0

(γ − 1)m

]1/2
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Figure 2.5: Behavior of (a) the Mach number M , and (b) the pressure P , the number density n, the

mass density ρ and the temperature T as a function of their position z along the centerline in the jet for

a typical seeded molecular beam (γ ≈ 5/3); d is the diameter of the nozzle.

Using the expression for the velocity of sound a in an ideal gas [64]

a = (γkT/m)1/2 (2.62)

eq. (2.61) can be rewritten in a more convenient form

T0/T = 1 +
1
2
(γ − 1)M2 (2.63)

Eqs. (2.59), (2.60) and (2.63) show that the temperature, pressure and density are

directly related to the Mach number. Hence, if M can be determined as an explicit function

of position, then all thermodynamic quantities are readily computed in the free jet. The de-

termination of M(r) has to be done numerically, for example by integrating the conservation

laws (mass, momentum, energy) using the Method of Characteristics (MOC) [63]. No analytic

expression exists, but the functional behavior of M along the centerline can be fitted by

M(0, z) = zγ−1[C1 + C2z
−1 + C3z

−2 + C4z
−3] (2.64)

where C1, C2, C3 and C4 are fitting parameters. Note that this expression diverges when z → 0.

Therefore, for z ≈ 0, the behavior is fitted by

M(0, z) = 1 + Az2 + Bz3 (2.65)

where A and B are again fitting parameters. The total behavior of M(0, z) is shown in Figure

2.5 a.

The behavior for large z, M(0, z) ∝ zγ−1 is readily understood from the conservation of

mass. At large distances close to the centerline the streamlines are straight and seem to originate
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from the same point. These lines describe a purely radial expansion, for which conservation of

mass becomes

ρuR2 = const. (2.66)

with R the radial distance. This yields

M(R) ∝ Rγ−1 (2.67)

where we made use of eqs. (2.60), (2.63) and the approximations u ≈ u∞,

1 + 1
2(γ − 1)M2 ≈ 1

2(γ − 1)M2, which are valid for large R.

From the dependence of the Mach number M on z, we can evaluate the behaviour of

the other thermodynamic quantities along the centerline of the flow field, where the result is

shown in Figure 2.5 b.

The actual molecular beam is obtained by placing a small cone-shaped aperture, called

the skimmer, into the zone of silence, thereby selecting only the centerline fraction (cf. Fig.

2.4). The final beam consists of molecules predominantly in their rovibronic ground state

and is characterized by a small velocity spread as expressed by the low temperature, typically

around 1 K (even temperatures of about 1 mK have been reached). Much lower temperatures

are not attainable with this technique, since at some point the used idealizations break down.

For example, due to the finite sized cross sections the gas runs out of collisions at a certain

density. Thermal equilibrium cannot be maintained anymore and further expansion doesn’t lead

to additional cooling. Furthermore, at low temperatures the particles start to form clusters,

releasing energy that heats the beam. The problem of cluster formation can be solved to some

extent by using a noble gas as a carrier, which forms clusters only at very low temperatures.

To conclude, by using a free jet expansion molecular beams with translational temper-

atures of 1 K can be routinely produced at densities of n = 1013 molecules/cm3, where the

molecules reside predominantly in their rovibronic ground state. The only thing that prevents

the trapping of such molecules is their high mean velocity in the lab frame, typically 300 to

2000 m/s. So what we need, is a method to slow the molecules down. This is where the Stark

decelerator comes in.

2.2.2 Principle of Stark Deceleration

Figure 2.6 shows a schematic picture of a Stark decelerator consisting of two field stages at

three different moments in time. At t1 and t2 the left electrode pair is at high voltage, whereas

the right electrode pair is grounded. This leads to a maximum electric field strength between

the left electrode pair. Between t2 and t3 the voltages are abruptly switched. The high voltage
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Figure 2.6: Schematic picture of a two stage Stark decelerator at three different moments in time. At

t1 and t2 the left electrode pair is at high voltage and the right pair is grounded, whereas at t3 the right

electrode pair is at high voltage and the left pair is grounded. At each moment in time also the Stark

energy WStark of a low-field seeking molecule is shown as a function of the longitudinal coordinate z.

As a low-field seeking molecule flies into the decelerator from the left, its Stark energy increases, which

goes at the cost of its kinetic energy. By switching the fields between t2 and t3, the molecule doesn’t

regain its kinetic energy and has to fly into a region of increasing field strength again. Also shown is the

transverse x direction.

pair on the left becomes grounded, whereas the grounded pair on the right is put at high

voltage. This leads to a maximum field strength between the right electrode pair. At each

moment in time also the Stark energy of a low-field seeking molecule is shown as a function

of its longitudinal coordinate z. In keeping with what we discussed in Paragraph 2.1.3, the

eigenenergy of a low-field seeking state increases with increasing field strength.

As a low-field seeker flies into the decelerator from the left, its Stark energy increases,

which happens at the cost of its kinetic energy. The Stark energy is seen to act as a potential

energy and typically the molecule loses about 1% of its initial kinetic energy between t1 and t2.

If we would do nothing between t2 and t3, the electric fields would remain unchanged and the

low-field seeker would just regain its kinetic energy on the right side of the potential slope. But

if we switch the field stages very fast between t2 and t3, so fast that the position of the molecule

essentially doesn’t change during switching, then the instantaneous velocity of the molecule at

t2 is not affected by the switching. As a result, the molecule will fly on without having regained

its kinetic energy. Furthermore, the molecule will have to fly into another region with increasing

field strength, which will lead again to the loss of kinetic energy. By using many more field

stages, separated by a constant distance, this process can be repeated as often as one wishes.

As a result, the molecule can be decelerated down to every desired final velocity.
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From the above outline, several things follow. First, we notice that the deceleration rate

of the molecule depends on its relative position with respect to the electrodes when the fields

are switched. The further we let the molecule fly up the potential hill before switching, the more

energy is extracted. This position relative to the electrodes at the moment of switching is kept

constant during the deceleration process, resulting in the same amount of energy extracted at

every field stage. After each time the fields are switched, the molecule moves slower and needs

a longer time to reach the same relative position at the next field stage. To compensate for

the slowing down of the molecule, the time between the switching of the fields has to increase

correspondingly.

So far, the discussion pertained to one molecule only. Furthermore, this single molecule

was very special, since the applied switching sequence was arranged to be perfectly synchronous

with respect to its motion. Therefore, this molecule is called the synchronous molecule. But

in order to perform experiments at the end of the decelerator, we would like to decelerate

many molecules, not just the synchronous one. Fortunately, the decelerator gives rise to an

important feature called phase stability, which means that in the deceleration process molecules

stay together and form bunches, rather than just spread out. Phase stability will be discussed

extensively in Chapter 3, but here we will give a short qualitative description.

Consider a non-synchronous molecule flying a little bit ahead of the synchronous molecule.

The non-synchronous molecule travels further up the potential slope than the synchronous one

and when the fields are switched, more energy is extracted from it. Since the non-synchronous

molecule is slowed down more, it gets a correction towards the synchronous molecule. In a

similar way less energy is extracted from a non-synchronous molecule that is lagging behind,

also resulting in a correction towards the synchronous molecule. In this way a whole packet of

molecules having different (initial) positions and velocities can be kept together throughout the

deceleration process.

The above describes phase stability in the longitudinal direction, but in order to keep

the packet of molecules together in three dimensions we also need transverse stability. In Fig.

2.6 one of the transversal directions is shown, namely the x direction. In this two dimensional

figure the minimum of the electric field lies on the central longitudinal z axis, whereas the

maximum field strength is at the electrodes. As mentioned above, low-field seekers feel a

counteracting force upon entering regions of increasing field strength. Since the field increases

in the transversal direction, low-field seekers feel a restoring force when flying off axis.

This explains stability in the x direction, but not in the y direction, which points out

of the paper in Fig. 2.6. By letting successive electrode pairs make an angle of 90◦ in the plane

perpendicular to the longitudinal z axis, as shown in Figure 2.7 , stability in both transversal
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directions is guaranteed. A full description of transverse stability of low-field seeking OH

radicals in a Stark decelerator is given in [52].

So far, we talked solely about how to decelerate low-field seekers. The question now

arises if the same principles can also be applied to high-field seeking molecules. Longitudinally,

there is not much of a difference. Where low-field seekers are decelerated upon flying into a

region of increasing field strength, high-field seekers are decelerated upon flying into a region

of decreasing field strength. And just like we can arrange that low-field seekers constantly

feel an increasing field, we can also arrange that high-field seekers constantly feel a decreasing

field. But transversally the story is very different. Where an increasing field in the transverse

direction means automatically stability for low-field seekers, it means instability for high-field

seekers. The high-field seekers are accelerated away from the central axis and have the tendency

to crash into the electrodes. Therefore a more complicated setup is needed using dipole lenses

as field stages [43], rather than the electrode geometry schematically depicted in Fig. 2.7.

Finally, it might be clear that the whole story about decelerating molecules can equally

well be told for accelerating molecules. Indeed, the Stark decelerator can perform just as easily

as a Stark accelerator. Still, the technique is primarily used for slowing-down molecules, which

has two reasons. First of all, there is a lively interest in cold molecules nowadays, cf. Paragraph

1.1. Second, a 1 meter long decelerator only gives rise to a kinetic energy change that is on

the order of 10 meV. Although this suffices to decelerate a molecular beam to a standstill,

it is of little avail in acceleration experiments. Note that the 10 meV per meter is about 9

orders of magnitude less than the 40 MeV per meter that is reached in modern charged particle

accelerators. These are exactly the 9 orders of magnitude that separate the force on a neutral

polar molecule from the force on a charged molecular ion in the same electric field.

2.2.3 Experimental Setup for Decelerating OH Radicals

Figure 2.7 shows a schematic of the experimental setup as used at the Fritz-Haber-Institut in

Berlin to decelerate low field seeking OH radicals. We’ll consider this setup in more detail to

get a feeling for the experimental realization of a Stark deceleration experiment. Furthermore,

this setup was used to perform an experiment connected to this thesis, which will be described

in Paragraph 4.5. The OH radical and the dimensions of this particular decelerator are also

used as parameters in various simulations, which will be presented throughout Chapter 3 and

4.

The experimental setup of Fig. 2.7 is enclosed in three differentially pumped vacuum

chambers. A pulsed molecular beam is formed by opening a valve at a frequency of 10 Hz and

letting the carrier gas, e.g. Xenon or Krypton, expand into a vacuum of 2 × 10−5 Torr. In
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Figure 2.7: Scheme of the experimental setup used for the deceleration of OH radicals. A carrier gas,

seeded with HNO3, is expanded into the vacuum. Here the HNO3 is photo-dissociated to form OH.

The pulsed molecular beam passes through the skimmer, the hexapole and the Stark decelerator and is

detected using an LIF detection scheme. Adapted from [18].

the carrier gas HNO3 is seeded, which is photo-dissociated to form OH radicals. The pulsed

molecular beam is cooled in the supersonic expansion and after the expansion most OH radicals

reside in the lowest rotational (J = 3/2) and vibrational level of the electronic ground state

X2Π3/2. With this setup the low field seeking MΩ = −3/4 and MΩ = −9/4 components of the

ground state (cf. Fig. 2.3) can be decelerated, where the Stark shift for the last is three times

higher than for the first. The final molecular beam is extracted from the expansion by placing

a skimmer with a 2 mm diameter at a distance of 21 mm from the valve. The mean velocity

of the beam depends on the carrier gas and is around 450 m/s for OH seeded in Krypton and

370 m/s for OH seeded in Xenon. The longitudinal velocity spread is typically around 15 %

FWHM.

Past the skimmer, the molecular beam enters a second vacuum chamber (4×10−7 Torr),

where it is focussed by a 37 mm long hexapole placed 23.5 mm downstream from the skimmer.

The hexapole consists of 6 stainless steel rods with a diameter of 3mm, placed equidistantly at

the circumference of a circle with a diameter of 6 mm. When the hexapole operates, every other

rod is at high voltage (typically 10 kV), creating a field whose strength increases quadratically

with distance from the central axis [65]. Low field seeking molecules flying off axis experience

a restoring force that results in a focussing of the molecular beam. The focal length of the
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hexapole is chosen such that the beam is focussed into the decelerator.

The first stage of the decelerator is placed at 16.8 mm from the exit of the hexapole.

The decelerator consists of 108 equidistant electric field stages that are longitudinally separated

by 11 mm. Each stage consists of 2 polished hardened steel rods with a diameter of 6 mm.

They are placed parallel in a plane perpendicular to the molecular beam axis at a center to

center distance of 10 mm. Alternating electrode pairs are rotated by 90◦, resulting in a 4 × 4

mm2 transverse acceptance area of the decelerator.

When the decelerator is operating every other field stage is energized and every other

grounded, leading to two possible field configurations between which it is being switched, cf.

Fig. 3.1. In the experiment, an electric field strength is desired that is as high as possible.

A higher field strength does not only increase the deceleration rate, but it also increases the

number of molecules that can be decelerated, cf. Chapter 3. On the other hand, increasing

the field strength leads to a higher risk of an electrical breakdown, which can cause severe

damage to the decelerator. As a compromise, the decelerator is operated by putting a voltage

of ± 20 kV on the electrodes, leading to a maximum field strength of 115 kV/cm near the

rods. Depending on the velocity of the decelerating molecules, a field stage is typically at high

voltage during 40-400 µs, after which the fields are quickly switched. During the switching of

the fields, the voltage drops with an 1/e time of about 450 ns, resulting in a time dependence

of the field that is square-wave-like.

The OH radicals are detected 21 mm downstream from the decelerator using a laser

induced fluorescence (LIF) scheme. In short, LIF detection means that the passing molecules

are excited using a tunable laser and that the fluorescence is detected using a photo multiplier

tube (PMT). In the scheme used here, 282 nm radiation of a pulsed dye laser is used to induce

transitions from the ground state to the A2Σ+, v = 1 state. This state has a short radiative

lifetime of 760 ns [66], where the main decay channel is via the A2Σ+, v = 1 → X2Π3/2, v = 1

band around 313 nm. The emitted photons are collected onto the PMT with the help of a lens,

where stray light from the laser is reduced by using optical filters in front of the PMT.

The experimental data presented in Paragraph 4.5 consist of time of flight (TOF) profiles

which give the OH intensity as a function of the time difference between the production of the

OH radicals by the dissociation laser and the detection of the OH radicals. Each data point

is obtained by running the experiment 32 times at a fixed time difference and averaging the

resulting PMT signals. Since the valve opens at a frequency of 10 Hz, each data point takes

3.2 seconds. For more information about the experimental setup, see ref. [18].
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Chapter 3

Dynamics of Stark

Acceleration/Deceleration

Abstract

Stark acceleration/deceleration relies on time-dependent inhomogeneous electric fields gener-

ated by an array of field stages, to repetitively exert an accelerating/decelerating force on polar

molecules. Fourier analysis reveals that such fields consist of a superposition of partial waves

with well-defined phase velocities, and that molecules whose velocities are close to the phase

velocity of a given wave get a ride from that wave. For a square-wave temporal dependence

of the Stark field, the phase velocities of the waves are found to be odd-fraction multiples of

a fundamental phase velocity λ/τ , with λ and τ the spatial and temporal periods of the field.

Here we study explicitly the dynamics due to any of the waves as well as due to their mutual

perturbations. We first solve the equations of motion for the case of single-wave interactions

and exploit their isomorphism with those for the biased pendulum. Next we analyze the per-

turbations of the single-wave dynamics by other waves and find that these have no net effect

on the phase stability of the acceleration/deceleration process. Finally, we find that a packet

of molecules can also ride a wave which results from an interference of adjacent waves. In this

case, phase stability areas form around phase velocities that are even-fraction multiples of the

fundamental velocity.

35



3.1 Fourier Representation of the Electric Field

Figure 3.1 shows a prototypical switchable field array suitable for accelerating or decelerating

polar molecules. The electric fields are generated by field stages (rod-electrode pairs, cylindrical

electrodes, or other) longitudinally separated by a distance λ/2. In the array, every other field

stage is energized and every other grounded. Which field stages are energized and which are

grounded determines one of two possible field configurations of the array. Fig. 3.1 a shows, for

the case of four field stages, the electric fields that are generated by the two field configurations.

The magnitudes of the electric fields that pertain to the upper and lower field configuration

are shown by the red and blue curves and will be referred to as the red, εr, and blue, εb, field,

respectively. Also shown is the longitudinal coordinate z. A given field stage is energized or

grounded during a time τ/2, after which the fields are switched, i.e., the field stages that were

energized become grounded and the field stages that were grounded become energized. Fig. 3.1

b shows the alternation between the red and blue fields as a function of time, t. An energized

field stage becomes grounded or vice versa during a transient time, ∆τ . For ∆τ ¿ τ , the

temporal alternation between the red and blue fields is square-wave-like.

We’ll now represent the spatial and temporal dependence of the net field, which results

from the switching between the static red and blue fields, by a Fourier series. This will reveal

that the net field consists of a superposition of counter-propagating waves with characteristic

phase velocities. In Paragraph 3.3 we’ll see that a single wave dominates the interaction of the

net field with the molecules that are subjected to it. The Fourier analysis makes it possible to

single out the dominant wave and to tackle analytically, one by one, the effect of all the partial

waves on the motion of the molecules.

We’ll begin by Fourier-expanding the spatial dependence of the red field, which is pro-

duced by field stages at positions z =
(

1
4 + m

)
λ, with m = 0, 1, 2, 3..., see Fig. 3.1 a. The

strength of the red field is given by

εr(z) =
1
2
ε0+

∞∑

m=1

εm cos (mϕ) (3.1)

where εm are the spatial Fourier coefficients and

ϕ ≡ 2πz/λ− π/2 (3.2)

Note that the Fourier expansion (3.1) is limited to terms with an even symmetry relative to

the field stages, corresponding to the symmetry of the electric field.

The blue field is produced by field stages at positions z =
(

3
4 + m

)
λ, see Fig. 3.1 a,
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Figure 3.1: A prototypical switchable field array that generates fields suited for accelerating or deceler-

ating polar molecules. The field stages are longitudinally separated by a distance λ/2. Every other field

stage is energized and every other grounded, leading to two possible field configurations. (a) Electric

fields generated by the two field configurations (for the case of four field stages). The electric fields that

pertain to the upper and lower field configurations are shown by the red and blue curves and are referred

to here as the red, εr, and blue, εb, fields, respectively. Also shown is the longitudinal coordinate z; (b)

Alternation between the red and blue fields as a function of time, t. A given field stage is energized or

grounded during a time τ/2, after which the fields are switched, i.e., the field stages that were energized

become grounded and vice versa. The figure pertains to the case of guiding, for which the period τ is

constant. The case of a varying period is shown in Fig. 3.2. See also text.
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and so is obtained from the red field by shifting it by λ/2, i.e.,

εb(z) = εr

(
z − λ

2

)
=

1
2
ε0+

∞∑

m=1

(−1)mεm cos (mϕ) (3.3)

Taking ∆τ = 0, the net field, ε(z, t), is given by

ε(z, t) = εb(z) for 0 < t < τ(t)/2

ε(z, t) = εr(z) for τ(t)/2 < t < τ(t)
(3.4)

see Fig. 3.1 b and Fig. 3.2. While Fig. 3.1 b shows a time dependence of the field with a

constant period τ (which corresponds to guiding at a constant velocity), Fig. 3.2 shows a time

sequence with a varying period τ = τ(t) (one which corresponds to deceleration).

In order to derive the Fourier representation of the net field, we’ll expand eq. (3.4) in

terms of a temporal Fourier series. By invoking the ‘well-known’ result for a temporal square

wave [67], the net field can be written as

ε(z, t) =
1
2

[εb(z) + εr(z)] +
1
2

[εb(z)− εr(z)]×
∞∑

` odd

4
π`

sin (`θ) (3.5)

where θ is the temporal phase such that

θ̇(t) = ω(t) =
2π

τ(t)
(3.6)

with ω(t) the angular frequency. Note that this is a generalization of the familiar case of

constant τ , for which

θ(t) = ωt =
2π

τ
t (3.7)

In either case, the square-wave rises or falls whenever the temporal phase θ is an integer multiple

of π.

Substitution into eq. (3.5) from eqs. (3.1)-(3.3) yields

ε(z, t) =
1
2
ε0+

∞∑

p=2,4,...

(−1)
1
2
pεp cos(pkz)

+
∞∑

n=1,3,...

∞∑

`=1,3,...

4
π`

(−1)
1
2
(n+1)εn sin(nkz) sin(`θ)

=
1
2
ε0+

∞∑

p=2,4,...

(−1)
1
2
pεp cos(pkz)

+
∞∑

n=1,3,...

∞∑

`=1,3,...

2
π`

(−1)
1
2
(n+1)εn(cos φ+,n,` − εn cosφ−,n,`) (3.8)

where we made use of the identity sinα sinβ = 1
2 [cos(α− β)− cos(α + β)], defined the spatial

frequency (wave vector)

k ≡ 2π/λ (3.9)
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Figure 3.2: Below: The time dependence of the field pertaining to the case of deceleration, for which

the period τ is a function of time, τ = τ(t). The case of a constant period is shown in Fig. 3.1. The

timing sequence is suitable for decelerating OH radicals on the (+, 1, 1) wave with φs = 53◦ from an

initial velocity of 370 m/s to a final velocity of 25 m/s. Above: The corresponding time dependence of

(half) the switching period τ(t)/2. The markers designate the time difference between two subsequent

switching times below.

and introduced the phase

φ±,n,` ≡ nkz ∓ `θ(t) (3.10)

Eq. (3.8) reveals that the net field consists of a superposition of stationary and of pair-

wise counter-propagating partial waves. The propagating waves move with well-defined phase

velocities

V±,n,` ≡ −
(
∂φ±,n,`/∂t

)
z(

∂φ±,n,`/∂z
)
t

= ± `

n

θ̇(t)
k

= ± `

n

ω(t)
k

= ± `

n

λ

τ(t)

≡ ± `

n
V(t) (3.11)

from left to right (+ sign) and from right to left (− sign). The second line of eq. (3.11) defines

the fundamental phase velocity, V(t), which is determined solely by the spatial and temporal

periods λ and τ(t).

The path taken here in deriving eq. (3.8) is a shortcut of the route used to derive

the same equation in [2]. Moreover, the time dependence of the temporal period and angular

frequency is here correctly incorporated right from the outset. Note that the spatial Fourier co-

efficients εm along with the square-wave time dependence fully characterize the net field. While

the temporal Fourier coefficients fall only as `−1, the spatial ones fall off roughly exponentially
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with m, i.e.,

εm ∝ exp[−ξm] (3.12)

where ξ is a decay parameter which depends on the geometry of the field array. Hence we can

expect waves with small n and larger `; as we’ll see in Chapter 4, waves with n . 5 and ` . 21

account for all the dynamics so far observed.

3.2 Potential and Force

A molecule with a space-fixed electric dipole moment 〈µ〉 = 〈µ(ε)〉 subject to field (3.8) has a

Stark energy

W (z, t) = −〈µ(ε)〉ε(z, t) (3.13)

In what follows, we’ll consider molecular states whose space-fixed electric dipole moment is

independent of the electric field strength; this is a good approximation when the field-molecule

interaction is governed by the first-order Stark effect. Molecular states whose space-fixed electric

dipole moment 〈µ〉 is parallel (〈µ〉 > 0) or antiparallel (〈µ〉 < 0) to the electric field strength

are referred to as high- or low-field seeking states, respectively. As mentioned before, the

eigenenergy of high-field seekers decreases with increasing field strength, whereas it increases

for the low-field seekers. As a result, in an inhomogeneous electric field, such as ε(z, t), high-field

seekers seek regions of maximum, and low-field seekers seek regions of minimum field strength

where their eigenenergy is minimal. In the net field (3.8), the Stark energy becomes

W (z, t) =
1
2
W0+

∞∑
p even

(−1)
1
2
pWp cos(pkz)

+
∞∑

n odd

∞∑

` odd

2
π`

(−1)
1
2
(n+1)Wn(cosφ+,n,` − cosφ−,n,`) (3.14)

with

Wi = −〈µ〉εi i = 1, 2, 3, ... (3.15)

We note that in the case of a non-linear Stark effect [68], eq. (3.14) can still be used to

represent the Stark energy; the Fourier coefficients of eq. (3.14) will, however, no longer be

linear in field strength. If the eigenenergy Fourier coefficients, eq. (3.15), are available as the

primary parameters, the nature of the Stark effect doesn’t need to be considered explicitly [69].

Since the Stark energy plays the role of a potential for the motion of the molecules, the

force, F (z, t), that the field exerts on a molecule of mass M is given by

F (z, t) = −dW (z, t)
dz

=
∑

p even

MAp sin(pkz)

+
∑

n odd

∑

` odd

MAn,`(sinφ+,n,` − sinφ−,n,`) (3.16)
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where

Ap ≡ (−1)
1
2
p pk

M
Wp

An,` ≡ (−1)
1
2
(n+1) 2nk

π`M
Wn (3.17)

Thus we see that a molecule subjected to force (3.16) is acted upon by an infinite

multitude of stationary as well as propagating and counter-propagating waves. However, as

we’ll see in Paragraph 3.3, only a single wave dominates the molecule-field interaction. Which

wave it is, is determined by the difference between the wave’s phase velocity and the velocity

of the molecule: only a wave whose initial phase velocity comes close to the initial velocity of

the molecule can become dominant. Since we have the velocities of the waves experimentally

under control, we can choose which wave we would like to interact with which molecule(s). In

order to quantify this statement, we must do the dynamics.

3.3 Dynamics of the Interaction of Molecules with a Single

Wave

In this Paragraph we’ll examine the dynamics of the interaction of a bunch of molecules with a

single wave. After developing a formalism for describing such an interaction and discussing its

dynamics, we’ll be able to show why, to an excellent approximation, the effect of all the other

waves can be neglected. We’ll also tackle the effects due to interfering waves which interact

jointly with a bunch of molecules.

3.3.1 Force Exerted by an Arbitrary Wave

As we can glean from eqs. (3.8), (3.14), or (3.16), an arbitrary propagating wave can be labelled

by a pair of odd integers, n and `, and by its propagation direction (+ for left to right or − for

right to left), i.e., by (±, n, `). Since the molecules move from left to right by convention, in

what follows we’ll consider waves moving from left to right. Thus such an otherwise arbitrary

wave travels from left to right with a phase velocity

Vn,` ≡ V+,n,` =
`

n

θ̇

k
(3.18)

cf. eq. (3.11), and exerts a force on a molecule given by

Fn,`(z, t) = MAn,` sinφn,` (3.19)

with the phase

φn,` ≡ φ+,n,` = nkz − `θ(t) (3.20)
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Figure 3.3: A synchronous and a non-synchronous molecule subjected to the field ε(z, t) of a (n, `)

wave moving at a phase velocity Vn,` (all motion is from left to right). The change of the velocity, vs,

of a synchronous molecule is such that its phase φs with respect to the traveling field remains constant.

This is the case when vs =Vn,`. The velocity, v, of a non-synchronous molecule and its phase, φn,`,

both change with time. Also shown are the spatial coordinates of the synchronous and non-synchronous

molecule, zs and z, respectively.

The corresponding acceleration/deceleration then becomes

an,` ≡ z̈n,` =
Fn,`(z, t)

M
= An,` sinφn,` (3.21)

3.3.2 Synchronous Molecule and Its Velocity

A key concept in tackling the molecule-wave interaction is that of a synchronous molecule. This

is defined as the molecule which maintains a constant (synchronous) phase

φs ≡ (φn,`)s = nkzs − `θ(t) = const. (3.22)

with respect to a given wave (n, `) throughout the acceleration/deceleration process - no matter

what, see Figure 3.3.

It should be noted that the definition of the synchronous phase given here is slightly

different from the definition that has been used in earlier descriptions of phase-stability in a

Stark decelerator [49]-[51],[53]. In these earlier studies the synchronous phase was defined in

terms of the position of the synchronous molecule relative to the electrodes, and this position was

required to be the same every time that the electric fields were switched from one configuration

to the other. Although this definition takes the full spatial dependence of the Stark interaction

into account, it only specifies the synchronous phase at the moment when the fields are switched.

In the case when the Stark interaction is governed by a single wave (n, `), both definitions are

equivalent.
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From eq. (3.19) it immediately follows that the synchronous molecule is acted upon by

a constant force

(Fn,`)s = MAn,` sinφs (3.23)

and thus has a constant acceleration/deceleration

(an,`)s = An,` sinφs ≡ as (3.24)

From eq. (3.24) we see that the acceleration/deceleration rate can be controlled by tuning the

synchronous phase. As follows from eq. (3.22), at t = 0, when the fields are switched for the

first time, the synchronous phase is simply

φs(zs, t = 0) = nkzs (3.25)

Therefore, the synchronous phase can be tuned by launching the switching sequence (or burst)

when the synchronous molecule has the desirable longitudinal coordinate zs. The subsequent

switching times between the two field configurations can always be chosen such that the syn-

chronous molecule will keep the same phase.

With a tunable acceleration/deceleration, the initial velocity of the synchronous molecule

can be increased/decreased to any value

vs(t) = vs(t = 0) + ast (3.26)

3.3.3 Phase Velocity, Temporal Phase, and Switching Sequence

In order to keep the phase of the synchronous molecule constant during acceleration/deceleration,

the phase velocity of the wave that interacts with the molecule needs to be varied. This is done

by applying a variable switching sequence to the field array as the molecule progresses through

it. In other words, the temporal frequency or period of the applied field is made time-dependent,

ω = ω(t) or τ = τ(t). As a result, the phase velocity becomes also time dependent, cf. eq.

(3.11). In this paragraph we’ll show that the phase velocity of the wave is always equal to the

synchronous velocity of the molecule, as one would expect. Furthermore, we’ll evaluate the

temporal phase and hence the timing sequence needed to keep a molecule synchronous.

From the definition of the synchronous phase, eq. (3.22), we obtain

φ̇s = 0 = nkżs − `θ̇ (3.27)

from which it follows that

żs ≡ vs =
`

n

θ̇

k
(3.28)
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By comparing this result with eq. (3.18), we see that, indeed, the phase velocity is equal to the

synchronous velocity

vs = Vn,` (3.29)

In what follows we’ll use the following notation for the initial phase and synchronous velocities

vs(0) = Vn,`(0) =
`

n

ω(t = 0)
k

=
`

n

λ

τ(t = 0)
≡ `

n
V0 (3.30)

In order to derive an expression for the temporal phase consistent with the condition of

a constant synchronous phase, we invoke eq. (3.22)

θ(t) =
nkzs(t)

`
− φs

`
(3.31)

and substitute for zs(t) from the first integral of eq. (3.26),

zs(t) =
1
2
ast

2 + vs(0)t + z0 =
1
2
ast

2 +
`

n
V0t +

φs

nk
(3.32)

where the initial position, z0, was obtained from eq. (3.25). This yields a temporal phase

θ(t) =
nkzs(t)

`
− φs

`
=

1
2

n

`
kast

2 + kV0t (3.33)

which pertains to a square wave that falls/rises only when the following periodic condition is

fulfilled:

θ(t) =
1
2

n

`
kast

2 + kV0t = qπ q = 0, 1, 2, ... (3.34)

Eq. (3.34) defines exactly that switching sequence which is required in order to keep the phase of

the synchronous molecule constant and hence for achieving a constant acceleration/deceleration.

The corresponding switching times are given by solving eq. (3.34) for t(q), with the result

t(q) =
`

n

V0

as

[(
2πqnas

`kV2
0

+ 1
)1/2

− 1

]
(3.35)

which is identical with a result obtained earlier [70]. Figure 3.2 shows a switching sequence

generated by eq. (3.34), suitable for decelerating OH radicals.

3.3.4 Equation of Motion

The equation of motion of a non-synchronous molecule subjected to wave (n, `) is

..
z=

Fn,`

M
= An,` sinφn,` (3.36)

where we made use of equation (3.19). For the synchronous molecule we have

..
zs=

Fn,`

M
= An,` sinφs (3.37)
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A combination of eqs. (3.36) and (3.37) yields

..
z − ..

zs= An,`(sinφn,` − sinφs) (3.38)

The left-hand side of eq. (3.38) can be recast in terms of the non-synchronous and synchronous

phase. We have, with the help of eq. (3.20),

φn,`(t)− φs(t) ≡ ∆φn,`(t)

= nkz(t)− `θ(t)− [nkzs(t)− `θ(t)]

= nk[z(t)− zs(t)] ≡ nk∆z(t) (3.39)

where ∆z ≡ z − zs is the longitudinal distance between the non-synchronous and synchronous

molecule, see also Fig. 3.3. Eq. (3.39) implies the following equations for the time derivatives:

φ̇n,`(t)−
.
φs (t) ≡ ∆φ̇n,`(t) = nk(

.
z − .

zs) ≡ nk∆
.
z (3.40)

and

φ̈n,`(t)−
..
φs (t) ≡ ∆φ̈n,`(t) = nk(

..
z − ..

zs) ≡ nk∆
..
z (3.41)

However,

∆φ̇n,`(t) = φ̇n,`(t) (3.42)

and

∆φ̈n,`(t) = φ̈n,`(t) (3.43)

since, by definition,
.
φs (t) =

..
φs (t) = 0.

Substituting eqs. (3.41) and (3.43) into eq. (3.38) finally yields

φ̈n,` = αn,`(sinφn,` − sinφs) (3.44)

with

αn,` ≡ nkAn,` = (−1)
1
2
(n+1) 2n2k2

π`M
Wn (3.45)

3.3.5 Solving the Equation of Motion

Relating the motion of all molecules to a molecule which maintains a constant (synchronous)

phase with respect to a given wave not only greatly simplifies the equation of motion but reduces

it to a form which is isomorphic with the equation of motion of a biased pendulum, see Figure

3.4. Since the biased pendulum problem can be well understood - both mathematically and

intuitively - it offers precious lessons about the Stark accelerator/decelerator dynamics [2].
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Figure 3.4: Realization of a plane biased pendulum: a bob of mass m is fixed to a rigid suspension of

length r which is attached to an axle of diameter R; wound around the axle is a string that carries a bias

of mass M. A plane biased pendulum is a one-dimensional system, whose only coordinate is the angle

φ between the vertical axis z and the bob suspension r. The stable and unstable equilibrium points are

located symmetrically with respect to a plane perpendicular to the direction of the z axis at angles φs

and π − φs, respectively. The stable-equilibrium angle φs of the biased pendulum corresponds to the

synchronous phase of the Stark accelerator/decelerator.

Both the biased-pendulum problem and the Stark accelerator/decelerator have the fol-

lowing Lagrangian

L(φ, φ̇) =
1
2
ηφ̇

2 − ηαn,`(cosφ + φ sinφs) (3.46)

where η and αn,` are constants different for the two problems. The application of Lagrange’s

equation
∂L
∂φ

=
d

dt

∂L
∂φ̇

(3.47)

immediately yields the correct equation of motion, namely eq. (3.44).

The first term of the Lagrangian (3.46) is the kinetic energy, the second term is the

potential,

V (φ) = ηαn,`(cosφ + φ sinφs) = (−1)
1
2
(n+1) 2Wn

π`
(cosφ + φ sinφs)

= (−1)
1
2
(n+1) 2Wn

π`
cosφ + (−1)

1
2
(n+1) 2Wn

π`
φ sinφs ≡ VP (φ) + VB(φ) (3.48)

In writing down the potential we split it into the pendulum part, VP (φ), and the bias part,

VB(φ). These are plotted for four different cases (αn,` positive/negative, acceleration/deceleration)

in Figure 3.5. The figure provides a valuable insight into the dynamics of the studied system(s).

Like a simple pendulum, a biased pendulum has two equilibrium points, a stable and an un-

stable one, the latter called here a tipping point. These are located, symmetrically, at φ = φs
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Figure 3.5: The potential V (φ) of a biased pendulum or, interchangeably, of a Stark accelera-

tor/decelerator (red curve) along with the pure pendulum potential VP (φ) (blue curve) and the potential

of the bias VB(φ) (black curve). Also shown are the minimum (stable) and maximum (unstable) equilib-

rium points. One can see that the unstable equilibrium point coincides with the outermost turning point,

φout. Angles in excess of φout result in a nonuniform accelerating rotation of the pendulum about the

axle, propelled by the falling bias. On the other hand, the inner turning point, φin, cannot be exceeded,

since the potential at φ < φin is repulsive. The cases of acceleration and deceleration for αn,` < 0 and

αn,` > 0 are shown in panels a-d, as labelled. The potential is expressed in terms of its amplitude 2Wn

π` .

and φ = π − φs and correspond to the positions of the minimum and maximum (modulo 2π)

of the potential (3.48), as revealed by taking the first and second derivatives of the potential

with respect to φ. The unstable equilibrium point coincides with the outermost turning point,

φout, for a motion under the potential (3.48). Angles in excess of φout result in a nonuniform

accelerating rotation of the pendulum about its axle, propelled by the falling bias. For the

accelerator/decelerator this means that non-synchronous molecules whose phase would exceed

the tipping point will fall out of the potential well due to V (φ) and thus be lost. Exceeding the

tipping point amounts to disengaging from the acceleration/deceleration process. On the other

hand, the inner turning point, φin, cannot be exceeded, since the potential at φ < φin is repul-

sive. The phase of a non-synchronous molecule that is confined by the potential periodically

oscillates about the synchronous phase, whose value is set by the position of the potential’s

minimum. We also note that for higher acceleration/deceleration rates, the potential minimum

47



(b)  n, < 0

Acceleration

eα

 

-6

-4

-2

0

2

4

 
  s =

-170o

-150o

-120o

-90o

(c)  n, > 0

Deceleration

-180o

 s=

-10o

-30o

-60o
-90o

(b)  n, < 0

Acceleration

0o

-8

-6

-4

-2

0

2

4

6

s=

10o

30o

60o
90o

0o

(a)  n, < 0

Deceleration

φ

eα

φ

eα

V
( 

 )
/(

2
W

 /
π

  
)

φ
n

e φ

α e (d)  n, > 0

Acceleration
eα

s =

 170o

 150o

120o

90o

180oφ

φ
−2π

φ

6

−π π 2π0 −2π −π π 2π0

 
 

V
( 

 )
/(

2
W

 /
π

  
)

φ
n

e

Figure 3.6: Biased pendulum or, interchangeably, Stark accelerator/decelerator potential V (φ) for a

range of values of the stable equilibrium point or, interchangeably, of the synchronous phase, φs. For

φs = ±π/2, the stable and unstable equilibrium points coincide and the potential cannot support any

bound states. The potential is expressed in terms of its amplitude 2Wn

π` .

shifts correspondingly and the well becomes shallower, see Figure 3.6. This leads to a reduction

and shifting of areas where stable oscillations of the non-synchronous phase about the syn-

chronous one can take place, i.e., the areas of the so called phase stability. In what follows we’ll

evaluate the phase-stable areas of the phase space exactly.

Multiplying the equation of motion (3.44) - where we dropped the n, ` subscripts from

the phase for notational simplicity - by φ̇ and integrating once over time
∫

φ̈φ̇dt = αn,`

∫
sinφφ̇dt− αn,`

∫
sinφsφ̇dt (3.49)

yields

φ̇
2

= −2αn,`(cosφ + φ sinφs) + β (3.50)

or

φ̇ = ±[−2αn,`(cosφ + φ sinφs) + β]1/2 (3.51)

with β an integration constant. Eq. (3.51) represents the trajectory of a non-synchronous

molecule through phase space (φ, φ̇).
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Figure 3.7: Separatrices for different values of the synchronous phase, φs. Contours demarcate domains

in phase space (φn,`,
.

φn,`) where stable oscillations take place. Note that
.

φn,` /(2αn,`)1/2 plays the role

of a (dimensionless) momentum and the angle φn,` of its conjugate coordinate. Depending on the sign

of αn,` and on the sign of as (acceleration or deceleration), four cases are distinguished and shown in

panels (a)-(d).

For a bound motion, β is determined by the condition φ̇ = 0, which defines the value

φout of the non-synchronous phase at the outer turning point, see Figs. 3.5 and 3.6. Thus

β = 2αn,`(cosφout + φout sinφs) (3.52)

A special case occurs when the turning point reaches its maximum, tipping value. This

determines the separatrix, which separates the bound and unbound motion in the phase space.

Along the separatrix, φ̇ becomes zero at the nearest local extremum of the potential. We

distinguish four cases, corresponding to the four different types of potentials shown in Figs. 3.5

and 3.6.

Case 1: αn,` < 0, 0 ≤ φs ≤ π
2 and −π ≤ φ ≤ π, pertaining to deceleration.

Along the separatrix, φ̇ becomes zero at φout = π− φs, see also Fig. 3.5 a. Using eq. (3.52) we

obtain for the corresponding β

β = −2αn,`[cosφs − (π − φs) sin φs] (3.53)
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Inserting this into eq. (3.51) gives the expression for the separatrix

φ̇ = ±[−2αn,`(cosφ + cosφs + (φ− π + φs) sin φs)]
1/2 (3.54)

which is plotted for various values of φs in Figure 3.7 a. For the other cases we can follow

exactly the same procedure.

Case 2: αn,` < 0, −π
2 ≤ φs ≤ 0 and −π ≤ φ ≤ π, pertaining to acceleration.

Along the separatrix, φ̇ becomes zero at φout = −π − φs; see also Fig. 3.5 b. Here

β = −2αn,`[cosφs + (π + φs) sinφs] (3.55)

and the separatrix is given by

φ̇ = ±[−2αn,`(cosφ + cosφs + (φ + π + φs) sin φs)]
1/2 (3.56)

which is plotted for various values of φs in Fig. 3.7 b.

Case 3: αn,` > 0, −π ≤ φs ≤ −π
2 and −2π ≤ φ ≤ 0, pertaining to deceleration.

Along the separatrix, φ̇ becomes zero at φout = −π − φs; see also Fig. 3.5 c. Here

β = 2αn,`[− cosφs − (π + φs) sinφs] (3.57)

and so the separatrix is given by

φ̇ = ±[2αn,`(− cosφ− cosφs − (φ + π + φs) sin φs)]
1/2 (3.58)

which is plotted for various values of φs in Fig. 3.7 c.

Case 4: αn,` > 0, π
2 ≤ φs ≤ π and 0 ≤ φ ≤ 2π, pertaining to acceleration.

Along the separatrix, φ̇ becomes zero at φout = π − φs; see also Fig. 3.5 d. Here

β = 2αn,`[− cosφs + (π − φs) sinφs] (3.59)

and the separatrix is given by

φ̇ = ±[2αn,`(− cosφ− cosφs + (π − φ− φs) sin φs)]
1/2 (3.60)

which is plotted for various values of φs in Fig. 3.7 d.

For all other combinations of αn,` and φs there is no phase stability, as also illustrated

by Fig. 3.6. We note that case 3 and 4 differ from case 1 and 2 just by a shift over π.

3.3.6 Small-angle Dynamics

Eq. (3.44) can be solved analytically for small phase oscillations, i.e., for ∆φ ¿ 1. In that case

sinφ = sin (∆φ + φs) = sinφs cos∆φ + cosφs sin∆φ ' sinφs + ∆φ cosφs (3.61)
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and so eq. (3.44) becomes

∆φ̈ ' αn,`∆φ cosφs (3.62)

which is recognized as the harmonic oscillator equation for αn,` < 0 and −π/2 ≤ φs ≤ π/2 or

for αn,` > 0 and π/2 ≤ φs ≤ 3π/2. Other combinations of αn,` and φs lead to non-oscillatory,

exponentially diverging solutions of eq. (3.62), which preclude phase stability.

The harmonic solution of eq. (3.62) is

∆φ ' ∆φ0 cos(Ωt + δ0) (3.63)

with

Ω2 ≡ −αn,` cosφs ≡ Ω2
n,` ≥ 0 (3.64)

the square of the angular frequency of the harmonic phase oscillations, ∆φ0 the initial phase

difference, and δ0 the initial temporal phase. The harmonic oscillation frequency is given by

Ω
2π

=
(

(−1)
1
2
(n−1) 2n2Wn

π`Mλ2 cosφs

)1/2

(3.65)

where we made use of eqs. (3.45) and (3.64). This differs for n > 1 from the result obtained

previously [71].

Thus we see that for small relative phase angles ∆φ, the non-synchronous molecule

oscillates harmonically about the synchronous one with a frequency Ω. As ∆φ increases, the

anharmonic terms in the sine expansion become more important and the small-angle approx-

imation becomes invalid. The onset of the anharmonic terms brings about more complicated,

lower-frequency oscillations. At the separatrix, the oscillation frequency drops to zero and

beyond the separatrix the motion becomes unbound with no periodic phase oscillations.

At this juncture, we’ll make a general point which we’ll use frequently later on. We’ll

refer to the oscillations of the non-synchronous phase about the synchronous one as slow oscil-

lations. This reflects the fact that Ω is typically much smaller than ω(t). In contradistinction,

we’ll refer to the oscillations at frequency ω(t) as fast oscillations.

We note that the period Tn,` of the (slow) oscillations is generally given by

Tn,` = 2

φout∫

φin

dt

dφn,`

dφn,` (3.66)

and can be evaluated numerically from the first integral of the equation of motion (3.51) and

from the transcendental equations for the turning points φin ≡ φn,`
in and φout ≡ φn,`

out. For

harmonic oscillations,

Tn,` =
2π

Ωn,`
(3.67)
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Figure 3.8: Phase-space distribution of a molecular beam pulse as it enters the Stark accelera-

tor/decelerator. The best overlap between a phase stable area (black ‘fishes’) and the molecular beam

pulse (swarm of dots) is obtained when the synchronous molecule matches the mean position and velocity

of the beam pulse.

3.3.7 Phase Stability

The notion of phase stability pertains to periodic solutions of the equation of motion (3.44).

Physically, these correspond to stable oscillations of the non-synchronous molecule about the

synchronous one. The solutions of the equation of motion, given by eqs. (3.54), (3.56 ), (3.58),

and (3.60), determine a boundary for the momentum of a non-synchronous molecule, φ̇n,`, as

a function of its phase, φn,`, that pertains to phase-stable motion. That is to say, together,

(φn,`, φ̇n,`) delimit an area of phase stability in the phase space for molecules interacting with

a given wave (n, `).

Phase stability is a key property of a Stark accelerator/decelerator, which enables han-

dling other molecules than just the synchronous one. This is what makes the device a practical

one, since bunches of molecules, with a distribution of positions and velocities, can then be ac-

celerated/decelerated. Without phase stability, only a single molecule could be handled, namely

the synchronous one [47, 48].

The explicit evaluation of the phase stable areas, eqs. (3.54), (3.56), (3.58), and (3.60),

clarifies several issues:

(a) The choice of the synchronous molecule. The distribution of positions and velocities of

molecules in a bunch entering the decelerator (typically Gaussian, for a pulsed supersonic beam,
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ref. [72]) occupies a certain region of phase space. In order for the accelerator/decelerator to

act on most of the molecules in the bunch, an overlap between the phase space occupied by the

bunch and the separatrices for phase-stable acceleration/deceleration needs to be sought. As

the calculations of the separatrices attest, the synchronous molecule is always at the center of

the phase-stable area, cf. Fig. 3.7. Hence a maximum phase space overlap is achieved when the

position and velocity of the synchronous molecule coincides with the most probable position

and velocity of the molecular-beam pulse, see Figure 3.8. Thus in an acceleration/deceleration

experiment, the synchronous molecule is generally defined by the most probable position and

velocity of the molecular-beam pulse.

(b) The size of the phase-stable areas depends on φs which, in turn, determines the accel-

eration/deceleration rate. At higher acceleration/deceleration rates, only smaller bunches of

molecules can be handled. The largest bunches of molecules can be handled at zero accelera-

tion/deceleration, when a bunch is just transported (or guided) through the field array.

(c) The dominant wave. Since ε1 is the largest spatial Fourier coefficient, cf. eq. (3.12), we see

that α11 supports the largest phase-stable area and affords the highest acceleration/deceleration

rate. The corresponding wave, (1, 1), referred to as the first-harmonic wave, gives the best yield

according to this 1-D treatment. Higher overtones are normally not used in experiments, but

the effects of many of these have been observed [53]. In Chapter 4 we’ll examine in more detail

the relative sizes of the phase-stable areas due to different overtones.

3.4 Why Does a Single-wave Do Nearly All the Job?

So far we limited our considerations to the single-wave dynamics, i.e. to the equation of motion

and its solutions that pertain to a single wave (n, `) interacting with a bunch of molecules.

Here we’ll show that it is indeed just a single wave that gives a ride to the molecules, with the

infinitely many other waves, eq. (3.16), playing no role or a marginal role (see Paragraph 3.5

on interferences).

In order to see why this is the case, we’ll look at the effect an arbitrary perturbing wave

(r, s) has on the phase-stable motion of molecules due to a (n, `)-wave, whose dynamics we

outlined in Paragraph 3.3.

Before delving into that, however, let’s consider first the relationship between the ve-

locities of the non-synchronous and synchronous molecules for an arbitrary single wave. Since

the averages of the non-synchronous phase and its time derivatives over the oscillation period

Tn,` are identically equal to zero

〈φ̇n,`〉 ≡
1
Tn,`

∫
φ̇n,`dt = 0 (3.68)
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and since, from eq. (3.40),

∆ż = ż − żs = v− vs = nk∆φ̇n,` = nkφ̇n,` (3.69)

we see that

〈v− vs〉 =
1
Tn,`

∫
(v− vs)dt =

1
Tn,`

∫
vdt− 1

Tn,`

∫
vsdt = 〈v〉 − 〈vs〉 = nk〈φ̇n,`〉 = 0 (3.70)

i.e., the non-synchronous velocity averaged over a phase oscillation is equal to the average

synchronous velocity. This in turn shows that the synchronous velocity (pertaining to a given

wave) acts as a pilot for the non-synchronous velocity (pertaining to that same wave) as long as

phase stability is maintained. Therefore, molecules which oscillate about a molecule synchronous

with an arbitrary wave will get a ride from that wave! In what follows we’ll call a wave that

gives a ride to a given bunch of molecules a resonant wave.

Let’s now approach the problem from the other side and look at the effect of a per-

turbing wave on the motion driven by a resonant wave. We’ll look at the case of zero accel-

eration/deceleration, i.e., the case when the switching frequency ω is constant and the Stark

accelerator/decelerator serves as a guide. This will make our calculations simpler, although

the same arguments apply to the general case of nonzero acceleration/deceleration. Also, we’ll

make our notation more accurate and, invoking eqs. (3.32) and (3.39), write the molecule’s

coordinate due to the ride from the (n, `)-wave as

zn,`(t) =
φn,`(t)

nk
+

`

n
V0t (3.71)

For small oscillations, the unperturbed motion of a molecule riding the (n, `)-wave is given by

zn,`(t) =
∆φ0

nk
cos(Ωn,`t + δ0) +

`

n
V0t +

φs

nk
(3.72)

as follows from eqs. (3.39), (3.63) and (3.71). Its velocity is readily obtained by taking the time

derivative of eq. (3.72) with the result

vn,`(t) =
`

n
V0 − ∆φ0Ωn,`

nk
sin(Ωn,`t + δ0) (3.73)

The harmonic slow-oscillation frequency Ωn,` is given by eq. (3.64).

We’ll consider now the perturbing effect of the (r, s)-wave on the motion of a molecule

which is riding the (n, `)-wave. The (r, s)-wave perturbs the ride of the molecule by acting on

its coordinate zn,`(t) as determined by the (n, `)-wave. As a result, the perturbing (r, s)-wave

acts as a time-dependent perturbing force

F r,s
n,`(t) = MAr,s sin(rkzn,`(t)− sωt) (3.74)
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imparting an acceleration to the molecule that is given by

z̈r,s
n,` =

F r,s
n,`(t)

M
= Ar,s sin(rkzn,`(t)− sωt)

= Ar,s sin
[ r

n
φn,` − ωr,s

n,`t
]

(3.75)

where we made use of eq. (3.71) and introduced the frequency

ωr,s
n,` ≡

ns− `r

n
ω ≡ 2π

τ r,s
n,`

(3.76)

which is a fast-oscillation frequency, since it is on the order of ω. Clearly, the time average of

the perturbing force F r,s
n,` over the perturbation period τ r,s

n,` vanishes

〈F r,s
n,`〉 ≡

1
τ r,s

n,`

∫
F r,s

n,`dt = 0 (3.77)

as follows by substitution of eq. (3.75) into eq. (3.77) and integration, under the assumption

that the slowly oscillating phase φn,` remains constant over the period τ r,s
n,`. Hence the per-

turbing force is seen to average out fast and so the perturbing wave has no net effect on the

phase-stable motion of the molecule.

The velocity, vr,s
n,`, and the displacement, zr,s

n,`, imparted by the perturbing wave can be

obtained by integrating eq. (3.75). Integrating once (under the assumption of φn,` constant)

yields the instantaneous velocity due to the perturbing wave

vr,s
n,`(t) =

1
ωr,s

n,`

Ar,s cos
[ r

n
φn,` − ωr,s

n,`t
]

(3.78)

Integrating once more gives the displacement caused by the perturbing force,

zr,s
n,`(t) = − 1(

ωr,s
n,`

)2 Ar,s sin
[ r

n
φn,` − ωr,s

n,`t
]

(3.79)

Thus the effect of the perturbing wave on the velocity and on the displacement of the resonant

wave is suppressed by ωr,s
n,` and

(
ωr,s

n,`

)2
, respectively. We see that the net effect of the perturbing

wave vanishes because the perturbing wave fails to displace the molecule. This is indeed the

reason why, to an excellent approximation, we are allowed to single out the resonant wave and

handle it separately from the perturbing one(s). It is also the reason why a perturbing wave

has no influence on phase stability.

The motion of a molecule resonant with the (n, `)-wave and perturbed by the (r, s)-wave

can now easily be evaluated (for the case of small oscillations) by simply adding eqs. (3.72)

and (3.79) or (3.73) and (3.78), respectively. This analytic result can be compared with the

result of a numerical integration of the differential equation for a non-synchronous molecule
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Figure 3.9: Dynamics of a non-synchronous molecule riding the (3, 5)-wave and perturbed by the (1, 1)-

wave. The dynamics is determined by numerically integrating the differential equation of the molecule

interacting with only the (3, 5)-wave (red lines) and with both waves (black lines). The initial conditions

are chosen such that the (3, 5)-wave is resonant and the (1, 1)-wave perturbing. Both the longitudinal

velocity, v(t), panel (a), and the relative longitudinal position, ∆z(t) = z(t)− `
nV0t− φs

nk , with respect to

the synchronous molecule, panel (b), exhibit slow oscillations (red lines) superposed by fast oscillations

(black lines). While the influence of the non-resonant wave on the velocity is significant, its effect on

the relative position ∆z(t) is strongly suppressed. The timescale is given in terms of the slow oscillation

period Tn,`.

interacting with the (n, `)- and the (r, s)-wave. For example, for the (1, 1)- and the (3, 5)-wave

the equation is

z̈ = A11 sin(kz − ωt) + A35 sin(3kz − 5ωt) (3.80)

and Figure 3.9 shows the result of the corresponding numerical integration. The initial condi-

tions are chosen such that the molecule interacts resonantly with the (3, 5)-wave, which means

that the (1, 1)-wave acts as a non-resonant, perturbing wave. Since the (1, 1)-wave dominates

the right-moving waves and since its phase velocity is close to the (3, 5)-wave, the perturbing

effect of the (1, 1)-wave is much larger than the effect of all the other waves in the Fourier

expansion, eq. (3.16). And yet, this perturbing effect is seen to be strongly suppressed because

of the fast oscillations with respect to the (3, 5)-wave. While the perturbation of the velocity
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is still noticeable on a short time scale, see Fig. 3.9 a, the perturbation of the coordinate

amounts to just a ripple, see Fig. 3.9 b. We note that the frequency and amplitude of the fast

oscillations are correctly predicted by eqs. (3.78) and (3.79), which reconfirms the validity of

the assumptions used in our derivation.

In the case of acceleration/deceleration, the switching frequency is not constant, but

increases/decreases in time throughout the acceleration/deceleration process. Nevertheless,

the treatment of the perturbations for the case of guiding, as given above in this paragraph,

remains also in place for the case of acceleration/deceleration, since ω(t) essentially doesn’t

change during a fast-oscillation period (typically by less than 1%) and can be treated as a

constant.

The above treatment only breaks down in the limit ω(t) = kV (t) → 0,where the used

assumption ω(t) ¿ Ω doesn’t hold anymore. In reality this situation doesn’t occur, since even

if the molecules are decelerated to velocities conducive for trapping, see ref. [19, 20], then

ω(t) still considerably exceeds Ω and the treatment remains in place.

3.4.1 Two (or More) Waves Travelling with the Same Phase Velocity

When the resonant and perturbing waves travel at the same phase velocity (i.e., for `/n =

s/r = κ`/κn, with κ an odd integer, the perturbing force, eq. (3.75 ), does not average out.

In this case one cannot speak of resonant and nonresonant waves, because all the waves which

travel at this same velocity are equally resonant and will jointly create phase stability. Since,

obviously, any (n, `) wave has such fellow-traveller waves, (κn, κ`), this is actually a usual

situation. Figure 3.10 a shows typical relative sizes of two waves with successive n, travelling

at the same velocity. We see that the resulting shape of the well is dominated by one of the two

waves, namely the one with the smaller n, cf. eq. (3.12). Hence in order to draw conclusions

about phase stability (which is determined by the shape and depth of the well), we can rely

solely on the properties of the dominant wave.

However, when calculating switching sequences accurately, the influence of the non-

dominant wave(s) cannot be fully dismissed, because of the effect it has on the deceleration

as (typically, a deviation of a few percent with respect to a single-wave treatment can accu-

mulate over 100 acceleration/deceleration stages). Thus when evaluating the acceleration on a

dominant (n, `) wave, one should replace eq. (3.24) with the sum

as =
∞∑

κ odd

Aκn,κ` sin(κφs) (3.81)

Note that this sum converges very fast, cf. eqs. (3.12), (3.15) and (3.17). Fig. 3.10 b shows, for

the case of the (1, 1) dominant wave, the modification of the force due to the presence of the
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Figure 3.10: (a) Relative magnitude of the electric fields due to the (1, 1)-wave and the (3, 3)-wave

(black dotted curves), which are travelling at the same velocity. These relative magnitudes are typical

for two waves with successive n and the same velocity. We see that the net field (red curve) is determined

predominantly by the (1, 1)-wave, i.e., the one with the smaller value of n. The conclusions about phase

stability can be reached by considering solely this wave. (b) Typical relative magnitudes of the force

due to the (1, 1)-, (3, 3)-, and the (5, 5)-wave (black dotted curves), which are all travelling at the same

velocity. Since a small deviation in the force can accumulate when calculating a switching sequence

comprising many stages, one should rely on the net force (red curve) rather than on the dominant term.

resonant non-dominant waves. We note that in order to achieve an accurate correspondence

between as and φs, several terms in eq. (3.81) may have to be taken into account.

3.5 Two-wave Interferences

In Paragraph 3.1 it was shown that the electric field in a Stark decelerator consists of an infinite

multitude of counter-propagating waves. A common feature of waves is that they interfere.

Therefore, we might also expect the occurrence of interference effects in a decelerator.

Consider the differential equation of a molecule interacting with two waves, (n, `) and
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Figure 3.11: Interference dynamics of a non-synchronous molecule interacting with the (1, 1)-wave and

the (1, 3)-wave, that jointly create stability at `+s
n+rV0 =2V0. The dynamics is determined by numerically

integrating the equation of motion for a molecule interacting with the two waves, with initial condition

v(0) ≈ 2V0. Both the longitudinal velocity, v(t), panel (a), and the relative position, ∆z(t) = z(t)−2V0t,

panel (b), exhibit slow oscillations superposed by fast oscillations, where we note the similarity with Fig.

3.9. The two interfering waves (1, 1) and (1, 3) act together as a single wave (2, 4), giving rise to a

corresponding slow oscillation of period T2,4. See text.

(r, s), for the case of guiding

z̈ = An,` sin (nkz − `ωt) + Ar,s sin (rkz − sωt) (3.82)

which means that ω is constant. In the following, we will show that these two waves jointly

give rise to phase stability at `+s
n+rV0. Since `, s, n and r are odd, `+s

n+rV0 will be called an

even-fraction multiple of V0. This in contrast to `
nV0, the velocities at which phase stable areas

due to single waves occur. `
nV0 will be called an odd-fraction multiple of V0.

Figure 3.11 illustrates the interference dynamics of a molecule interacting with the

(1,1)- and the (1,3)-wave which travel at V0 and 3V0 respectively. The dynamicswas obtained

by numerical integration of eq. (3.82), where the initial condition was chosen such that v(0) ≈
`+s
n+rV0 = 2V0. Note the similarity between Fig. 3.9 and Fig. 3.11. Fig. 3.9 pertained to a

non-synchronous molecule interacting resonantly with the (3,5)- and non-resonantly with the

(1,1)-wave. As a result, the molecule performed slow, stable oscillations around 5
3V0 superposed

59



by a fast oscillation due to the perturbing (1,1)-wave. Fig. 3.11 shows very similar dynamics,

but now the slow, stable oscillation is centered around 2V0 = `+s
n+rV0. It seems that the (1,1)-

and the (1,3)-wave individually act as perturbing waves, but together act as a single stabilizing

(2,4)-wave travelling at `+s
n+rV0. In the next paragraph we will show that this is indeed the case.

3.5.1 Derivation

The derivation will consist of four steps.

First, we perform a coordinate transformation

z = Vgt + zg (3.83)

to a frame moving with velocity

Vg =
` + s

n + r
V0 (3.84)

Inserting eq. (3.84) into equation (3.82) yields

z̈g = An,` sin(nkzg + ωgt) + Ar,s sin(rkzg − ωgt) (3.85)

where the two waves are seen to act on the molecule with the same frequency

ωg =
ns− `r

n + r
ω (3.86)

Note that ωg is a fast oscillation.

Second, we integrate eq. (3.85) under the assumption that the spatial phase kzg is constant

relative to the temporal phase ωgt. This is consistent with our goal to find stable, slowly

oscillating solutions. For the constant spatial phase we take the value kzg(t′), acquired at an

arbitrary time t′. Thus we obtain

żg(t) = −An,`

ωg
cos[nkzg(t′) + ωgt] +

Ar,s

ωg
cos[rkzg(t′)− ωgt] + C1 (3.87)

where C1 is an integration constant, which can be evaluated by integrating both sides of eq.

(3.87) over a fast oscillation period, τ g ≡ 2π
ωg

. This yields

¯̇zg(t′) ≡ 1
τ g

t′+τg/2∫

t′−τg/2

żg(t)dt

=
1
τ g

t′+τg/2∫

t′−τg/2

[
−An,`

ωg
cos[nkzg(t′) + ωgt] +

Ar,s

ωg
cos[rkzg(t′)− ωgt] + C1

]
dt

= C1 (3.88)
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Note that eq. (3.87) is only valid for t ≈ t′. Also note that it correctly describes the amplitude

and the frequency of the fast oscillations in Fig. 3.11 a.

With the help of eq. (3.87) we can do a consistency check on our initial assumption

that kzg is constant relative to ωgt. This assumption is equivalent to kżg ¿ ωg, which upon

substitution of equation (3.87) leads to the conditions

k|An,`|
ω2

g

¿ 1 and
k|Ar,s|

ω2
g

¿ 1 (3.89)

Substituting values belonging to experimental conditions reveal that this condition is well sat-

isfied (typically by a factor of 100).

Integrating equation (3.87) and using eq. (3.88) gives

zg(t) = −An,`

ω2
g

sin(nkzg(t′) + ωgt)− Ar,s

ω2
g

sin(rkzg(t′)− ωgt) + ¯̇zg(t′)(t− t′) + C2 (3.90)

where C2 is another integration constant, which can again be solved by integrating both sides

over one period τ g

z̄g(t′) ≡
t′+τg/2∫

t′−τg/2

zg(t)dt

= C2 (3.91)

We note that eq. (3.90) correctly describes the amplitude and the frequency of the fast os-

cillations in Fig. 3.11 b and that it is valid for t ≈ t′. In particular, it is valid for t = t′,

yielding

zg(t′) = −An,`

ω2
g

sin[nkzg(t′) + ωgt
′]− Ar,s

ω2
g

sin[rkzg(t′)− ωgt
′] + z̄g(t′) (3.92)

Since the time t′ was chosen arbitrarily, eq. (3.92) holds at all times, which makes t′ into a

time variable; we’ll denote it by t again (t′ → t).

zg(t) = −An,`

ω2
g

sin[nkzg(t) + ωgt]− Ar,s

ω2
g

sin[rkzg(t)− ωgt] + z̄g(t) (3.93)

Eq. (3.93) shows that at every time t the instantaneous position zg is given by the sum of an

average value and a small correction due to fast oscillating perturbations. As in the single-wave

case, the time dependence of the average value is not described by fast oscillations, but, as we

will see, by slow oscillations. From eqs. (3.89) and (3.93) it follows that

zg(t) ≈ z̄g(t) (3.94)

stating that the perturbations do not displace the molecule.

61



Next we solve equation (3.93) iteratively. Eq. (3.94) assures that already the first

iteration (i.e., zg(t) → z̄g(t) on the right hand side) generates an accurate solution

zg(t) = −An,`

ω2
g

sin(nkz̄g(t) + ωgt)− Ar,s

ω2
g

sin(rkz̄g(t)− ωgt) + z̄g(t) = a + b + z̄g(t) (3.95)

where a and b are shorthands for the first and second term, respectively.

Third, we insert (3.95) into the equation of motion (3.85) and obtain

z̈g = An,` sin
(

nk
(
z̄g − An,`

ω2
g

sin(nkz̄g + ωgt)− Ar,s

ω2
g

sin(rkz̄g − ωgt)
)

+ ωgt

)

+Ar,s sin
(

rk
(
z̄g − An,`

ω2
g

sin(nkz̄g + ωgt)− Ar,s

ω2
g

sin(rkz̄g − ωgt)
)
− ωgt

)
(3.96)

Because of eq. (3.89), the following trigonometric approximations hold

sin[nk(a + b)] ≈ nk(a + b) sin[rk(a + b)] ≈ rk(a + b)

cos[nk(a + b)] ≈ 1 cos[rk(a + b)] ≈ 1 (3.97)

Using the trigonometric identity

sin(α + β) = sin(α) cos(β) + cos(α) sin(β) (3.98)

and the trigonometric approximations of eq. (3.97), eq. (3.96) becomes

z̈g = An,` sin(nkz̄g + ωgt) + Ar,s sin(rkz̄g − ωgt)

−An,` cos(nkz̄g + ωgt)
(

nkAn,`

ω2
g

sin(nkz̄g + ωgt) + nkAr,s

ω2
g

sin(rkz̄g − ωgt)
)

−Ar,s cos(rkz̄g − ωgt)
(

rkAn,`

ω2
g

sin(nkz̄g + ωgt) + rkAr,s

ω2
g

sin(rkz̄g − ωgt)
)

(3.99)

By invoking the identity 2 sinα cosα = sin 2α, we obtain

z̈g = An,` sin
(
nkz̄g + ωgt

)
+ Ar,s sin

(
rkz̄g − ωgt

)

−nkAn,`Ars

ω2
g

cos
(
nkz̄g + ωgt

)
sin

(
rkz̄g − ωgt

)

−rkAn,`Ar,s

ω2
g

cos
(
rkz̄g − ωgt

)
sin

(
nkz̄g + ωgt

)

−nkA2
n,`

2ω2
g

sin
(
2nkz̄g + 2ωgt

)
− rkA2

r,s

2ω2
g

sin
(
2rkz̄g − 2ωgt

)
(3.100)

With the use of eq. (3.98), we finally receive at

z̈g = An,` sin
(
nkz̄g + ωgt

)
+ Ar,s sin

(
rkz̄g − ωgt

)

−(r + n)kAn,`Ar,s

2ω2
g

sin
(
(n + r)kz̄g

)
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−(r − n)kAn,`Ar,s

2ω2
g

sin
(
(n− r)kz̄g + 2ωgt

)

−nkA2
n,`

2ω2
g

sin
(
2nkz̄g + 2ωgt

)
− rkA2

r,s

2ω2
g

sin
(
2rkz̄g − 2ωgt

)
(3.101)

In eq. (3.101) every term on the right hand side oscillates fast except for the third term. Indeed,

this is the term leading to the slow stable oscillating motion. The other terms average out fast

and do not contribute to the displacement of the molecule. To bring equation (3.101) in a more

illuminating form we can integrate both sides of the equation over a fast-oscillation period τ g.

All the fast oscillating terms on the right side will give zero and only the third term, which is

constant with respect to this integration, remains

¯̈zg = −(r + n)kAn,`Ar,s

2ω2
g

sin
(
(n + r)kz̄g

)
= An+`,r+s sin

(
(n + r)kz̄g

)
(3.102)

where

¯̈zg(t) ≡ 1
τ g

t+τg/2∫

t−τg/2

z̈g(t′)dt′ (3.103)

and

An+r,`+s ≡ −(r + n)kAn,`Ar,s

2ω2
g

(3.104)

Since the derivative commutes with the integral, ¯̈zg = ¨̄zg, and we see that eq. (3.102) is a

second order differential equation for z̄g (≈ zg). Eq. (3.102) reveals that a molecule that has

a coordinate zg with respect to a synchronous molecule travelling at a velocity Vg, is subject

to sine shaped restoring force that leads to slow stabilizing oscillations. This comes about in

exactly the same manner as in the case of a single-wave interaction.

Fourth, we realize that the waves (n, `) and (r, s) jointly act as a single wave (n + r, ` + s). As

this wave moves at the phase velocity Vg = `+s
n+r , we can ascribe it a phase

φn+r,`+s ≡ (n + r)kz − (` + s)ωt (3.105)

Plugging eqs. (3.83) and (3.84) into (3.105) then gives

φn+r,`+s = (n + r)kzg ≈ (n + r)kz̄g (3.106)

which implies

φ̈n+r,`+s ≈ (n + r)k ¨̄zg (3.107)

Substitution from eqs. (3.106) and (3.107) into eq. (3.102) yields the final result

φ̈n+r,`+s = (n + r)kAn+r,`+s sinφn+r,`+s = αn+r,`+s sinφn+r,`+s (3.108)
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where we introduced

αn+r,`+s ≡ (r + n)kAn+r,`+s = −(r + n)2k2An,`Ar,s

2ω2
g

(3.109)

Eq. (3.108) is of the same form as eq. (3.44) for a single-wave interaction in the case of guiding

(sinφs = 0). Therefore, all the results (for guiding) obtained from eq. (3.44) are equally valid

for interference dynamics. As an example, we can evaluate the slow-oscillation frequency in the

harmonic limit, giving

Ω = |αn+r,`+s|1/2 =
(r + n)k√

2

( |An,`Ar,s|
ω2

g

)1/2

≡ Ωn+r,`+s (3.110)

cf. eq. (3.64).

The treatment of more interference waves travelling at the same phase velocity is given

in Appendix A.

3.5.2 Accelerating/Decelerating on an Interference Wave

Accelerating/decelerating on an interference wave is somewhat trickier than on a single wave.

The main reason is that the An+r,`+s coefficient, eq. (3.104), which depends on ω, becomes itself

time dependent through the time dependence of ω = ω(t). This needs to be taken into account

when re-deriving expressions for vs(t) and ω(t) from the condition of a constant synchronous

phase with respect to the (n + r, ` + s) wave.

First, we realize that the acceleration imparted to the synchronous molecule by the

interference wave is given by

as(t) = An+r,`+s(t) sin φs = − (n + r)3

2(ns− `r)2ω2(t)
kAn,`Ar,s sinφs ≡

Ad

ω2(t)
(3.111)

where we made use of eqs. (3.24), (3.86), and (3.104) and so is seen to depend on time. This

time dependence does not affect the derivation of the interference dynamics (Paragraph 3.5.1)

since ω(t) doesn’t change appreciably during a fast-oscillation period. Eq. (3.111) can be

integrated to yield the synchronous velocity, which must be equal to the phase velocity:

vs(t) =
` + s

n + r
V0+

t∫

0

as(t′)dt′ =
` + s

n + r
V0+

t∫

0

Ad

ω2(t′)
dt′

= Vn+r,`+s(t) ≡ ` + s

n + r

ω(t)
k

(3.112)

By taking the time derivative of eq. (3.112) it can be recast into a differential equation for ω(t)

ω̇(t) =
n + r

` + s

kAd

ω2(t)
(3.113)
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which can be easily solved by direct integration. With the initial condition ω(0) = kV0 we

obtain

ω(t) =
[
3(n + r)kAd

` + s
t + (kV0)3

]1/3

(3.114)

From eq. (3.114), the temporal phase becomes

θ(t) =

t∫

0

ω(t′)dt′ =
` + s

4(n + r)kAd

[
3(n + r)kAd

` + s
t + (kV0)3

]4/3

− (` + s)(kV0)4

4(n + r)kAd
(3.115)

which generates the switching sequence required for accelerating/decelerating on a interference

wave

θ(t) = qπ q = 0, 1, 2, ... (3.116)

3.5.3 Multiple Interferences

It is straightforward to generalize the treatment of the interference effect to more than two

waves. This can be done by treating the interference wave on the same footing as a single wave

and letting it interfere with another single wave, in exactly the same way as the two single waves

that gave rise to the interference. This results in a tiny, probably experimentally unobservable

effect.

In the next chapter we will compare the analytical results obtained in this chapter with simu-

lations and an experiment.
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Chapter 4

Comparison with Simulations and

Experiments

Abstract

In the previous chapter we described our analytical results about the dynamics of Stark ac-

celeration/deceleration, considering single-wave interaction, perturbations due to non-resonant

waves, two-wave interferences, etc. In this chapter a detailed comparison of the model with

numerical simulations is made, demonstrating that the analytic model accurately describes the

longitudinal physics in a Stark decelerator. Furthermore, an experiment will be described which

showed that an arbitrary wave in the Fourier expansion can be used to perform phase stable

deceleration of OH radicals, in complete agreement with the analytic model.
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4.1 Full Fledged Dynamics

In paragraph 3.3, we discussed the dynamics due to a single resonant wave. In paragraph 3.5,

the dynamics due to two interfering waves was treated, were we showed that together the two

waves can also act as a single resonant wave. However, the exact (longitudinal) force that is

acting on the molecules, eq. (3.16), is due to infinitely many partial waves, out of which all

but one are non-resonant (notwithstanding the discussion of paragraph 3.4.1). In order to fully

assess the role of the resonant wave vis à vis the non-resonant waves, we evaluated numerically

the combined effect due to a large number of waves and compared it with the analytical single-

wave treatment. The single-wave dynamics, the full-fledged dynamics and the correction that

needs to be applied to the single wave dynamics in order to reproduce the full-fledged dynamics

can be best visualized in a phase-space diagram. Such a diagram, or phase portrait, exemplified

in Figure 4.1, shows the average velocities of the molecules as a function of their initial velocity

and initial spatial phase. The link between the average velocity and phase stability is given by

eq. (3.70).

The cases of guiding (no acceleration/deceleration) and acceleration/deceleration due

to a single wave will be described separately in Paragraphs 4.2 and 4.3. Single-wave dynamics

gives rise to features which occur at odd multiples, `/n, of the fundamental velocity V0. In

Paragraph 4.4 we’ll deal with features which occur at even multiples of the fundamental velocity

V0. These features arise from the interference of (typically) two adjacent waves.

Although the molecules move from left to right by convention, we will take all waves

into account in this chapter, also the ones moving from right to left.

4.2 Guiding

The phase portrait shown in Fig. 4.1 was obtained from a numerical integration of the full

equation of motion

z̈(t) =
F (z, t)

M
(4.1)

with F (z, t) given by eq. (3.16) and the temporal phase of the waves given by eq. (3.33), with

sinφs = 0 corresponding to guiding. It was found that increasing the number of waves included

in the computation beyond 80 (n ≤ 5, ` ≤ 25) didn’t lead to any changes of the phase portraits

in the range of the initial velocities and positions shown. Moreover, we found that the phase

portrait of Fig. 4.1 agrees perfectly well with the one obtained from Monte Carlo trajectory

simulations which, in turn, perfectly reproduce experiment [53]. Therefore, for all intends and

purposes, the phase portrait of Fig. 4.1 can be considered to be the exact result, reproducing

correctly the experimental situation. The phase portrait captures all the complexity of the

68



Figure 4.1: Global phase portrait showing the phase stable areas due to the various waves (case of

guiding). The contours pertain to average velocities of OH-molecules plotted as a function of their initial

velocity v and initial spatial phase kz. The contour plot is obtained by numerically integrating the full

equation of motion for 80 waves with a temporal phase corresponding to guiding (sin φs = 0) at V0 = 150

m/s. The phase portrait is in perfect agreement with Monte Carlo trajectory simulations which, in turn,

are in perfect agreement with experiment. See also text.
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dynamics in question and makes it possible to see at a glance the phase-stable areas due to

various waves. We remind ourselves of the fact that while the spatial Fourier components of

F (z, t) decrease exponentially with increasing n, the temporal Fourier components decrease

only as `−1. Therefore, phase-stable areas corresponding to waves with n > 3 can hardly be

discerned but those with ` . 7 can still be easily observed in the phase-space area depicted.

Figure 4.2 shows in panels (a) and (b) detailed views of the phase stable areas due to the

first harmonic wave (+, 1, 1) and due to the (+, 3, 5)-wave (note that α11 < 0 and α3` > 0 for

the example of low-field seeking states considered here). Their main features can be understood

from eqs. (3.54) and (3.58), which for the case of guiding become

φ̇n,` = ±[−2αn`(cosφn,` + 1)]1/2 αn` < 0 (4.2)

and

φ̇n,` = ±[2αn`(− cosφn,` + 1)]1/2 αn` > 0 (4.3)

We realize that, in general, the phase φn,`, eq. (3.20), pertains to a molecular velocity

vn,` =
φ̇n,`

nk
+

`

n
V(t) (4.4)

Combining eq. (4.4) with eqs. (4.2) and (4.3), yields the separatrices for guiding

vn,` = ± [−2αn`(1 + cosφn,`)]1/2

nk
+

`

n
V0 (4.5)

and

vn,` = ± [2αn`(1− cosφn,`)]1/2

nk
+

`

n
V0 (4.6)

The separatrices obtained from eqs. (4.5) and (4.6) are shown in Fig. 4.2 by the white curves.

The equations capture all the qualitative features of the respective phase-stable areas seen

in Figs. 4.1 and 4.2: (1) the phase stable areas occur at velocities `
nV0; (2) the velocity

(i.e., vertical) width of a phase-stable area for a given n is proportional to `−1/2, because

|αn`| ∝ `−1, eq. (3.45); (3) the velocity width of a phase-stable area for a given ` is proportional

to exp(−1
2ξn), cf. eqs. (3.12) and (3.45); (4) when kz varies between −π to π, then the

initial phase φn,`(t = 0) = nkz varies between −nπ to nπ ; as a result, the phase-stable area

corresponding to an (±, n, `) wave consists of n ‘fishes’ when the horizontal axis kz = φn,`(t =

0)/n spans the interval of −π to π; (5) for αn` < 0, the nodes occur at φn,`(t = 0)/n = kz =

±π,±π ∓ 2π
n ,±π ∓ 4π

n , ...; for αn` > 0, the nodes occur at φn,`(t = 0)/n = kz = 0,±2π
n ,±4π

n , ...

A closer inspection of Fig. 4.2 reveals that the agreement between the separatrix ob-

tained from either eqs. (4.5) or (4.6) with the exact phase portrait is not perfect. The agreement

can be improved to the point of perfection by correcting for the effect of the non-resonant waves.
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Figure 4.2: Detailed view of the phase stable areas of Fig. 4.1 around (a) V0 and (b) 5
3V0 (the case

of guiding). The contours pertain to average velocities of OH-molecules plotted as a function of their

initial velocity v and initial spatial phase kz. Zooming-in at the global phase portrait allows for an

accurate comparison of the full-fledged numerical result with the analytic treatment of the dynamics.

The white curves show the calculated separatrices for a resonant, single-wave interaction. The green

curves comprise the calculated perturbations due to all the other, non-resonant waves. The yellow curves

combine the two and are seen to render a perfect agreement with the full-fledged calculation.
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This we do by generalizing the approach developed for a single perturbing wave in Section 4.8

to all the waves, cf. eq. (3.16). As a result

ṽn,`(z, t) ≡
∑

r odd

∑

s odd

vr,s
n,`(t) =

∑

r odd

∑

s odd

n

ω(ns− `r)
Ar,s cos

[
r

n
φn,` −

ω(ns− `r)
n

t

]

+
∑

r odd

∑

s odd

n

ω(ns + `r)
Ar,s cos

[
r

n
φn,` +

ω(ns + `r)
n

t

]

−
∑

p even

n

p`ω
Ap cos

[ p

n
(φn,` + `ωt)

]
(4.7)

where ṽn,` is the velocity change of the molecules riding the resonant (+, n, `) wave due to

the effect of all the nonresonant waves (so the summation is over all r, s = 1, 3, ... for which

ns− `r 6= 0). Truncating the summation at r = 1 and p = 2, we obtain for t = 0,

ṽn,`(z, t = 0) ≈
∑

s odd

n

(ns− `)ω
A1s cos(kz)

+
∑

s odd

n

(ns + `)ω
A1s cos(kz)− n

2`ω
A2 cos(2kz) (4.8)

This is shown by the green line in Fig. 4.2 for s ≤ 21. The yellow line shows the velocity

vn,`(z, t = 0)+ṽn,`(z, t = 0), and is seen to be in full agreement with the phase-stable area

obtained from the full-fledged calculation. Note that no correction was needed for the position

of the nodes, as the effect of the non-resonant waves is diminished by a factor proportional to

ω2, see eq. (3.78) and Fig. 3.9 b, and so does not show on the scale of the figure. Furthermore,

in order to obtain full agreement with the numerical result, only the dominant resonant wave

(κ = 1, cf. paragraph 3.4.1) has to be taken into account. The influence of the non-dominant

resonant waves is also too small to show on the scale of the figure.

4.3 Acceleration/Deceleration

The phase portraits obtained for guiding can be easily generalized to the case of accelera-

tion/deceleration, by incorporating in the numerical calculations a temporal phase, eq. (3.33),

corresponding to an accelerating/decelerating wave. Figure 4.3 attests to this being the case:

panels (a) and (b) show the same parts of the phase space as panels (a) and (b) in Fig. 4.2,

but for φs = 20◦ and φs = −170◦, respectively, and both for deceleration.

By combining the eq. (3.54) and (3.58) with (4.4), we obtain the separatrices for
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Figure 4.3: Detailed view of the phase stable areas around (a) V0 and (b) 5
3V0 for the case of deceler-

ation. The contours pertain to average velocities of OH-molecules plotted as a function of their initial

velocity v and initial spatial phase kz. The contours were obtained by numerically integrating the full

equation of motion for 80 waves, with a temporal phase corresponding to deceleration (An,` sin φs < 0).

Panel (a) shows the full-fledged numerical calculation for deceleration on the first harmonic (+, 1, 1)

wave with φs = 20◦. Panel (b) shows the full-fledged numerical calculation for deceleration on the

(+, 3, 5)-wave with φs = −170◦. The white curves pertain to the separatrices obtained for a resonant,

single-wave interaction. The green curves comprise the calculated perturbations due to all the other,

non-resonant waves. The yellow curves combine the two and are seen to be in perfect agreement with

the full-fledged calculation. See also text.
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Table 4.1: Properties of several two-wave interferences

Interfering waves (1, 1),(1, 3) (1, 1),(3, 1) (1, 1),(5, 7) (3, 7),(1, 3)

Vg
4
2V0 = 2V0

2
4V0 = 1

2V0
8
6V0 = 4

3V0
10
4 V0 = 5

2V0

n + r 2 4 6 4

ωg ω ω/2 ω/3 ω/2

An+`,r+s − 4k3W 2
1

3π2M2ω2
96k3W1W3
π2M2ω2 −540k3W1W5

7π2M2ω2
64W1W3
7π2M2ω2

deceleration/acceleration

vn,`(t) = ± [−2αn,`(cosφn,` + cos φs + (φn,` − π + φs) sinφs)]1/2

nk
+

`

n
V(t) (4.9)

and

vn,`(t) = ± [2αn,`(− cosφn,` − cosφs − (φn,` + π + φs) sin φs)]1/2

nk
+

`

n
V(t) (4.10)

The white curves in Fig. 4.3 show the separatrices given by eqs. (4.9) and (4.10) at t = 0,

the green lines the correction due to the nonresonant waves at t = 0, eq. (4.8), and the yellow

lines the corrected separatrices at t = 0. Again, the agreement with the exact phase portraits

is excellent.

4.4 Interference Effects

A close look at Fig. 4.2 reveals small regions of phase stability centered at even-fraction

multiples of V0, such as 6
4V0 and 4

2V0. Zooming-in would reveal many more phase stable areas,

e.g., at 10
4 V0 or 8

6V0. These phase-stable areas cannot arise from single-wave interactions,

since, as we saw above, single waves travel at phase velocities `
nV0 with ` and n both odd. In

Paragraph 3.5 we showed that interferences of two waves give rise to phase stable areas around

velocities `+s
n+rV0. Let’s see if our treatment of the interference dynamics can indeed explain all

the features of the phase stable areas occurring at even-fraction multiples of the fundamental

velocity.

Table 4.1 lists properties of interference effects due to different pairs of waves. Thus we

see that the stability at 4
2 V0 results from the interference of the (1, 1)- and the (1, 3)-wave,

whereas the stability at 2
4V0 is generated by the (1, 1)- and the (3, 1)-wave. Fig. 4.1 shows that

the phase-stable area at 4
2V0 exhibits two ‘fishes’, whereas phase stability at 2

4V0 exhibits four.

This is in agreement with our treatment, since it follows immediately from the (n + r)-factor

in eqs. (3.105) and (3.108), as explained in the discussion of Paragraph 4.2. Furthermore, the
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sign of the prefactor αn+r,`+s explains correctly whether the interference effect exhibits a node

or an antinode at z = 0.

Let us zoom-in in Fig. 4.1 on the phase-stable area occurring at 2V0, and use it as a

testing ground for the accuracy of our treatment of the interference effects. This phase-stable

area is displayed in Figure 4.4 a. The white curve shows the separatrix obtained from eqs.

(3.105), (3.109) and (4.5) for the resonant (+, n + r, ` + s) = (+, 2, 4)-wave. We see that it

correctly renders the size of the separatrix but not quite its shape. As in the case of single-wave

dynamics, in order to obtain a full agreement between our theory and the exact result we have

to take into account the influence of the perturbing waves. This influence can be taken into

account in exactly the same way as before, i.e., by means of eq. (4.8). We have to substitute

into it n + r = 2 for n and ` + s = 4 for `, which gives

ṽ2,4(z, t = 0) ≈
∑

p odd

2
(2p− 4)ω

A1,p cos(kz)

+
∑

p odd

2
(2p + 4)ω

A1,p cos(kz)− 2
8ω

A2 cos(2kz)

=
∑

p odd

(
1

(p− 2)p
+

1
(p + 2)p

)
A1,1

ω
cos(kz)− A2

4ω
cos(2kz)

= −A2

4ω
cos(2kz) (4.11)

We see that in this particular case, the sum over p vanishes and so the correction given by eq.

(4.11) takes quite a simple form. The correction is shown by the green curve in Fig. 4.4 a. The

yellow curve is a sum of the white and green curves, and is seen to agree perfectly with the

exact separatrix. We thus arrive at the conclusion that our analytic model accounts perfectly

well for the observed phase stability at even-fraction multiples of the fundamental velocity, in

terms of interferences of waves with n, ` odd.

4.4.1 Acceleration/Deceleration on an Interference Wave

In Paragraph 3.5 we derived a time sequence for accelerating/decelerating on an interference

wave. The corresponding temporal phase, eq. (3.115), was used in a full-fledged calculation for

the case of deceleration (at φs = 20◦) to generate the phase portrait shown in Figure 4.4 b.

Since for deceleration on an interference wave αn+r,`+s is time-dependent, cf. eqs. 3.109

and 3.114, an exact evaluation of the separatrices is not possible. Still, the size and shape of

the resulting separatrix can be approximated very well by treating αn+r,`+s(t) as a constant,

since αn+r,`+s(t) varies very slowly in time. In order to correctly approximate the size of the

separatrix, we need to take the minimum value of |αn+r,`+s(t)|, corresponding to the smallest
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Figure 4.4: Detailed view of the phase stable area around 2V0 for the case of guiding (with φs = 0◦),

panel (a), and for deceleration (φs = 20◦), panel (b). The contours pertain to average velocities of

OH-molecules plotted as a function of their initial velocity v and initial spatial phase kz. The full-

fledged numerical calculations are compared with the analytic result for the case of the interference of

the (+, 1, 1)-wave with the (+, 1, 3)-wave, which give jointly rise to a (+, 2, 4)-wave. The white curves

show the calculated separatrices at t = 0. The green curves comprise the calculated perturbations due

to all non-resonant waves. The yellow curves combine the two and are seen to be in excellent agreement

with the full-fledged numerical calculation. See also text.

76



potential well/separatrix. The reason for this is that the time scale at which molecules are

lost is much smaller than the timescale at which the potential well increases. As a result, the

minimum well depth determines the total amount of molecules that is captured and the size

of the resulting phase stable area. For deceleration, the value of |αn+r,`+s(t)| is minimal at

t = 0. The white curve in Fig. 4.4 b corresponds to the separatrix obtained by substituting

αn+r,`+s(t = 0) into eq. (4.9). Also shown are the perturbations by all the other waves

obtained from eq. (4.11) (green curve) and the resulting separatrix taking both effects into

account (yellow curve). Again, a very good agreement between the latter and the full-fledged

calculation is found.

4.5 An Experiment: Deceleration on the (3,5)-wave

So far, only a comparison of the wave model with the numerical integration of the full equation

of motion (4.1) were made. Although they render exactly the same longitudinal results as full

3-D Monte Carlo trajectory simulations, which in turn excellently reproduce experimental data

[53], it would still felt as a challenge to test the derived dynamics of Chapter 3 directly in a

new experiment.

Phase-stable guiding using overtones (n = 3, 5, ..) was already performed and extensively

studied in ref. [53]. In the same paper, also guiding on interference waves was demonstrated,

although it was given a different interpretation there as second-order resonances. Deceleration

on overtones (n = 3, 5, ..) and interference waves, however, was not performed before, because

of two reasons: first of all, it was unclear from the ‘intuitive model’ (cf. Paragraph 1.2.5) if

the phase stability obtained in guiding, would be maintained for deceleration. Second, decel-

eration on an overtone or interference wave is of little practical interest, because of the small

deceleration rates and phase stable areas. In fact, an interference wave renders such a small

deceleration rate, that it cannot even be observed in a 108 stage decelerator. Still, overtone

deceleration yields an observable effect, which provides a possibility for an experimental test

of the general treatment of single-wave interactions as given in Chapter 3, where it was shown

that overtones give rise to phase-stable motion, also for deceleration.

In the performed experiment, eq. (3.34) was used to generate two switching sequences;

one for guiding on the (3, 5)-wave and one for deceleration with φs = 53◦. The sequences were

applied to the setup discussed in Paragraph 2.2.3, where Xenon was used as a carrier gas. For

guiding, the applied switching sequence pertained to V0 = 3
5 × 370 m/s = 222 m/s, realizing

a resonant interaction between the (3, 5)-wave and molecules travelling at the mean velocity
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Figure 4.5: Experiment showing phase stable guiding and deceleration of OH radicals on the (3, 5)-

wave. Two switching sequences were applied to the experimental setup described in Paragraph 2.2.3;

one for guiding and one for deceleration (φs = 53◦) on the (3, 5)-wave. Xenon was used as a carrier gas.

Panel (a) shows the obtained experimental data consisting of two time of flight profiles. The red curve

corresponds to guiding, the black curve to deceleration. Zooming into panel (a), we obtain panel (b),

showing the TOF profile of the guiding experiment (black curve), and (c) showing the TOF profile of the

deceleration experiment (black curve) in more detail. The results of Monte Carlo trajectory simulations

(red curves) are added to both panels. Note the excellent agreement between the experimental data and

the trajectory simulations.
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of the molecular beam pulse, about 370 m/s. For deceleration, the applied switching sequence

pertained to an initial fundamental phase velocity of Vi = 3
5 × 370 = 222 m/s and a final

velocity of Vf = 3
5 × 362 = 217 m/s, corresponding to a deceleration of the molecular beam

from 370 m/s to 362 m/s.

The results of the experiment are displayed in Figure 4.5. Panel (a) shows the obtained

experimental data consisting of two time of flight profiles, that are seen to be slightly shifted

with respect to each other. The red curve with the higher peak corresponds to guiding, whereas

the black curve with the lower peak, slightly shifted to the right, corresponds to deceleration.

Note that this is also what one would expect for a decelerated peak. The time delay between the

two peaks is 38± 10 µs, perfectly agreeing with the calculated delay of 36 µs for a deceleration

from 370 m/s to 362 m/s in the decelerator described in Paragraph 2.2.3. This demonstrates

that arbitrary waves in the Fourier expansion can be used to perform phase-stable deceleration.

By zooming into panel (a), we obtain both panel (b) showing the TOF profile of the

guiding experiment, and panel (c) showing the TOF profile of the deceleration experiment in

more detail. Each panel consists of two curves, a black one showing the experimental data, and a

red one obtained from 3-D Monte Carlo trajectory simulations. Note the excellent quantitative

agreement between the experiments and the trajectory simulations. Not only the shape and the

position of the main peaks, but also the more detailed structure, such as the oscillations adjacent

to the main peaks, are accurately reproduced. These oscillations can be understood from the

motion of molecules that are almost phase stable, and are called phase space modulations. For

a detailed discussion of phase space modulations, see [18].
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Chapter 5

Summary and Conclusions

Stark deceleration is a technique that uses time-varying electric fields to decelerate a molecular

beam to arbitrary velocities in the lab frame. It has resulted in the electrostatic trapping of

ND3 and OH [19, 20]. Furthermore, Stark deceleration gives rise to a very rich (longitudinal)

dynamics, which has been studied extensively in this thesis by means of the wave model.

The wave model is based on the Fourier analysis of the time-varying, inhomogeneous

electric fields in a decelerator, which can be Fourier expanded both in space and time. Perform-

ing the expansions reveals that the electric fields give rise to an infinite multitude of stationary

as well as counter-propagating waves [2]. In this thesis, we tackled explicitly the resonant

interaction of the molecules with an arbitrary wave in the Fourier expansion, where the iso-

morphism with the biased pendulum problem was exploited to obtain a description of phase

stability, which is both intuitive and analytic. Furthermore, we studied the influence of non-

resonant, perturbing waves, whose effect was shown to be heavily suppressed and therefore of

no consequence for phase stability. Finally, we treated the dynamics of molecules interacting

with two interfering waves that act together as a single wave and therefore also give rise to

phase stable motion.

Furthermore, we compared the analytic results extensively with the numerical integra-

tion of the full equation of motion, taking into account as many as 80 waves in the Fourier

expansion. The numerical integration yields the same longitudinal results as Monte Carlo tra-

jectory simulations, which in turn excellently reproduce experimental data. We found that all

analytic results were in excellent agreement with the numerical simulations. Every detail of the

very rich structures observed in phase space could be accounted for by considering single wave

dynamics, non-resonant perturbations or interference dynamics.

The link between the various stable regions in phase space and the experimentally

observed first and second order resonances, was first studied in ref. [53]. As it turns out, the
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wave model gives new interpretations of these resonances in terms of single wave interactions (for

the first order resonances) and interference wave interactions (for the second order resonances).

The wave model was also able to extend the study in ref. [53], performed for the case of

guiding, to the general case of acceleration/deceleration. In this context a new experiment was

performed, showing that arbitrary overtones in the decelerator can be used to perform phase

stable deceleration. The wave model was found to be in full agreement with the experiment.
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Appendix A

Comparison of Interference Effects

with Second-order Resonances

In Paragraph 3.5 the dynamics due to two interfering waves was treated. In particular, it was

shown that the (+, 1, 1)- and the (+, 1, 3)-wave jointly create phase stability at 2V0. But these

are not the only waves that create stability at this velocity. An interference wave, just as a

single wave, always has fellow travellers. For example, the (−, 1, 1)- and the (+, 1, 5)-wave also

create phase stability at 2V0, just as the (−, 1, 3)- and the (+, 1, 7)-wave, etc. The combined

effect of these fellow travellers is small; in total they give rise to a correction of about 4 % to

the separatrix obtained from the interference of just the (+, 1, 1)- and the (+, 1, 3)-wave. But

there is a more important reason for evaluating the effect of all these fellow travellers explicitly,

namely the possibility of a comparison with an earlier obtained expression for second-order

resonances by the ‘intuitive model’ [53]. Here, an analytic expression explaining the resonance

at 2V0 was obtained in a completely different way.

The main difference between the wave model and the intuitive model, is that the wave

model also performs a Fourier expansion of the electric fields in time, whereas the intuitive

model doesn’t. As a result, the intuitive model always takes implicitly all temporal waves into

account. Therefore, in order to be able to make a comparison with the intuitive model, all the

waves due to the temporal Fourier expansion have to evaluated. This will be done here.

From eq. (3.17), (3.86) and (3.109), we obtain for α2,4 due to the (+, 1, 1)- and the

(+, 1, 3)-wave

α2,4 = − 8k4W 2
1

3π2M2ω2
(A.1)

The same evaluation can be done for the (−, 1, 1)- and the (+, 1, 5)-wave, where we note the
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extra minus sign of the left moving wave

α2,4 =
8k4W 2

1

45π2M2ω2
(A.2)

Taking all combinations of (±, 1, `) waves into account that generate phase stability at 2V0, we

obtain for the total α2,4

α2,4 = − 8k4W 2
1

π2M2ω2


1

3
−

∞∑

i=3,5,...

1
i2(i− 2)(i + 2)


 = − k4W 2

1

4M2ω2
(A.3)

This expression for the total α2,4 gives rise to the following slow-oscillation frequency in the

harmonic limit

Ω2,4 =
√
|α2,4| =

√
k4W 2

1

4M2ω2
(A.4)

An analytic expression for the slow-oscillation frequency Ω2,4 can also be obtained from

the intuitive model in a completely different way. In this model the equation of motion takes

the following form [53] (if we use the appropriate translation between the definitions of the

intuitive model and the wave model: L → λ/2, m → M , an → Wn, vsw → V0 = ω/k)

Mλ

2π

d2∆φ

dt2
= F̄ (φ0 + ∆φ)− F̄ (φ0) (A.5)

where ∆φ = k∆z with ∆z the difference in position between a synchronous and a non-

synchronous molecule, φ0 = φs/n and F̄ is the average force acting on a molecule, which is

evaluated from the amount of energy that the molecule loses between successive switch times.

In ref. [53], also an analytic expression was obtained for the Stark energy that a synchronous

molecule travelling at 2V0 loses after 2 times switching, namely

∆WStark(φ0) =
πk2W 2

1

2Mω2
sin 2φ0 (A.6)

Furthermore, a synchronous molecule with a velocity of 2V0 travels 2λ between two switching

times (= 1 period τ), which leads to an average force on the synchronous molecule given by

F̄ (φ0) = −∆WStark

2λ
= − k3W 2

1

8Mω2
sin 2φ0 (A.7)

resulting in the equation of motion

Mλ

2π

d2∆φ

dt2
= − k3W 2

1

8Mω2
[sin 2(φ0 + ∆φ)− sin 2φ0] (A.8)

In the harmonic limit, i.e. ∆φ ¿ 1, the following approximations hold

sin 2∆φ ≈ 2∆φ (A.9)

cos 2∆φ ≈ 1 (A.10)
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Together with (3.98), eqs. (A.9), (A.10) can be used to rewrite (A.8) yielding

d2∆φ

dt2
= −k4W 2

1 cos 2φ0

4M2ω2
∆φ (A.11)

We note that for the case of guiding φ0 = 0. From eq. (A.11) we can immediately read off the

corresponding slow oscillation frequency in the harmonic limit

Ω =

√
k4W 2

1

4M2ω2
(A.12)

which is in exact agreement with the result obtained from the wave model, eq. (A.4).

The same discussion can be applied to phase stability at 1
2V0. Not only the (+, 1, 1)-

and the (+, 3, 1)-wave create phase stability at this velocity, but also the (+, 1, 3)- and the

(−, 3, 1)-wave, just as the (−, 1, 1)- and the (+, 3, 3)-wave, etc. Taking all combinations of

(±, 1, `)- and (±, 3, `)-waves into account that generate phase stability at 1
2V0, we obtain for

the total α4,2

α4,2 =
96k4W1W3

π2M2ω2


4−

∞∑

i=1,3,...

(
1

(i + 1/2)2i(i + 2)
+

1
(i + 3/2)2i(i + 2)

)


=
16k4W1W3

M2ω2

(
4− 16

3π

)
(A.13)

The corresponding slow-oscillation frequency Ω4,2 is

Ω4,2 =

√
16k4W1W3

M2ω2

(
4− 16

3π

)
(A.14)

This can again be compared with the results from the intuitive model obtained in ref.

[53]. Here, an analytic expression was given for the Stark energy that a synchronous molecule

travelling at 1
2V0 loses after 4 times switching

∆WStark(φ0) =
8πk2W1W3

Mω2

(
4− 16

3π

)
sin 4(φ0 − π/4) (A.15)

Furthermore a synchronous molecule with a velocity of 1
2V0 travels λ between four switching

times (= 2τ), which leads to an average force on the synchronous molecule given by

F̄ (φ0) = −∆WStark

λ
= −4k3W1W3

Mω2

(
4− 16

3π

)
sin 4(φ0 − π/4) (A.16)

In the same way as above we can derive the slow-oscillation frequency in the harmonic limit for

the case of guiding, giving

Ω =

√
16k4W1W3

M2ω2

(
4− 16

3π

)
(A.17)
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which is in exact agreement with the result obtained from the wave model, eq. (A.14).

So we see that the analytic results of the wave model describing interference effects are in

full agreement with earlier obtained expressions by the intuitive model describing second-order

resonances. Since both results have been obtained in a completely different way, the validity

of the results is independently and mutually confirmed. Both models describe equally well the

experimentally observed resonances that occur at even-fraction multiples of the fundamental

phase velocity.
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[3] J. van Veldhoven, J. Küpper, H.L. Bethlem, B. Sartakov, A.J.A. van Roij, and G. Meijer,

Eur. Phys. J. D. 31, 337 (2004)

[4] S.Y.T. van de Meerakker, N. Vanhaecke, M.P.J. van der Loo, G.C. Groenenboom, and G.

Meijer, Phys. Rev. Lett. 95, 013003 (2005).

[5] L.R. Hunter, Science, 252, 73 (1991).

[6] J.J. Hudson, B.E. Sauer, M.R. Tarbutt, and E.A. Hinds, Phys. Rev. Lett. 89, 023003

(2003).

[7] D.W. Rein, J.Mol. Evol. 4, 15 (1974).

[8] V.S. Letokhov, Phys. Lett. 53A, 275 (1975).

[9] M. Anderson, J. Ensher, M. Matthews, C. Wieman, E. Cornell, Science 269, 198 (1995).

[10] B. de Marco, D. Jin, Science 285, 1703 (1999).

[11] M.O. Mewes, M.R. Andrews, D.M. Kurn, D.S. Durfee, C.G. Townsend, W. Ketterle, Phys.

Rev. Lett 78, 582 (1997).

[12] S.E. Harris, L.V. Hau, Phys. Rev. Lett. 82, 4611 (1999).

[13] C. Liu, Z. Dutton, C.H. Behroozi, L.V. Hau, Nature 409, 490 (2001).

[14] M. Baranov, L. Dobrek, K. Goral, L. Santos, and M. Lewenstein, Phys. Scr. T102, 74

(2002)

[15] L. Santos, G.V. Shlyapnikov, P. Zoller, and M. Lewenstein, Phys. Rev. Lett. 85, 1791

(2000).

87



[16] D. Herschbach, Rev. Mod. Phys. 71, S411 (1999).

[17] N. Balakrishnan and A. Dalgarno, Chem. Phys. Lett. 341, 652 (2001).

[18] S.Y.T. van de Meerakker, PhD Thesis, Radboud Universiteit Nijmegen (2005).

[19] H.L. Bethlem, G. Berden, F.M.H. Crompvoets, R.T. Jongma, R.T., A.J.A. van Roij, and

G. Meijer, Nature, 406, 491 (2000).

[20] S.Y.T van de Meerakker, P.H.M. Smeets, N. Vanhaecke, R.T. Jongma, and G. Meijer,

Phys. Rev. Lett. 94, 23004 (2005).

[21] D. DeMille, Phys. Rev. Lett. 88, 067901 (2002).

[22] H.L. Bethlem, PhD Thesis, Katholieke Universiteit Nijmegen (2002).

[23] S. Chu, Rev. Mod. Phys. 70, 685 (1998); C.N. Cohen-Tannoudji, Rev. Mod. Phys. 70, 707

(1998); W.D. Phillips, Rev. Mod. Phys. 70, 721 (1998).

[24] W. Ketterle and N.J. van Druten 1996, Adv. At., Mol., Opt., Phys. 37, 181 (1996).

[25] M. Greiner, C.A. Regal, and D.S. Jin, Nature 426, 537 (2003).

[26] S. Jochim, M. Bartenstein, A. Altmeyer, G. Hendl, S. Riedl, C. Chin, J. Hecker-Denschlag,

and R. Grimm, Science 302, 2101 (2003).

[27] C.A. Stan, M.W. Zwierlein, C.H. Schunck, S.M.F. Raupach, and W. Ketterle, Phys. Rev.

Lett. 93, 143001 (2004).

[28] S. Inouye, J. Goldwin, M.L. Olsen, C. Ticknor, J.L. Bohn, and D.S. Jin, Phys. Rev. Lett

93, 183201 (2004).

[29] A.J. Kerman, J.M. Sage, S. Sainis, T. Bergeman, and D. DeMille, Phys. Rev. Lett. 92,

033004 (2004).

[30] A.J. Kerman, J.M. Sage, S. Sainis, T. Bergeman, and D. DeMille, Phys. Rev. Lett. 92,

153001 (2004).

[31] J.M. Sage, S. Sainis, T. Bergeman, and D. DeMille, Phys. Rev. Lett. 94, 203001 (2005).

[32] J.M. Doyle, B. Friedrich, J. Kim, and D. Patterson, Phys. Rev. A 52, R2515 (1995).

[33] B. Friedrich, R. deCarvalho, J. Kim, D. Patterson, J.D. Weinstein, and J.M. Doyle, J.

Chem. Soc. Faraday Trans. 94, 1783 (1998).

88



[34] J.D. Weinstein, R. deCarvalho, T. Guillet, B. Friedrich, and J.M. Doyle, Nature 395, 148

(1998).

[35] M. Gupta and D. Herschbach, J. Phys. Chem. A 103, 10670 (1999).

[36] M.S. Elioff, J.J. Valentini, and D.W. Chandler, Science 302, 1940 (2003).

[37] R. Fulton, A.I. Bishop, and P.F. Barker, Phys. Rev. Lett. 93, 243002 (2004).

[38] J.G. King, J.R. Zacharias, Quart. Progr. Rep. 48, 15 January 1958, Research Laboratory

of Electronics, MIT (1958).

[39] D. Auerach, E.E.A. Bromberg, L. Wharton, J. Chem. Phys. 45, 2160 (1966).

[40] F.M.H. Crompvoets, H.L. Bethlem, R.T. Jongma, and G. Meijer, Nature 411, 174 (2001).
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