

Mechanism of ZrTiO $_4$ Synthesis by Mechanochemical Processing of TiO $_2$ and ZrO $_2$

Andreja Gajović¹*, Krešimir Furić¹, Svetozar Musić¹, Igor Djerdj², Antun Tonejc², Anđelka M. Tonejc², Dangsheng Su³ and Robert Schlögl³

Ruđer Bošković Institute, POB 180, HR-10002 Zagreb, Croatia
Faculty of Science, Department of Physics, POB 331, HR-10002, Zagreb, Croatia
Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin, Germany

* corresponding author

Abstract

High-energy ball milling initiates a solid-state reaction in an equimolar mixture of TiO₂ and ZrO₂. The first stage of ball milling induced the transformation of anatase TiO₂ to high-pressure phase TiO₂ (II), isostructural with ZrTiO₄. The formation of solid solutions monoclinic ZrO₂/TiO₂ and TiO₂ (II)/ZrO₂ was observed in the intermediate stage. Afterward, a nanosized ZrTiO₄ phase was formed in the milled product from the TiO₂ (II)/ZrO₂ solid solution. The sintering of the milled product at a temperature <1100°C was examined *in situ* by Raman spectroscopy. The full solid-state reaction toward ZrTiO₄ ceramic is completed at a temperature considerably lower than reported in the literature.

doi:10.1111/j.1551-2916.2006.00972.x