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Abstract. We report quasiparticle-energy calculations of the electronic bandstructure as
measured by valence-band photoemission for selected II-VI compounds and group-III-nitrides.
By applying GW as perturbation to the ground state of the fictitious, non-interacting Kohn-
Sham electrons of density-functional theory (DFT) we systematically study the electronic
structure of zinc-blende GaN, ZnO, ZnS and CdS. Special emphasis is put on analysing the
role played by the cation semicore d-electrons that are explicitly included as valence electrons
in our pseudopotential approach. Unlike in the majority of previous GW studies, which
are almost exlusively based on ground state calculations in the local-density approximation
(LDA), we combine GW with exact-exchange DFT calculations in the optimised-effective
potential approach (OEPx). This is a much more elaborate and computationally expensive
approach. However, we show that applying the OEPx approach leads to an improved
description of the d-electron hybridisation compared to the LDA. Moreover we find that it is
essential to use OEPx pseudopotentials in order to treat core-valence exchange consistently.
Our OEPx based quasiparticle valence bandstructures are in good agreement with available
photoemission data in contrast to the ones based on the LDA. We therefore conclude that for
these materials OEPx constitutes the better starting point for subsequent GW calculations.
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1. Introduction

From the discovery of the photo-electric effect in the early days of the 20th century photo-
electron spectroscopy has developed into an invaluable experimental method for the study of
electron excitations in bulk solids and surfaces. Photoemission spectroscopy (PES) [1, 2, 3] and
its inverse counterpart (IPES) [4, 5, 6] have been instrumental for our current understanding of
elementary excitation processes in condensed matter and for deciphering the electronic structure
of many materials. The success of PES and IPES ows much to the interpretation of the photo-
electron spectra in terms of single-particle excitations or quasiparticles in the language of many-
body quantum-mechanics.

In the first part of this article we will briefly recapitulate this connection between photo-
electron spectroscopy of delocalised valence states and Green’s function theory and illustrate how
angular resolved (I)PES spectra can be interpreted in terms of the quasiparticle bandstructure.
Within the theoretical framework of many-body perturbation theory we employ Hedin’s GW
approximation [7] to calculate the quasiparticle energy spectrum, where G refers to the Green’s
function and W to the dynamically screened Coulomb interaction. The GW method and the
computational details of the bandstructure calculations from the state-of-the-art (based on the
local-density-approximation) to recent developments (optimised effective potential method to
density-functional theory) will be introduced in more detail later. For further reading with
regard to the connection between photo-electron spectroscopy and many-body perturbation
theory we refer to the extensive review by Onida, Reining and Rubio [8].

In this article we report calculations of the quasiparticle bandstructure of GaN and the II-VI
compounds ZnO, ZnS and CdS in the zinc-blende structure. The GW method is defined as
a perturbation to a system of non-interacting electrons, and we use density-functional theory
(DFT) together with the Kohn-Sham concept of fictitious non-interacting particles as starting
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point for our calculations. Unlike in Kohn-Sham DFT a self-consistent solution of the many-
body perturbation would successively introduce higher order electron-electron interactions with
every iteration step. These enter in the set of Hedin’s equation for the Green’s function [7]
through the vertex function Γ, which up until now can only be solved fully for simple model
systems. For this reason we refrain from any self-consistent treatment within the GW equations
themselves1 and remain with the zeroth order in the self-energy (Σ0 = iG0W0), which typically
gives bandstructures for weakly correlated quasiparticles in good agreement with valence-band
photo-electron spectroscopy [9, 10]. In the G0W0 approximation to Σ the input Green’s function
and thus also the self-energy becomes dependent on the ground state calculation and hence the
exchange-correlation functional used. This dependence is a central aspect of this article.

The Kohn-Sham eigenvalues of the commonly used local-density approximation (LDA) to the
exchange-correlation potential give a particularly poor account of the electronic bandstructure
in the II-VI materials and also to some extend in GaN. This is largely due to the inherent self-
interaction effects in the LDA introduced by the cation semicore d-electrons [11, 12, 13]. The
exact-exchange approach to density-functional theory (EXX) on the other hand is naturally
self-interaction free. Contrary to the LDA and its gradient-corrected flavours (GGAs) the
exchange potential in EXX-DFT only implicitly depends on the electron density via the Kohn-
Sham orbitals, a point that we will further elucidate in later sections. Since the local exchange
potential is constructed from the non-local Fock operator via the optimized effective potential
method we prefer to abbreviate this approach by OEPx instead of EXX.

Due to its relationship with Hartree-Fock, OEPx has so far featured more prominently in
atomic and molecular physics but recently applications to extended systems have also flourished
[14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25]. In these calculations a remarkably good agreement
with experiment for the band gaps over a range of semiconductors has been reported. All DFT
exact-exchange studies for group-III-nitrides and II-VI compounds [18, 19, 20, 21], however, have
in common that the cation d-electrons have effectively been removed from the calculation by
modelling their interaction with the valence electrons in terms of a pseudopotential. Although
freezing the d-electrons in the core of a pseudopotential is computationally very efficient, it leads
to a distinct disagreement between theory and experiment for the strucural properties as shown
by several LDA studies [26, 27, 28]. In all calculations presented in this article the d-electrons
were explicitly taken into account. Apart from improving the structural properties the inclusion
of the d-electrons also has a profound effect on the electronic structure. We find that applying
the OEPx approach leads to an improved description of the d-electron hybridisation compared
to the LDA and therefore also to a better agreement between (I)PES data and our quasiparticle
energy calculations.

If applied in an all-electron fashion, GW excited state calculations based on an LDA
ground state will to a large extend remove the spurious self-interaction inherent to the LDA
[29, 30, 31, 32]. When a pseudopotential concept is applied on the other hand the self-interaction
of those core states that are locked away in the pseudopotential cannot be corrected by the GW
approach. Thus, when semicore states that contribute to the chemical bonding or hybridise
with valence states are present, all core states whose wavefunctions overlap strongly with these
semicore states must be included explicitly as previous LDA based GW calculations demonstrate
[33, 34, 35]. A key result of or our approach is that if exact-exchange pseudopotentials [36, 37] are
used in the OEPx calculations it is sufficient to treat only the d-electrons as valence electrons.
The s and p electrons of the same shell can be frozen in the core of the pseudopotential,
because the self-interaction is already absent from the exact-exchange pseudopotentials and
hence will not have to be removed by the GW calculation. The absence of self-interaction from

1 We will briefly allude to some of the controversial issues pertaining to self-consistency in GW in later sections.
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Figure 1. Schematic of the photoemission (PES) and inverse photoemission (IPES) process.
In PES (left) an electron is excited from an occupied valence state (lower shaded region) into
the continuum (upper shaded region) starting above the vacuum level Evac by an incoming
photon. In IPES (right) an injected electron with kinetic energy ǫi = Ekin undergoes a
radiative transition into an unoccupied state (white region) emitting a photon in the process.

the OEPx ground state gives rise to the aformentioned improvement in the description of the
d-electron hybridisation compared to the LDA. This leads us to the hypothesis that the exact-
exchange ground state constitutes the better starting point for subsequent GW calculations for
this material class.

In fact up until now only two exact-exchange based quasiparticle energy calculations have
been reported in the literature for GaN [20, 21]. In both cases, however, the d-electrons were
treated as part of the frozen core. In this article we report for the first time exact-exchange
calculations including the d-electrons. For II-VI compound our exact-exchange based GW
studies are the first so far.

2. Probing the Electronic Structure by Photoemission

2.1. Photo-Electron Spectroscopy and the Quasiparticle Concept

In photo-electron spectroscopy (PES) electrons are ejected from a sample upon irradiation with
visible or ultraviolett light (UPS) or with X-rays (XPS), as sketched in Fig. 1a. The energy of
the bound electron states ǫi can be reconstructed from the photon energy hν and the kinetic
energy Ekin of the photoelectrons that reach the detector2

ǫi = hν − Ekin . (2.1)

Equation (2.1) defines the binding energy of the electron in the solid.
By inverting the photoemission process, as schematically shown in Fig. 1b, the unoccupied

states can be probed. An incident electron with energy Ekin is scattered in the sample
emitting bremsstrahlung. Eventually it will undergo a radiative transition into a lower-lying

2 Throughout this article the top of the valence bands is chosen as energy zero.
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unoccupied state, emitting a photon that carries the transition energy hν. The energy of the
final, unoccupied state can be deduced from the measured photon energy according to

ǫf = Ekin − hν . (2.2)

This technique is commonly referred to as inverse photoemission spectroscopy (IPES) or
bremsstrahlung isochromat spectroscopy (BIS).

The experimental observable in photoemission spectroscopy is the photocurrent. Since the
energy dependence of the transition matrix elements is usually weak and smooth, structures in
the photoemission spectrum can be associated with features in the density of states (DOS), i.e.
the imaginary part of the one-particle Green function 3 [8, 38]

A(r, r′; ǫ) =
1

π
ImG(r, r′; ǫ) =

∑

s

ψs(r)ψ
∗
s (r′)δ(ǫ− ǫs) . (2.3)

The sum in the last expression runs over all states s the system can assume and the photocurrent
is then the surface weighted integral over the diagonal part of the spectral function A(r, r′; ǫ).
We note, however, that with respect to the measured intensities a photoemission spectrum
should be viewed as a noticeably distorted spectral function. In particular when selection rules
become important certain peaks in the spectral function may be significantly reduced or may
even disappear completely. The energies ǫs in equation (2.3) are the excitation energies of the
many-body state created by the addition or removal of the photo-electron and ψs(r) gives the
transition amplitude from the N to the N ± 1-body state. In many-body quantum mechanics
ǫs and ψs(r) are defined as [3, 6, 38, 39, 40, 41, 42]:

ǫs = E(N + 1, s) − E(N)

ψs(r) = 〈N |ψ̂(r)|N + 1, s〉

}

for ǫs ≥ EF (2.4)

ǫs = E(N) − E(N − 1, s)

ψs(r) = 〈N − 1, s|ψ̂(r)|N〉

}

for ǫs < EF (2.5)

Here EF is the Fermi energy of the system. The states |N, s〉 are many-body eigenstates of the
N -electron Schrödinger equation Ĥ |N, s〉 = E(N, s)|N, s〉, Ĥ is the many-body Hamiltonian and

E(N, s) = 〈N, s|Ĥ |N, s〉 is the corresponding total energy. The field operator ψ̂(r) annihilates
an electron from the many-body states |N + 1〉 or |N〉. The representation given in equation
(2.4) and (2.5) is particularly insightful because it allows a direct interpretation of ǫs as photo-
excitation energy from the N -particle ground state with total energy E(N) into an excited state
s of the (N -1)-particle system with total energy E(N − 1, s) upon removal of an electron in the
photoemission process. Similarly the addition energy that is released in the radiative transition
in inverse photoemission is given by the total energy difference of the excited (N+1)-particle
system and the ground state.

Via the field operator formalism the many-body Hamiltonian can be transformed into
a single-particle Hamiltonian4 [42]: Ĥ(r, r′; ǫ) = ĥ0(r) + Σ(r, r′; ǫ). All electron-electron
interaction terms are rolled up in the non-local, energy dependent self-energy Σ and the
remaining contributions are given by ĥ0(r) = − 1

2
∇2 + vext(r). The single particle Green’s

function

G(r, r′; ǫ) = 〈r|[Ĥ(ǫ) − ǫ]−1|r′〉 = lim
η→0+

∑

s

ψs(r)ψ
∗
s (r′)

ǫ− (ǫs + iη sgn(Ef − ǫs))
(2.6)

3 Atomic units 4πǫ0 = h = e = me = 1, where e and me are the charge and mass of an electron, respectively,
will be used in the remainder of this article.
4 Since the nuclei are assumed to be stationary throughout this article, the nucleus-nucleus interaction
contributes only a constant to the total energy, whereas the electron-nucleus interaction can be represented
by an external potential vext(r).
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then satisfies the Dyson equation

G−1(r, r′; ǫ) =
[

ǫ− ĥ0(r)
]

δ(r − r′) − Σ(r, r′; ǫ) (2.7)

and by inserting equation (2.6) into (2.7) one immediately finds that ǫs and ψs(r) are solutions
to

ĥ0(r)ψs(r) +

∫

dr′Σ(r, r′; ǫs)ψs(r
′) = ǫsψs(r) . (2.8)

The poles of the Green’s function therefore correspond to the real electron addition and removal
energies ǫs and form a branch-cut infinitesimally above (below) the real energy axis for occupied
(unoccupied) states.

So far (2.4) to (2.8) have been exact, which is of limited use for practical computational
schemes. To establish a link to photoemission spectroscopy of delocalised valence states it is
helpful to introduce Landau’s concept of quasiparticles [43]. This new entity can be considered
as a combination of an electron or hole with its surrounding polarisation cloud or in other
words as the collective response of the interacting many-body system upon photo-excitation.
Switching to the quasiparticle picture is consistent with analytically continuing the self-energy
to the complex energy domain. The quasiparticle poles (now at complex energy) each represent
the effect of many of the infinitesimally closely spaced poles just above (below) the real axis.
We will return to this point later in this section.

To motivate the association of quasiparticles with particle-like excitations we turn again to
the spectral function. For non-interacting electrons the spectral function consists of a series of
delta peaks

Asn(ǫ) = 〈ψs(r)|A(r, r′; ǫ)|ψn(r′)〉 = δsnδ(ǫ− ǫs), (2.9)

each of which corresponds to the excitation of a particle. The many-body states |N〉 and |N±1〉
are represented by a single Slater determinant and the excitated state configurations by a single
creation (âs) or anihilation (â†s) operator acting on the ground state: |N + 1, s〉 = â†s|N〉. The
excitation energies ǫs and the wavefunctions ψs(r) are thus the eigenvalues and eigenfunctions
of the single-particle Hamiltonian.

When the electron-electron interaction is turned on, the electrons can no longer be regarded
as independent particles. As a consequence the matrix elements of the spectral function
Asn(ǫ) will contain contributions from many non-vanishing transition amplitudes. If these
contributions merge into a clearly identifiable peak that appears to be derived from a single
delta-peak broadened by the electron-electron interaction this structure can be interpreted as
single-particle like excitation – the quasiparticle. The broadening of the quasiparticle peak in
the spectral function is associated with the lifetime τ of the excitation due to electron-electron
scattering, whereas the area underneath the peak is interpreted as the renormalisation Z of
the quasiparticle. This renormalisation factor quantifies the reduction in spectral weight due
to electron-electron exchange and correlation effects compared to an independent electron. In
summary a quasiparticle peak in the spectral function will exhibit the following shape

As(ǫ) ≈
Zs

ǫ− (ǫs + iΓ)
. (2.10)

In contrast to the exact energies of the many-body states, which are poles of the Green’s function
on the real axis, the quasiparticle poles reside in the complex plane and are no longer eigenvalues
of the single-particle Hamiltonian. The real part of this complex energy is associated with the
energy of the quasiparticle excitation and the imaginary part with its inverse lifetime Γ = 2/τ .

Apart from quasiparticle excitations a typical photoemission experiment provides a rich
variety of additional information. In core-electron emission for instance inelastic losses or multi-
electron excitations such as shake-ups and shake-offs lead to satellites in the spectrum. These are
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genuine many-body effects that are not contained in the quasiparticle approximation. However,
since we are primarily interested in the description of valence bands in semiconductors these
many-body effects are not important for interpreting the spectral features. For a more indepth
discussion of these many-body effects we therefore refer the interested reader to the following
articles [38, 44, 45, 46, 47].

Before we introduce the GW approximation to the self-energy as a tractable computational
approach for calculating the quasiparticle energies we will briefly address the reconstruction
of bandstructure information from the measured photo-electron spectra. By varying the angle
of incidence (angle resolved photo-electron spectroscopy (ARPES) [3] and k-resolved inverse
photo-electron spectroscopy (KRIPES) [6]) dispersion relations of the excitated states can be
obtained. However, since the emitted photons or electrons inevitably have to pass the surface
of the crystal to reach the detector, information about their transverse momentum k⊥ is lost.
This is due to the fact that the translational invariance is broken at the surface and only the
parallel momentum component k‖ is conserved.

In order to reconstruct the three-dimensional bandstructure of the solid assumptions are often
made about the dispersion of the final states [1, 2, 4, 5, 48]. Alternatively ab initio calculations as
described in this article can aid in the assignment of the measured peaks. Only recently absolute
band mapping has been reported in secondary electron emission (SEE) experiments [49] and
also for a technique combining ARPES with very low-energy electron diffraction (VLEED) [50].

State of the art spectroscopy techniques of course allow the variation of many more
parameters than just the angle of incidence. A more in-depth discussion of photoemission
experiments will, however, go beyond the scope of this article and we refer the reader to
references [3] and [6] for more details.

2.2. The GW Formalism

To solve the Dyson equation (2.7) for real systems one typically applies Hedin’s GW
approximation [7] for the self-energy. Assuming that the quasiparticles interact only weakly
via the screened Coulomb interaction W the self-energy in GW is then given as

ΣGW
xc (r, r′; ǫ) =

i

2π

∫ ∞

−∞

dǫ′eiǫ′δG(r, r′; ǫ+ ǫ′)W (r, r′; ǫ′) (2.11)

where δ is an infinitesimal, positive time. In practice one starts from a system of non-interacting
particles with energies ǫi and wavefunctions φi(r). The non-interacting Green’s function is
defined analogous to equation (2.6) as5

G0(r, r
′, ǫ) = lim

η→0+

∑

i

φi(r)φ
∗
i (r′)

ǫ− (ǫi + iη sgn(Ef − ǫi))
. (2.12)

The quantum state indices i and s are short for the composite of band index n and wave vector
k. In the random phase approximation (RPA) the dielectric function

ε(r, r′, ǫ) = δ(r − r′) −

∫

dr′′v(r − r′′)χ0(r
′′, r′; ǫ) (2.13)

is connected to the independent particle polarisability

χ0(r, r
′, ǫ) = −

i

2π

∫ ∞

−∞

dǫ′G0(r, r
′; ǫ′ − ǫ)G0(r

′, r; ǫ′) (2.14)

5 Note that only spin unpolarised systems are considered here. All state summations therefore include the spin
variable implicitly.
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and the bare Coulomb interaction

v(r − r′) =
1

|r − r′|
(2.15)

is screened by the inverse dielectric function

W0(r, r
′, ǫ) =

∫

dr′′ε−1(r, r′′; ǫ)v(r′′ − r′) . (2.16)

For numerical convenience and physical insight we separate the GW self-energy (2.11) according
to ΣGW

xc = Σx + ΣGW
c with the two terms defined as

Σx(r, r′) =
i

2π

∫ ∞

−∞

dǫ′eiǫ′δG(r, r′; ǫ′)v(r − r′) (2.17)

= −

occ
∑

i

φi(r)v(r − r′)φ∗i (r
′)

ΣGW
c (r, r′; ǫ) =

i

2π

∫ ∞

−∞

dǫ′eiǫ′δG(r, r′; ǫ+ ǫ′) [W (r, r′; ǫ′) − v(r − r′)] (2.18)

Σx is the Fock or bare exchange operator that we will revisit in section 2.5 and ΣGW
c encompasses

the dynamic correlation of the quasiparticles. Note that the definition of the self-energy in
equation (2.7) implicitly includes the Hartree potential

vH(r) =

∫

dr′ n(r′)v(r − r′) (2.19)

with n(r) being the electron density, whereas in this section the Hartree potential is separated
from the GW self-energy. Inserting Σxc and the quasiparticle Green’s function (2.6) into (2.7)
the Dyson equation becomes

[

ĥ0(r) + vH(r)
]

ψs(r) +

∫

dr′ΣGW
xc (r, r′; ǫs)ψs(r

′) = ǫsψs(r) (2.20)

This equation, also referred to as quasiparticle equation, can then be solved for the quasiparticle
energies and wavefunctions.

In principle the set of equations (2.11) to (2.16) could be solved self-consistently via the use
of the Dyson equation (2.7) expressed now in terms of the non-interacting Greens function G0

(and for brevity written in operator notation)

G = G0 +G0

[

vH + ΣGW
xc

]

G . (2.21)

A crucial point to note, however, is that at each iteration higher order diagrams would have to
be included, because the GW approximation is only equivalent to the first iteration of Hedin’s
equations [7], which are an exact set of equations for the Green’s function and the self-energy.
Both the polarisability P = −iGGΓ and the self-energy Σ = iGΓW contain the vertex function
Γ. Solving equations (2.11) to (2.21) self-consistenly is therefore inconsistent with Hedin’s
equations if no higher order electron-electron interactions are included via the vertex function
Γ.

We can nevertheless group solutions to Hedin’s GW equations (2.11) to (2.16) into three
categories: self-consistent (Σ = iGW ), partially self-consistent (Σ = iGW0) and non self-
consistent (Σ = iG0W0). Only GW0 and GW fulfill certain sum rules including particle number
conservation [51], which give rise to an improved description of ground state total energies
[52, 53]. Spectral features, on the other hand, broaden with increasing number of iterations in
the self-consistenty cycle, as was first observed for the homogeneous electron gas [52]. Similarly,
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for closed shell atoms the good agreement with experiment for the ionisation potential in G0W0

is lost upon iterating the equations to self-consistency [54].
For bulk materials self-consistent GW calculations also exhibit a broadening of the spectral

features compared to G0W0 [55, 56, 57, 58]. In pseudopotential GW calculations for bulk silicon
this leads to a gross overestimation of the fundamental band gap [55], whereas an all-electron
GW calculations yield band gaps in seemingly good agreement with experiment [58]. This
discrepancy between pseudopotential and all-electron GW calculations has, to the best of our
knowledge, not yet been resolved and is currently being discussed controversally in the literature
(see for instance [32, 54, 59]).

Since addressing the issue of self-consistency in more detail would lead beyond the scope
of this article we terminate the self-consistency cycle in our quasiparticle energy calculations
after the first iteration, when the self-energy is given by ΣGW

0 = iG0W0 and solve the
quasiparticle equation (2.20) for the excitation energies. This procedure implies, however, that
the quasiparticle spectrum might now depend on the input Green’s function, G0, a crucial aspect
that we will address in the following.

2.3. DFT and the Kohn-Sham Bandstructure

Density-functional theory (DFT) is probably the most widely used computational electronic
structure method today for systems containing a large number of atoms. The central quantities
in DFT are the electron density n(r) and the total energy Etot. The latter is a functional of
the former and attains its minimum at the exact ground state density, as proven by Hohenberg
and Kohn [60]. This formalism was turned into a tractable computational scheme by Kohn and
Sham [61], by observing that the system of interacting particles can be mapped onto a fictious
system of non-interacting particles that reproduce the same density as the many-body problem
of interest.

Kohn and Sham divided the total energy into known contributions such as the kinetic energy
of the non-interacting particles Ts, the Hartree energy

EH [n] =
1

2

∫

dr n(r)vH(r) (2.22)

and the external energy

Eext[n] =

∫

dr n(r)vext(r) . (2.23)

and an unknown remainder. This last term includes all electron-electron interactions beyond
the Hartree mean-field and is defined as the exchange-correlation energy

Exc[n] = Etot[n] − Ts[n] − Eext[n] − EH [n] . (2.24)

The electron density

n(r) =
occ
∑

i

|φi(r)|
2 (2.25)

is composed of the occupied Kohn-Sham orbitals φi(r) that are solutions of the Kohn-Sham
equation

[

−
∇2

2
+ vext(r) + vH(r) + vxc(r)

]

φi(r) = ǫiφi(r) . (2.26)

The exchange-correlation potential vxc(r) is formally defined as the functional derivative of the
exchange-correlation energy

vxc(r) =
δExc[n]

δn(r)
. (2.27)



CONTENTS 10

Equations (2.22) to (2.26) have to be solved self-consistently until convergence in the total
energy is reached.

Since the exact form of the exchange-correlation functional is unknown6 suitable
approximations have to be found in practice. In this article we work in the local-density
approximation (LDA) [61] or in the exact-exchange approximation to the optimised effective
potential. Since the latter constitutes an important aspect of our work we will describe it in
more detail in the following sections.

Contrary to the poles of the Green’s function (2.4) the Kohn-Sham eigenvalues are Lagrange
multipliers and are therefore primarily mathematical constructs. Strictly spoken only the highest
occupied Kohn-Sham eigenvalue of exact DFT can be rigorously assigned to the ionisation
potential [63, 64, 65]. For an extended system with well defined chemical potential this is
equivalent to stating that the chemical potential in DFT is the same as the true one (Janak’s
theorem [66]). Furthermore Janak’s theorem implies that for delocalised states the Kohn-Sham
eigenvalues are close to ǫi and ǫf as defined in equation (2.1) and (2.2). Recently further
justification for the interpretation of exact Kohn-Sham orbital energies as approximate vertical
ionization potentials was given for finite systems [67]. For atoms and small molecules, where
accurate ab initio densities were available, the Kohn-Sham eigenvalues were found to be very
close to experimentally measured ionisation and excitation energies [67, 68]. Although, noteable
deviations were observed if an LDA or GGA functional was employed instead, the Kohn-Sham
eigenvalues still provide a good starting point for self-energy calculations in the framework of
many-body perturbation theory.

Furthermore the true vxc is a discontinuous function of the particle number N , which
essentially implies that the value of vxc jumps by a constant for finite r when the particle
number is infinitesimally increased from N − δ to N + δ. This discontinuity has a profound
effect on the calculated band gaps of semiconductors and insulators [69, 70]. In the LDA or
GGA the exchange-correlation potential is a smoothly varying function with respect to changes
in the particle number, whereas the exchange potential in the exact-exchange formalism exhibits
an integer discontinuity [71], but not necessarily of the correct size. We will further allude to
this point in the following sections.

2.4. Connection between DFT and GW

Before we introduce the exact-exchange approximation to Exc it is elucidating to draw a
connection between many-body perturbation theory as described in section 2.1 and 2.2 and
density-functional theory. In the original proof [70, 72] Sham and Schlüter made use of the fact
that the Kohn-Sham density reproduces the exact electron density (Hohenberg-Kohn theorem
[60]). Both the density of the interacting as well as the density of the non-interacting system
can be obtained from the respective Green’s function: n(r) = 1

π
Im

∫

dǫG(r, r; ǫ), which leads to
the density condition

0 = n(r) − nKS(r) =
1

2π
Im

∫

dǫ [G(r, r; ǫ) −GKS(r, r; ǫ)] . (2.28)

The Kohn-Sham Green’s function, GKS, entering this equation is an independent particle Green’s
function (2.12) constructed from the Kohn-Sham orbitals. Applying the Dyson equation (2.7)

6 To be more precise the exact dependence of vxc on the density alone is unknow. In the context of many-body
perturbation theory the exact exchange-correlation potential can be expressed in terms of the Green’s function
and the self-energy via the Sham-Schlüter equation, introduced in the next section. Alternatively an exact
representation of vxc can be obtained in Görling-Levy perturbation theory [62].
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transforms the density condition into the Sham-Schlüter equation
∫

dǫ

∫

dr′
∫

dr′′GKS(r, r′; ǫ)Σ̃xc(r
′, r′′; ǫ)G(r′′, r; ǫ) = 0 (2.29)

where the self-energy that connects the interacting with the non-interacting system has been
defined as

Σ̃xc(r, r
′; ǫ) = Σxc(r, r

′; ǫ) − vxc(r)δ(r − r′). (2.30)

The exchange-correlation potential of density-functional theory can therefore be interpreted
as the variationally best local approximation to the non-local, dynamic self-energy [73]. With
regards to the interpretation of the Kohn-Sham eigenvalues as photoemission excitation energies,
however, the Sham-Schlüter equation corroborates the conjecture that one has to go beyond the
locality in time or space to improve on the density-functional treatment, even if the exact vxc

was known [73].

2.5. The Optimised Effective Potential Method and Exact-Exchange

In this section we will introduce the exact-exchange (EXX) approximation to density-functional
theory. Following Kohn and Sham’s idea of dividing the total energy into known and unknown
contributions the exact-exchange energy Ex

Ex = −
1

2

occ
∑

ij

∫

dr

∫

dr′φ∗i (r)φj(r)v(r − r′)φ∗j (r
′)φi(r

′) (2.31)

can be isolated from Exc leaving only the correlation part Ec to be approximated. In the
exact-exchange only approach this correlation term is ignored7 so that the total energy becomes

EEXX

tot = Ts[n] + Eext + EH + Ex . (2.32)

In order to connect to the previous section we will take a different route than in most texts to
derive the Kohn-Sham exchange-potential from this energy expression. We will show that the
Sham-Schlüter equation naturally reverts to the optimised effective potential method (OPM) for
the exchange-correlation potential [73, 74, 75, 76]. We therefore chose to denote the optimised
effective potential in the exact-exchange approach by OEPx instead of EXX.

To derive the optimised effective potential (OEP) equations the Sham-Schlüter equation
(2.29) is first linearised [77, 78, 73] by replacing the fully interacting Green’s function, G, with
the Kohn-Sham Green’s function, GKS. Further replacing the self-energy with only the exchange
part (2.17), which is is equivalent to the Fock operator, and rearranging the resulting equation
into the conventional form of a non-linear integral equation yields the equation for the OEPx
potential [70, 74, 76, 79, 80]

∫

dr′χ0(r, r
′)vx(r′) = ΛOEPx(r) (2.33)

with

ΛOEPx(r) =

∫

dǫ

∫

dr′
∫

dr′′GKS(r, r′; ǫ)Σx(r′, r′′)GKS(r′′, r; ǫ). (2.34)

χ0(r, r
′) is the independent particle polarisability, χ0(r, r

′; ǫ = 0), as previously defined in the
context of the GW approximation (equation (2.13)).

The exchange-potential vx can be thought of as the best local potential approximating the
non-local Fock operator [73]. It is important to emphasise, however, that by construction the

7 Later in this section we will reintroduce the correlation energy in an approximate form that is commonly used
in connection with exact-exchange DFT calculations.
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total energy in Hartree-Fock is always smaller (or at most equal) and thus better than in
the OEPx formalism [81], because the energy minimisation in the optimised effective potential
method is subject to the constraint of the wavefunctions being solutions to the Kohn-Sham
equation (2.26). The eigenvalues of the OEPx formalism, on the other hand, derive from
an effective mean-field approach for non-interacting particles, whereas in Hartree-Fock they
correspond to the energies of electrons interacting via Pauli but not Coulomb correlation. The
Kohn-Sham particles in the valence and conduction bands are therefore governed by the same
effective potential, which exhibits the correct asymptotic behaviour (1/r decay for large distances
in finite systems) in the OEPx.

In Hartree-Fock on the other hand virtual conduction electrons are only poorly accounted
for and experience a different potential than the valence electrons. Since the Fock-operator
contains the self-interaction correction only for the valence electrons, a virtual conduction
electron interacts with all N valence electrons, in contrast to a valence electron, which interacts
only with the remaining N -1 electrons. Thus, for a charge neutral system each valence electron
in Hartree-Fock experiences a density of netcharge +1 and the correct 1/r potential decay
results for finite systems. This stands in obvious contrast to the description of the virtual
conduction electrons, that see a neutral charge density. Since excitations in the valence and
conduction bands of solids leave the charge density largely unchanged the different treatment
of valence and conduction electrons within Hartree-Fock appears to be unjustified. Indeed, as
we will present in the following sections the OEPx eigenvalues are closer to the photo-electron
excitation energies for the four semiconductors discussed in this article than the Hartree-Fock
energies.

The exact-exchange potential vx is only implicitly a function of the electron density via the
Kohn-Sham orbitals. This is in accordance with the Hohenberg-Kohn theorem as can easily be
seen by performing the functional derivative of the exact-exchange energy (2.31) with respect
to the density. Applying first order perturbation theory yields the more familiar expression for
the OEPx equation8

vx(r) = −

occ
∑

i

∫

dr′
∫

dr′′
[

φ∗i (r
′)Gi(r

′, r′′)
δEx

δφ∗i (r
′′)

+ c.c.

]

χ−1

0
(r′′, r′) (2.35)

with

Gi(r
′, r′′) =

∑

j 6=i

φj(r)φ
∗
j (r

′)

ǫj − ǫi
. (2.36)

In OEPx calculations local correlation is frequently added by including the LDA correlation
energy

ELDA

c [n] =

∫

dr ǫHEG

c (n(r)) (2.37)

in the expression of the total energy (2.32). Here we follow the parametrization of Perdew
and Zunger [82] for the correlation energy density ǫHEG

c (n(r)) of the homogeneous electron gas
(HEG) based on the data of Ceperley and Alder [83].

Adding LDA correlation improves the ionisation potential of the constituent atoms as will
be shown later, but has little affect on the quasiparticle bandstructures of the compound
semiconductors presented in section 3.3.3. In the following we will refer to the OEP exact-
exchange only scheme by OEPx in order to distinguish it from the scheme with added LDA
correlation, termed OEPx(cLDA).

8 Likewise this equation can be obtained from (2.33) by integrating out the frequency dependence of the
inhomogeneity ΛOEPx, which can be done analytically because Σx is a static operator.
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The improvement of the exact-exchange approximation over the conventional LDA or GGA
approach is largely due to the removal of the self-interaction in the OEPx formalism. Or in
other words, the interaction of an electron with itself, as introduced by the Hartee potential
(2.19), is fully removed by the exact vx. Since the OEPx exchange potential derives from an
orbital dependent functional it exhibits an integer discontinuity with respect to variations in
the particle number [71] (as does the full OEP potential [65]), unlike the smoothly varying
exchange-correlation potentials in LDA or GGA. For solids, however, it is still unclear how
to interpret this discontinuity in OEPx bandstructure calculations [24]. This shall be of no
immediate concern for our work because using the OEPx eigenvalues as input for the Green’s
function is formally well defined.

On a more important note we like to emphasise that the exact-exchange potential can be
derived from the framework of many-body perturbation theory unlike vxc in the LDA or GGA,
for which this is only true in the jellium limit. Equation (2.33) therefore provides a rigorous
connection between the exact-exchange Kohn-Sham system and GW . From this observation we
draw the hypothesis that the OEPx approach provides a better starting point for quasiparticle
energy calculations than LDA or GGA. In the remainder of this paper we will verify this
hypothesis numerically for the four materials considered here.

As a side note we like to mention that part of the quasiparticle screening can already be
incorporated on the level of DFT. Rooted in the generalised Kohn-Sham scheme [84], the so
called screened-exchange approximation (sX-LDA) [84, 85, 86, 87] utilises an ad hoc model
(typically Thomas-Fermi) to screen the exchange-interaction. Conceptionally the sX-LDA
approach is similar to the screened-exchange (SEX) approximation in the framework of the
GW method [88]. Bandstructures in the sX-LDA scheme are reported to be in good agreement
with experiment for semiconductors and insulators [84, 85, 87]. This indicates that sX-LDA
could be a viable alternative to the OEPx as a starting point for GW calculations. A numerical
verification of this conjecture, however, will be left to future studies.

3. Shallow Semicore d-Electron Systems

The II-VI compounds and most of the group-III-nitrides are characterised by the semicore d-
electrons introduced by the cation. Compared to other materials with semicore states the cation
d-electrons in ZnO, ZnS and CdS have a small binding energy of around 9 eV [89, 90] and are
thus energetically close to the valence states with mostly anion p-character. For GaN X-ray
photoemission experiments report two peaks at 17.7 eV and 14.2 eV that have been attributed
to the Ga 3d states and the N 2s bands, respectively [91] (see section 3.3.2 for bandstructure
plots). In the Zn and Cd based semiconductors the p-d hybridisation is therefore larger than in
GaN, which in turn exhibits stronger s-d coupling. The effect of this qualitative difference on
the electronic wavefunctions and densities will be discuss in section 3.3.1.

In light of this argument it is essential to find a good description of the p-d and s-d coupling
in order to calculate the structural and the electronic properties of these materials. In the past
a common approximation has been to simply remove the d-electrons from the calculation and
to model the interaction of the valence electrons with the atomic core by a pseudopotential (see
next section). Although this is computationally very efficient it leads to a distinct disagreement
between theory and experiment for the strucural properties [26, 27, 28] as well as for electronic
excitations [33, 34, 35].

In the following section we will introduce the pseudopotential approximation and elucidate
how shallow semicore electron systems can be treated consistently in our OEPx(cLDA)+GW
approach for the electronic structure.
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3.1. Core-Valence Partitioning and Pseudopotentials

The pseudopotential approach to electronic structure methods for polyatomic systems employs
the more general concept of core-valence partitioning. Motivated by the observation that deep
core states are relatively inert and do not contribute to chemical bonding they are often treated
on a different footing than valence or semicore9 electrons.

In ab initio pseudopotential calculations the potential due to the nuclei and the core electrons
is replaced by an ionic pseudopotential. A good pseudopotential should be smooth and should
describe the interaction with the remaining valence electrons of the atom well, while at the
same time being transferable across chemically different environments. The pseudopotential is
constructed by replacing the valence wavefunctions of the isolated atom by smooth, nodeless
pseudowavefunctions inside a given cutoff radius. Inversion of the atomic Schrödinger equation
then yields the atomic pseudopotential and by substracting out the Hartree and exchange-
correlation potential generated by the pseudovalence states the ionic pseudopotential is obtained.
For reciprocal-space electronic structure methods a substantial reduction of the computational
cost can be gained in this way, because the oscillations of the atomic wavefunctions near the
nucleus no longer have to be resolved by plane-waves. Once the pseudopotential has been
generated the core electrons have been removed from the calculation of the polyatomic system
and remain frozen inside the nucleus. Core relaxation and polarisation effects can thus not be
taken into account, because the pseudopotential is typically not adjusted to the new chemical
environment during the self-consistency cycle.

Since any calculation following core-valence partitioning can never be better than the
accuracy with which the interactions between core and valence electrons have been treated [92],
it has long been recognised that consistency is paramount. For DFT calculations with local or
semi-local exchange-correlation functionals this is achieved by employing the same functional in
the generation of the pseudopotential and the calculation of the extended or molecular system.
In fact ab initio LDA or GGA pseudopotentials are now routinely applied in LDA or GGA
calculations to a wide range of systems. When going beyond DFT, however, consistency will
almost inevitably be violated. In quantum Monte Carlo calculations for example Hartree-Fock
pseudopotentials are frequently employed [93], whereas GW calculations are almost exclusively
based on an LDA or GGA ground state [10] and the respective pseudopotential [9]. One
way of compensating for the lack of many-body pseudopotentials would be to introduce core
polarisation effects into the pseudopotential [93, 94]. By extending the GW formalism to include
core contributions in the dielectric screening and the self-energy such core-polarisation-potentials
(CPP) have also been incorporated successfully into the GW method [95].

Ultimate consistency would of course imply to abolish pseudopotential-core-valence
partitioning and to treat all electrons on the same footing. While DFT-all-electron methods have
become a standard technique in condensed matter physics all-electron GW implementations are
only slowly emerging. Early calculations were carried out in the atomic sphere approximation
(ASA) to the linearised muffin-tin-orbital (LMTO) method [96, 97, 98, 99]. Only fairly recently
GW calculations in the full-potential (FP-LMTO) [29, 32] or the full-potential linearised
augmented-plane-wave (LAPW) method [30, 31, 58] have been reported, whereas the projector-
augmented-wave (PAW) scheme [100, 101] falls into a mixed category. While the effect of
the core-electrons on the valence electrons is included in the PAW method, the augmentation
projectors are not updated in the calculation. That puts the treatment of the core electrons in
PAW on the same footing as in a pseudopotential approach.

In order to reduce the size of the frozen core in the pseudopotential approach and therefore

9 In the destinction between valence and core states, semicore states have binding energies between those of
core and valence electrons, but hybridize with valence states or contribute to chemical bonding.
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to move towards an all-electron description, more core electrons can be explicitly considered as
valence electrons in the calculation [33, 34, 35, 59, 102]. Special care has to be taken, however,
if an angular momentum channel has more than one bound state. The computational costs for
treating core states in this fashion are moderate when localised basis sets are used [33, 34], but
fromidable in a plane-wave implementation [35, 59, 102].
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Figure 2. Effective Kohn-Sham potential for the neutral Zn (left panel) and Ga (right
panel) atom: the OEPx(cLDA) potential (red line) reproduces the correct asymptotic
decay −e2/r (black line), whereas the LDA (blue, dashed line) decays exponentially
and thus underbinds the electrons. The atomic levels (shown as horizontal lines)
are lowered in the OEPx(cLDA) approach compared to the LDA resulting in good
agreement with the experimentally measured ionisation potential (green horizontal
line).

Since the quality of the basis set in real and reciprocal space methods can be systematically
monitored and increased simply by including more points or plane-waves we prefer to stay
within the framework of plane-wave and so called mixed-space electronic structure calculations
[103, 104] in this study. In order to capitalise on the “cost-effectiveness” of the pseudopotential
approach and the numerical convenience of plane-waves we combine the GW excited state
calculations with DFT ground state calculations in the exact-exchange formalism (denoted
OEPx+GW in order to draw a distinction to GW calculations based on the LDA ground state,
LDA+GW , which we perform for comparison). Employing exact-exchange pseudopotentials
[36, 37] allows us to freeze the s and p electrons of the semicore d-shell in the core of the
pseudopotential while retaining the d-electrons as valence states in the calculation (see also Tab.
1). Our numerical results for the quasiparticle bandstructures in the OEPx+GW formalism
(sections 3.3.2, 3.3.3 and 3.3.4) show good agreement with available photo-electron spectroscopy
data, which indicates that the dominant interaction between the core and valence electrons
is exchange mediated and is well described by the exact-exchange pseudopotentials for the
compounds considered here. This is one of the key results of our work and we will elucidate it
further in later sections.

Figure 2 illustrates the improvement for the Kohn-Sham eigen-energies obtained in the
OEPx(cLDA) formalism compared to the conventional LDA treatment for the Zn (on the left)
and the Ga atom (on the right). In our work we follow the approach of Mourkara et al. [36] in
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Table 1. Pseudopotential reference parameters: The electron configuration is given
in the 2nd column with the core electron configuration in square brackets. The same
core radius rc (given in bohr) was used for all angular momentum components and
the local component lloc is listed in the 4th column. For N only s and p components
are considered [105].

Cation Configuration rc lloc Anion Configuration rc lloc

Zn [Ar]3d104s2 2.2 s N [He]2s22p3 1.5 p
Ga [Ar]3d104s24p1 2.2 s O [He]2s22p4 1.6 d
Cd [Kr]4d105s2 2.2 s S [Ne]3s23p4 1.7 d

constructing the OEPx and OEPx(cLDA) pseudopotentials. The parameters for the LDA and
exact-exchange pseudopotentials are taken to be the same and are listen in Table 1. Returning
to Fig. 2 we observe that the effective Kohn-Sham potential (red line) follows the correct
asymptotic −e2/r potential outside the atom (black line), whereas the the LDA potential (blue,
dashed line) decays exponentially fast. The strong underbinding of the electrons inherent to
the LDA is greatly reduced in the OEPx(cLDA) approach. This is largely due to the removal
of the self-interaction in the OEPx(cLDA), which leads to a lowering of the atomic levels.
Good agreement between the highest occupied electronic level and the experimental ionisation
potential is then observed.

We will close this section with a brief overview of the compuational cost associated with our
approach. For this purpose we will focus on the example of zinc-blende GaN. To converge the
LDA full-shell pseudopotential ground state calculation, where the Ga 3s and 3p are treated as
valence electrons, a plane wave cutoff of 300 Ry is needed. To achieve convergence of better
than 0.1 eV in the quasiparticle energies a cutoff of 144 Ry for the correlation and 270 Ry for
the exchange part of the GW self-energy is required [106]10. For the computationally more
intensive correlation part this is twice as much as is needed when the Ga 3s and 3p electrons are
frozen in the core of the pseudopotential (see Tab. 2). Since the GW space-time method scales
quadratically with the number of real-space points and cubically with the number of G-vectors
doubling the cutoff increases the computational load by a factor that lies somewhere between 8
and 22 depending on how much the inversion of the dielectric function dominates the scaling.
It is therefore desirable to keep the cutoff in plane wave GW calculations as low as possible.

A GW plane wave cutoff of 70 Ry for GaN can still be considered as moderate both in
terms of memory and hard disk space usage as well as computational time. The OEPx+GW
calculations for the zinc-blende structures presented here can still be carried out on a modern
PC or workstation, whereas the memory and disk space requirements for the full-shell GW
calculations quickly reach dimensions presently only available on high-performance computing
clusters and at super computer facilities.

The computationally most intensive part of our OEPx+GW approach are currently the
exact-exchange calculations. Since we follow the OEP scheme for solids developed by Görling
[17] an explicit calculation and inversion of the static polarisability is also required for the
OEPx ground state calculations (see equation (2.35)). In our experience every iteration of the
OEPx self-consistency cycle in this implementation is comparable to a full GW calculation
in terms of hardware requirements and run time. Altogether between 5 and 8 OEP cycles
are needed to converge the exact-exchange calculations presented in this article. Recently,
however, a new OEP scheme has been proposed [107, 108, 109], which circumvents an explicit

10This compares well to parameters for other materials [59, 102], although the parameters in Ref. [35] appear
to be somewhat low.
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Table 2. Computational parameters: zinc-blende lattice constant (aZB) in Å, plane-
wave cutoff (Ecut), reduced cutoff for the inversion of χ0 in OEPx (χcut) and the
band cutoff for the Green function (bcut) are listed in Rydberg. Column 5 gives the
change in the macroscopic dielectric constant (εM ) in percent when the non-local (NL)
component of the OEPx(cLDA) pseudopotential is included and the last column the
resulting change in the quasiparticle band gap.

aZB Ecut χcut bcut ∆εM/εM ENL
gap − Egap

GaN 4.500 70 Ry 45 Ry 40 Ry -10 % 0.07 eV
ZnO 4.620 60 Ry 35 Ry 56 Ry -15 % 0.15 eV
ZnS 5.400 60 Ry 35 Ry 40 Ry 0 % 0.00 eV
CdS 5.818 50 Ry 30 Ry 24 Ry +8 % -0.03 eV

solution of equation (2.35). This alternative scheme promises to be computationally much more
efficient than our current implementation and therefore to substantially reduce the cost of the
OEPx+GW approach.

3.2. Computational Details

All ground state calculations are performed with the pseudopotential plane-wave DFT code
SFHIngX [110]. The OEPx formalism for solids [17] has recently been added [25] to this
program package. For the DFT calculations in the local-density approximation [61] we use the
parameterisation by Perdew and Zunger [82] of the Ceperley and Alder data for the homogenous
electron gas [83].

All LDA pseudopotentials are constructed with the fhi98PP generator [111], in the Troullier-
Martins (TM) scheme [112] and transformed to the non-local, separable Kleinman-Bylander
form [113]. For the four compounds presented in this article our LDA calculations with these
pseudopotentials reproduce the bandstructure of all-electron LDA calculations in the (linearised)
augmented-plane-wave plus local orbital ((L)APW+lo) approach [114] to within 0.1 eV [115].
For the OEPx and OEPx(cLDA) pseudopotentials we follow the method developed by Moukara
et al. [36].

The GW calculations are performed employing the GW space-time approach [103] in the
gwst implementation [104, 116]. To accelerate the convergence with respect to the number of
k-points and to avoid numerical instabilities arising from the Coulomb singularity at k = 0
in reciprocal space we treat head and wings of the dielectric matrix (2.13) in kp-perturbation
theory [88, 117, 104]. In this approach the inverse of the head of the inverse dielectric matrix is
then equivalent to the macrosopic dielectric constant εM in the RPA. We find that εM is fully
converged if a 4×4×4 k-grid with an offset of [1

2
, 1

2
, 1

2
] is used for the Brillouin zone integration.

A 4×4×4 k-grid with no offset then proves to be sufficient for the full GW calculation. The
non-local part of the OEPx(cLDA) pseudopotentials, which is fully taken into account in our
implementation, reduces the RPA macroscopic dielectric constant εM in GaN and ZnO, but
increases it in CdS, as can be seen in Tab. 2. The quasiparticle band gap, however, is modified
only slightly. More details will be given elsewhere [118].

With respect to the plane-wave cutoff (Ecut) in all DFT and GW calculations the single
particle energies are converged to better than a tenth of an eV for the values listed in Tab. 2.
The static polarisability in the OEP calculations is set up and inverted in a smaller plane-wave
basis with a reduced cutoff energy χcut. Further increasing χcut changes the eigenvalues by less
than 0.01 eV [25]. Finally all unoccupied bands with energy ǫ − EF < bcut are included in
the GW Green’s function. All calculations are carried out for zinc-blende structures. In order
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to facilitate an unambigious comparison with experiment or in other words to benchmark the
performance of our computational approach against the exact theory all calculation are carried
out at the experimental lattice constants, as reported in column 1 of Tab. 2.

To solve the quasiparticle equation (2.20) we approximate the quasiparticle wavefunctions
by the Kohn-Sham eigenfunctions: ψnk(r) = φnk(r). For the upper valence and conduction
bands of standard semiconductors numerical investigations indicate that this approximation is
well justified [9, 10], but it breaks down for certain surface [119, 120, 121, 122] and cluster states
[123, 124]. We will leave an analysis of the quasiparticle wavefunctions to future studies and
instead solve the diagonal quasiparticle equation

ǫqp
nk

= ǫDFT

nk
+ 〈φnk|Σ

GW
xc (ǫqp

nk
) − vxc − ∆µ|φnk〉 (3.1)

iteratively for the quasiparticle energies ǫqp
nk

. At every iteration step the DFT energies are shifted
by a constant ∆µ that aligns the Fermi energies before and after applying the GW self-energy
corrections. This makes the solution of the quasiparticle equation robust against different energy
zeros of the exchange-correlation potential, in particular if the energy zero is not the same as
that of the self-energy. The alignment constant ∆µ was first introduced by Hedin [7] for the
electron gas to simulate to some extent the effects of self-consistency in G. Later it was shown
for a model system [125] that ∆µ is instrumental in keeping violations of charge conservation
negligible.

3.3. Electronic Structure of II-VI Compounds and Group-III-Nitrides

3.3.1. Electron Density and Wavefunctions Approximating the quasiparticle wavefunctions
with the Kohn-Sham eigenfunctions introduces a dependence on the exchange-correlation
functional into the GW calculation. Changing the functional from LDA to OEPx(cLDA) in the
ground state calculation will modify the wavefunctions and subsequently alter the interaction of
the quasiparticles. To elucidate these changes we have plotted the charge densities and charge
density difference for ZnS and GaN along the [111] direction through the unit cell (middle panel
on the right of Fig. 3 and 4, respectively). In the panel on the left hand side the differences
are broken down in terms of the partial charge densities ∆ni(r) that have been obtained by
summing over all wavefunctions in the bands indicated. In Ga the 3d electrons are lower in
energy than in Zn (see Fig. 2). The d-band complex is therefore found closer to the N 2s states
in GaN than to the S 3s in ZnS, as the bandstructures in Fig. 6 and 8 illustrate. For ZnS
we can thus clearly distinguish between the partial density of bands with mostly S 3s (dashed
green line), Zn 3d (red line) and sp character (blue line), whereas for GaN we included the N
2s states in the sum over the d-bands (red line). To visualise the spatial variation of the partial
electron density difference we included cross-section plots for the sp-valence states (top panel)
and d-states (lower panel) of ZnS in Fig. 3.

Inspection of Fig. 3 and 4 shows that the electron densities in LDA and OEPx(cLDA) are
nearly identical and almost indistinguishable on the scale of the plot. A magnification of the
density difference, however, reveals small charge accumulations in the bonding region and on
the cation for the OEPx(cLDA) ground state compared to the LDA one. Comparing GaN with
ZnS the charge localisation on the Ga atoms in the OEPx(cLDA) approach is found to be more
pronounced than on the Zn atoms. A closer look at the partial densities elucidates that this
qualitative difference arises from the different d-electron hybridisation in these two compounds.
In ZnS the d-states hybridise with the sp-valence states so that the removal of self-interaction
in the OEPx(cLDA) leads to a stronger localisation of the d-electrons (red line) on the Zn
atom, whereas the valence electrons (blue line) are drawn from Zn into the bonding region. The
two effects are of opposite nature and as a result a negligible overall charge density difference is
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Figure 3. Comparison between OEPx(cLDA) and LDA results for the electron density
and the partial densities difference (∆ni(r)) of ZnS: Positive density differences indicate an
accumulation in OEPx(cLDA). Middle panel – left : partial density differences along the [111]
direction through the unit cell; while the s-band (green, dashed) remains largely unaffected,
the d-electrons (red) are drawn from the valence region and are localised more strongly on
the Zn atom, whereas the remaining valence electrons (blue) accumulate stronger in the
bonding region in OEPx(cLDA). Middle panel – right : The OEPx(cLDA) (red, solid) and
LDA (black, dashed) electron densities are almost indistinguishable. The density difference
(blue line – magnified by a factor of 10) reflects the partial density changes. (The scale of
the ordinate is the same as in Fig. 4.) Cross sections through the partial density difference
in electrons/bohr3 for valence bands (7-9) and d-bands (2-6) are displayed in the top and
bottom panel, respectively. The path taken for the one-dimensional plots in the middle panels
is marked by the black line.
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Figure 4. Left hand side: partial density differences (∆ni(r)) along the [111] direction
through the unit cell of GaN (same as Fig. 3). The d-electrons (red) localise stronger on the
Ga atom, but are not drawn from the remaining valence electrons (blue) as in ZnS. Right

hand side: The OEPx(cLDA) (grey) and LDA (black) electron densities are very similar.
The density difference (red line – magnified by a factor of 5) reflects the stronger localisation
of the d-electrons.

observed since the S 3s states remain almost unaffected by the change in the exchange-correlation
potential. This behaviour is analogously found in ZnO and CdS.

In GaN on the other hand the d-states hybridise strongly with the N 2s states (shown
together as red line) and are energetically separated from the remaining valence electrons (blue
line). Again we observe a localisation of the d-electrons on the cation upon removal of the
self-interaction. But this time the charge accumulation is not compensated by a reduction of
the valence electrons, which were already bound closer to the N atom and are now shifted more
into the bonding region by the OEPx(cLDA).

Previously it was observed that LDA densities are more homogeneous than their OEPx
counterpart [19]. Furthermore, the OEPx density was found to localise stronger in the bonding
region for GaAs and GaN [20]. In these calculations the d-electrons were frozen in the core of the
pseudopotential. Although these observations certainly apply to the upper valence electrons our
results show that the d-electrons introduce the opposite effect. This leads to a more pronounced
electron localisation on the cation in GaN in the OEPx approach11 and cancels out the charge
accumulation in the bonding region in ZnO, ZnS and CdS.

In the following sections we will analyse the implications of these observations for the
bandstructure of the four semiconductors and compare to spectroscopical data where available.

3.3.2. Band Gaps Before we proceed with a more detailed analysis of the electronic structure
for the selected II-VI compounds and group-III-nitrides in our approach we like to highlight one
of our key results: the OEPx(cLDA) based schemes systematically open the band gap compared to
the LDA based variants, as illustrated in Fig. 5. Our GW bandstructure calculations reproduce
the experimental values very well12 when starting from the OEPx(cLDA) ground state. In the

11The inclusion of LDA correlation in OEPx(cLDA) does not change these observations.
12For ZnO experimental data is only available for the wurtzite structure. On the level of LDA the band gap is
0.2 eV larger in wurtzite than in zinc-blende. To compare with the experimental data we have therefore adjusted
all values for ZnO in Fig. 5 by this amount.
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Figure 5. Theoretical versus experimental band gaps: the OEPx(cLDA) based schemes
systematically open the band gap compared to the LDA based calculations. Our
OEPx(cLDA)+GW calculations with the cation d-electrons included as valence electrons
agree very well with the experimental values (see Tab. 3 for references). (For ZnO an estimate
of 0.2 eV was added to the zinc-blende values in order to compare to the experimental results
for wurtzite (see text).)

LDA based GW calculations on the other hand the band gaps are underestimated appreciably
with the LDA itself giving the most severe underestimation [26, 27, 28].

3.3.3. II-VI Semiconductors In Fig. 6 we compare the four different computational approaches
for the whole bandstructure of ZnS13. To facilitate a numerical comparison we have also listed
the band gaps and d-electron binding energies in Tab. 3 and 4 together with the values for the
other compounds.

We observe that the reduction of the p-d hybridisation due to the removal of the self-
interaction in OEPx(cLDA) discussed in the previous section decreases the valence bandwith
and a larger gap between the p and d bands is opened (right panel). The d-bands, however,
remain almost in the same position as in the LDA. The GW valence bandstructure is very
similar to the OEPx(cLDA) one, apart from small dispersive shifts in the p-band complex. The
conduction bands are shifted up almost uniformly opening the fundamental band gap to 3.7 eV
compared to the experimental value of 3.8 eV.

Starting from the LDA ground state, however, we find that in GW the d-bands overlap in
energy with the p-bands (left panel). The reason for this unphysical behaviour can be traced
back to the pseudopotential approximation. Since the atomic d-orbitals of Zn and Cd overlap
considerably with the wavefunctions of the s and p electron in the same shell, the exchange
interaction between the d and the remaining core electrons in this shell is strong. The poor
performance of the LDA can thus largely be explained by spurious self-interaction effects, as
alluded to before and demonstrated numerically by applying self-interaction corrections (SIC)
[11, 12, 13, 126].

13The results for ZnS are representative for ZnO and CdS and we therefore only show bandstructure for ZnS.
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In Fig. 7 we have plotted the quasiparticle corrections of ZnS and GaN as a function of the
Kohn-Sham energy. If valence and conduction bands were shifted uniformly, as this is the case in
Silicon for instance, the circles would form horizontal lines with a jump at the Fermi energy [78].
Instead the quasiparticle corrections to the upper valence states of the OEPx(cLDA) ground
state decrease linearly with increasing energy. This leads to a change of the band dispersion in
the quasiparticle bandstructure and we thus speak of dispersive quasiparticle shifts. The origin
for the dispersive nature of the quasiparticle shift is still unclear and needs to be investigated
in the future. The corrections to the LDA bandstructure of ZnS, however, exhibit two different
features: one branch shows a similar dispersion than in the OEPx(cLDA)+GW case, whereas
the corrections to the band that hybridises most strongly in energy with the d-electrons scatter
wildy. This unphysical behaviour is a direct consequence of the inconsistent treatment of core-
valence exchange in these pseudopotential LDA+GW calculations.
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Figure 6. Band structure of ZnS in LDA and LDA+GW (panel on the left) compared
with OEPx(cLDA) and OEPx(cLDA)+GW (panel on the right). Consistent
pseudopotentials are used. All bandstructures have been aligned at the valence band
maximum (dotted line at 0 eV). For reference the experimental band gap is marked
by the 2nd dotted line.

For computational schemes that rely on core-valence partitioning it is therefore essential to
capture the dominant part of core-valence exchange and correlation correctly. Retaining the
s and p orbitals of the cation d-shell in the core of the pseudopotential will effectively freeze
the core-valence interaction on the level of the density functional employed, i.e. here LDA or
OEPx(cLDA). In the subsequent GW calculation, however, this interaction would be treated
by the non-local, dynamic self-energy. Since the dominant contribution arises from core-valence
exchange, the LDA is not particularly well suited to replace the self-energy. As a consequence
the perturbation matrix [Σ−vxc]nm becomes non-diagonal and equation (3.1) is no longer valid.
As a result the d-bands are incorrectly shifted up into the upper valence bands (see left panel
of Fig. 6) and the energy gap opens only by 0.8 eV to 1.60 eV. This effect was first observed by
Rohlfing et al. [33] (see also line 13 in Tab. 3 and 10 in Tab. 4), who also noted that moving
up to second-order perturbation theory in the solution of equation (3.1) gives only marginal
improvements. In order to restore the exchange-interaction, the s and p electrons would have
to be included as valence electrons in the GW calculation for the Fock part of the self-energy
to take effect [33, 34, 35] (lines 14 and 15 in Tab. 3 and lines 11 and 12 in Tab. 4).

In the OEPx approach on the other hand exchange is treated exactly. Since we expect
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Figure 7. Quasiparticle shifts as function of the Kohn-Sham energy for ZnS and
GaN for GW calculations based on an LDA (open circles) and an OEPx(cLDA)
(filled circles) ground state. In order to avoid visual distortions due to the band
gap difference between LDA and OEPx(cLDA) the curves have been aligned on the
abscissa such that both the valence band maximum (VBM) and the conduction band
minimum (CBM) are equal to zero. For both materials the quasiparticle corrections
to the OEPx(cLDA) bandstructure are dispersive. In GaN this effect is slightly more
pronounced than in ZnS. The corrections to the LDA bandstructure are less dispersive
in GaN, but scatter strongly for ZnS (see text).

dynamic correlation effects to be small for core electrons, the dominant contribution is therefore
captured by OEPx and we can retain the s and p core states in the frozen core of the
pseudopotential. Indeed we observe that the improved description of the pseudoatoms obtained
in OEPx(cLDA) (section 3.1) translates to the solids giving band gaps and d-electron binding
energies systematically closer to experiment than in LDA+GW . Including LDA correlation
increases the band gaps and d-electron binding energies only slightly by between 0.1 and 0.2
eV compared to OEPx (lines 5 and 6 in Tab. 3 and 4). While the GW formalism proves to be
insensitive to this small variation for the band gaps (lines 7 and 8 in Tab. 3) the small shift
carries over from OEPx+GW to OEPx(cLDA)+GW for the d-electron binding energies (lines
7 and 8 in Tab. 4).

For ZnS and CdS OEPx(cLDA) and OEPx(cLDA)+GW produce essentially the same d-
electron binding energies. Only in ZnO quasiparticle corrections are found to lower the d-states
by 1.5 eV compared to OEPx(cLDA), further reducing the p-d coupling. Overall the binding
energies obtained with our OEPx(cLDA)+GW agree well with other available GW calculations
(line 11, 12 and 14 in Tab. 4), but are still about 2 eV at variance with experiment. Previously
Rohlfing et al. have devised a GW scheme in which plasmon satellites are included in the Green’s
function denoted here by SAT (line 13 in Tab. 4). Although the SAT improves on the d-electron
binding energies the good agreement with experiment for the valence part of the bandstructure
is lost [133]. Work towards a more elaborate theory that provides a description of both the
upper valence part of the bandstructure and the d-bands in agreement with photoemssion data
is clearly required in the future.

For completeness we have also included previous studies in Tab. 3 in which the d electrons
were treated as part of the frozen core (lines 10-12). For reasons given in the previous
section these calculations have to be interpreted cautiously because p-d and d-s hybridisation is
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Table 3. DFT and quasiparticle band gaps in eV for ZnO, ZnS, CdS, and GaN
in the zinc-blende structure sorted in increasing energy from top to the experimental
values. The first column lists the DFT scheme and the second column denoted PP the
pseudopotential used. For all-electron calculations this column denotes if the atomic
sphere approximation (ASA) or the full potential (FP) was employed. ”Conf.” refers
to the configurations of the (pseudo)atoms: d-electrons included (d), as described
in the previous section, valence only (no d’s), d-electrons and their respective shell
included (d-shell) and all-electron (all e−). Experimental results are taken from: ZnO
[127], ZnS [128], CdS [129], GaN [130] and the OEPx(cLDA) and GW data from:
aRef. [131], bRef. [132], cRef. [23], dRef. [18], eRef. [20], fRef. [33], gRef. [35],
hRef. [34], iRef. [30], jRef. [29], kRef. [98], lRef. [99]. The superscript w denotes
wurtzite structures. In Ref. a and b a model dielectric function was employed and in
Ref. e,f,g,h a plasmon pole model was used.

DFT PP Conf. GW ZnO ZnS CdS GaN

1 LDA LDA d 0.51 1.76 0.81 1.65
2 OEPx(cLDA) LDA d 1.34 2.19 1.34 2.55
3 LDA LDA d GW 1.36 2.59 1.60 2.54
4 OEPx(cLDA) LDA d GW 2.03 2.65 1.71 2.87
5 OEPx OEPx d 2.34 2.94 1.84 2.76
6 OEPx(cLDA) OEPx(cLDA) d 2.57 3.08 1.96 2.88
7 OEPx OEPx d GW 3.07 3.62 2.36 3.09
8 OEPx(cLDA) OEPx(cLDA) d GW 3.11 3.70 2.39 3.09

9 Experiment 3.44w 3.80 2.48 3.30

10 LDA LDA no d’s GW 3.98a 2.83a 3.10b

11 OEPx(cLDA) OEPx(cLDA) no d’s 3.74c 3.46d

12 OEPx(cLDA) OEPx(cLDA) no d’s GW 3.49e

13 LDA LDA d GW 1.50f

14 LDA LDA d-shell GW 3.64g

15 LDA LDA d-shell GW 3.50h 2.45h 2.88h

16 LDA FP all e− GW 2.44w,i 3.24j 3.03w,j

17 LDA ASA all e− GW 4.06w,l 3.97k 3.25w,l

completely absent.
Existing full-potential all-electron LDA+GW calculations (line 16) report band gaps to

within 0.5 to 0.6 eV for GaN and ZnS, but are more at variance for ZnO. An underestimation
in the RPA dielectric screening resulting from the LDA ground state was given as a possible
explanation for this discrepancy in Ref. [30]. The change in density and wavefunctions from
LDA to OEPx(cLDA) (see previous sections) is also likely to be an important factor, which
requires further analysis. Recently this conjecture was substantiated by an approximate self-
consistent GW scheme in which new ground state wavefunctions and a new ground state density
were calculated from a static but non-local self-energy at every iteration step [32]. Earlier all-
electron calculations in the atomic sphere approximation (ASA) to LMTO were also included
in Tab. 3 and 4 (lines 15 and 17, respectively). The restriction of the potential to a spherical
shape inside the atomic spheres together with the omission of interstitial plane waves in the
LMTO leads to an overestimation of band gaps and d-electron binding energies in the ASA. The
seemingly good agreement with experiment for ZnS and GaN, however, is therefore fortuitous
as the comparison with the more sophisticated full-potential LAPW calculations in the lines
above illustrates.

To emphasize the importance of consistency concerning the choice of the exchange-
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Table 4. d-electron binding energies referenced to the top of the valence band: The
layout is the same as in Table 3. Experimental values taken from: aRef. [89], bRef.

[90], cRef. [91], and the GW data from: dRef. [33], eRef. [35], fRef. [34], gRef. [133],
hRef. [30], iRef. [29], jRef. [99], kRef. [98]. SAT denotes GW calculations including
plasmon satellites and the superscript w markes studies on the wurtzite structure. In
Ref. d,e,f a plasmon pole model was used.

DFT PP Conf. GW ZnO ZnS CdS GaN

1 LDA LDA d GW 4.29 4.30 6.17 13.05
2 OEPx(cLDA) LDA d GW 4.98 5.02 6.40 13.58
3 OEPx(cLDA) LDA d 4.36 5.33 6.54 12.75
4 LDA LDA d 5.20 6.32 7.72 14.25
5 OEPx OEPx d 5.12 6.91 7.57 14.85
6 OEPx(cLDA) OEPx(cLDA) d 5.20 7.05 7.61 15.02
7 OEPx OEPx d GW 6.68 6.97 7.66 16.12
8 OEPx(cLDA) OEPx(cLDA) d GW 6.87 7.08 7.75 16.15

9 Experiment 9.00w,a 8.97a 9.50b 17.70c

9.03b

10 LDA LDA d GW 5.20d

11 LDA LDA d-shell GW 7.40e

12 LDA LDA d-shell GW 6.40f 8.10f 15.70f

13 LDA LDA d-shell SAT 7.90f 9.10g 17.30f

14 LDA FP all e− GW 6.16h 7.10i 8.20i 16.40w,i

15 LDA ASA all e− GW 5.94w,j 8.33k 17.60w,j

correlation functional in the pseudopotential generation and subsequent bulk calculation we
found it illuminating to include a hybrid calculation in our analysis. Line 2 in Tab. 3
list the values of an OEPx(cLDA) calculation carried out with LDA pseudopotentials. The
gap increases over the LDA values but falls short of the LDA+GW results. Even more
illuminating are the results of the OEPx(cLDA)+GW hybrid calculation (line 4), which only
marginally improve on the LDA+GW scheme, jeopardizing the good agreement achieved with
OEPx(cLDA) pseudopotenials. This is due to the fact that the self-interaction frozen in the
LDA pseudopotential pushes the d-electrons up to the valence bands (line 3 in Tab. 4) effectively
closing the p-d gap. The resulting bandstructure looks similar to the LDA+GW bandstucture
in Fig. 6 giving little to no improvement on the LDA results.

Contrary to the LDA, the exchange potential in OEPx is constructed to best reproduce the
exchange part of the self-energy. OEPx and OEPx(cLDA) can therefore be regarded as the
better and more consistent ground state for a GW excited states calculation for these systems.
This conjecture is corroborated by the numerical results given in Tab. 3 and 4. Summarising the
hierachy that has emerged for the computational schemes presented here, we find all schemes
based on LDA pseudopotentials at the top of the table and therefore to be the least accurate. We
conclude that using OEPx(cLDA) pseudopotentials in our approach is essential. But despite the
considerably opening of the band gaps in the OEPx(cLDA) calculations for the four compounds,
many-body perturbation theory in the GW quasiparticle approximation is needed to achieve
a good description of the excitation spectrum and, hence, good agreement with spectroscopy
data.

3.3.4. Group-III-Nitrides: GaN As an example for the group-III-nitrides we only consider
GaN in this article, whose bandstructure in our different computational schemes is shown in
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Figure 8. Band structure of GaN in LDA and LDA+GW (panel on the
left) compared with OEPx(cLDA) and OEPx(cLDA)+GW (panel on the right).
Consistent pseudopotentials are used. All bandstructures have been aligned at the
valence band maximum (dotted line at 0 eV). For reference the experimental band
gap is marked by the 2nd dotted line.

Fig. 8. Values for the band gaps and the d-electron binding energies 14 have been included
in Tab. 3 and 4. The bandstructure of GaN clearly reflects the enhanced s-d coupling while
the p-d coupling is greatly reduced compared to the II-VI semiconductors. As a consequence
the upper valence bands are very similar in all four computational schemes. The removal of
self-interaction in the OEPx(cLDA) based approach (right panel) shifts all conduction states to
higher energies compared to the LDA (left panel), opening the band gap by 1.2 eV [25]. The
self-energy corrections in the OEPx(cLDA)+GW calculations, however, are not as pronounced
as for the II-VI semiconductors. This is due to the fact that the d-electrons are much lower in
energy and more strongly localised on the cation and hence do not contribute as much to the
correlation part of the self-energy as in the case of the II-VI compounds. The Ga d and N s
bands in our OEPx(cLDA)+GW are in very good agreement with GW calculations by Rohlfing
et al. [34] with small differences only at the Γ-point.

The quasiparticle shifts to the LDA ground state are dispersionless for the lower conduction
bands, as Fig. 7 illustrates, but scatter in an energy window of ±0.2 eV around a value of
-0.6 eV for the upper valence states. The self-energy correction to the OEPx(cLDA) ground
state on the other hand decreases almost linearly with increasing energy and is thus much more
dispersive than for the LDA ground state (compare also the left and right panel of Fig. 8).

It remains to be added that all statements made in the previous section about the comparison
between the OEPx and OEPx(cLDA) results and those of the respective GW calculations also
hold true for GaN. For the OEPx(cLDA) hybrid approach with LDA pseudopotentials we observe
two different regimes. Due to the reduced p-d coupling in GaN, the removal of the self-interaction
among the valence electrons leads to small improvements for the band gap in the OEPx(cLDA)
compared to the LDA results (lines 2 and 4 in Tab. 3). The Ga 3d binding energies and the
dispersion of the semicore bands, however, are comparable to those in the LDA (lines 2 and 4
in Tab. 4).

14The center of the d-bands for GaN has been obtained by averaging over the lowest five bands at the Γ-point
only.
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3.3.5. Electronic Self-Energy We will close our investigation into the electronic structure of
the four compounds presented here with an analysis of the electronic self-energy. Since we
apply GW non-self consistently as a perturbation to the Kohn-Sham bandstructure ({ǫDFT

nk
})

without diagonalising the quasiparticle Hamiltonian the quasiparticle energies ({ǫqp
nk

}) comprise
four contributions15

ǫqp
nk

= ǫDFT

nk + 〈φnk|Σ
GW
xc (ǫqp

nk
) − vxc − ∆µ|φnk〉 . (3.2)

A closer look at equation (3.2) reveals that the quasiparticle energies can change because a)
the Kohn-Sham bandstructure to which the self-energy corrections are applied changes b) the
ingredients (Kohn-Sham energies and wavefunctions) for the self-energy operator have changed
and/or c) because the wavefunctions used for the evaluation of the matrix elements in equation
(3.2) differ from one ground state to another.

To ascertain which of these three factors dominantes we have compiled the individual
contributions16 that enter equation (3.2) in Table 5 for three selected states of ZnS and GaN. In
order to isolate the influence of the Kohn-Sham bandstructure it is conducive to separated the
perturbation 〈Σ−vxc〉 into a static 〈Σx−vxc〉 and a dynamic17 〈Σc(ǫ

qp)〉 contribution evaluated
at the converged quasiparticle energy. The static part depends only on the wavefunctions of
the occupied states (see equation (2.17)) and the wavefunction of the bandstructure state for
which the quasiparticle energy is evaluated, whereas the correlation part of the self-energy
is additionally dependent on the wavefunctions of all unoccupied states and the Kohn-Sham
eigenvalues via the dynamic polarisability (see equation (2.12) to (2.18)).

Focusing first on the conduction band minimum (CBM) and the valence band maximum
(VBM) of ZnS and GaN we observe that the correlation contributions of the self-energy agree
to within 0.05 eV for the respective states and thus prove to be insensitive to changes in the
ground state from LDA to OEPx(cLDA). The same is true for the static contribution, which
changes up to only 0.3 eV, although both 〈Σx〉 and 〈vxc〉 taken individually exhibit larger
variations. This pattern is transferable to the other upper valence and conduction states and to
ZnO and CdS. From this we conclude that the perturbation 〈Σ − vxc〉 is small for this part of
the energy spectrum and largely insensitive to variations in the exchange-correlation functional
from LDA to exact-exchange in the II-VI compounds. In GaN the difference in the quasiparticle
shifts between the two GW calculations is more pronounced (see also Fig. 7) but with ∼0.7 eV
still amounts to only half of the band gap difference between LDA and OEPx(cLDA). The strong
improvement we have reported in the previous sections for the OEPx(cLDA)+GW approach is
therefore, to a large extend, due to the changes in the Kohn-Sham bandstructure.

For the d-bands, however, the situation is drastically different. The correlation contribution
is still very similar with differences around 0.3 eV, but the static contribution differs vastly by
up to 2.5 eV for the case of GaN. In addition the perturbation operator is no longer diagonal in
the LDA+GW calculations [33, 35] and the d-bands are pushed upwards into the upper valence
states in the II-VI compounds [33] (see Fig. 6). This is a direct consequence of the inconsistent
description of core-valence exchange for the cation in the LDA+GW approach. We therefore
expect that in full-shell LDA+GW calculations the static contribution for the d-electrons
becomes comparable in size to the values for our OEPx(cLDA)+GW calculations in which
core-valence exchange is treated much more consistently through the OEPx pseudopotentials.
At the same time this modified exchange self-energy will affect the perturbation operator for

15For clarity we have repeated equation (3.1) here.
16For the remainder of the discussion we have introduced 〈A〉 as a short hand notation for the matrix elements
〈φnk|A|φnk〉. The alignment constant ∆µ has been absorbed into the matrix elements of vxc.
17The distinction between static and dynamic is made here purely on the grounds of distinguishing between
explicitly energy dependent (dynamic) and energy independent quantities (static). It is not to be understood in
the quantum chemical sense as the difference between Hartree-Fock and dynamic correlation methods.
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Table 5. Contributions to the quasiparticle energy shift as applied via equation (3.2)
for ZnS and GaN and three different representative states: the conduction band
minimum (CBM), the valence band maximum (VBM) and the highest (lowest) d-
electron state for Zns (GaN) at the Γ-point (d-state). The columns list the DFT
eigenvalues (ǫDFT) for the respective ground state (GS) calculation, the matrix
elements of the exchange part (〈Σx〉, equation (2.17)) and the correlation part (〈Σc〉,
equation (2.18)) of the self-energy, the matrix elements of the exchange-correlation
potential (〈vxc〉, including the alignment constant ∆µ (equation (3.1))) and the static
contribution (〈Σx − vxc〉). (All energies are given in eV).

State GS ǫDFT 〈Σx〉 〈vxc〉 〈Σc〉 〈Σx − vxc〉

ZnS

CBM
LDA 1.75 −7.14 −11.82 −4.33 4.68
OEPx(cLDA) 3.08 −6.56 −11.26 −4.39 4.69

VBM
LDA 0.00 −17.64 −15.60 1.62 −2.04
OEPx(cLDA) 0.00 −17.60 −15.73 1.57 −1.87

d-state
LDA −6.62 −28.19 −24.74 4.95 −3.46
OEPx(cLDA) −7.29 −29.01 −23.29 5.27 −5.71

GaN

CBM
LDA 1.65 −10.05 −14.76 −4.27 4.72
OEPx(cLDA) 2.88 −9.23 −13.61 −4.28 4.38

VBM
LDA 0.00 −21.15 −18.40 2.32 −2.76
OEPx(cLDA) 0.00 −21.45 −19.03 2.32 −2.43

d-state
LDA −13.97 −31.77 −27.40 5.19 −4.37
OEPx(cLDA) −14.89 −32.46 −25.61 5.50 −6.85

the valence states much more, which then leads to a lowering of the occupied states relative
to the conduction states and thus to the opening of the band gap that is observed in full-shell
[33, 34, 35, 131] and all-electron [29, 30, 32] LDA+GW calculations. A numerical verification
of this hypothesis will be given elsewhere.

4. Conclusions

We have reported a first combined OEPx and GW study investigating the effects of semicore
states on the electronic structure of selected II-VI compounds and group-III-nitrides. The
removal of the self-interaction in the OEPx(cLDA) approach leads to a stronger localisation of
the cation d-electrons compared to the LDA and thus to a reduced p-d hybridisation. As a result
both the gap between d and upper valence bands as well as between valence and conduction
bands opens up in the OEPx(cLDA) approach. Switching to the GW picture of interacting
quasiparticles we obtain band gaps in very good agreement with photo-electron spectroscopy,
provided of course we start from an OEPx or OEPx(cLDA) ground state.

The self-energy correction shifts the conduction and upper valence bands almost rigidly
when starting from an LDA calculation, whereas in the case of OEPx(cLDA) ground states
the corrections are dispersive. Dispersive self-energy shifts are relatively uncommon and not
frequently reported in the literature; a point that requires further investigation in the future.

We find that the d-electron binding energies in our OEPx(cLDA)+GW approach are in
good agreement with those of previously reported GW calculations but are still at variance
with experiment. The fact that the erroneous energetical position of the d-electrons actually
produces quasiparticle energies for the upper valence and conduction bands in agreement with
experiment indicates that the GW approximation might not suffice to fully describe the strongly
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localised cation d-electrons. A more elaborate theory incorporating electron-hole and/or vertex
corrections might be necessary in order to obtain a bandstructure consistent with photo-electron
spectroscopy over a larger energy window.

Consistency in the choice of the pseudopotential was found to be paramount. Moreover,
employing OEPx(cLDA) pseudopotentials allows us to remove the s and p electrons of the
respective d-shell from the calculation by freezing them in the core of the pseudopotential. This
reduces the required plane-wave cutoff and thus the computational costs of our calculations
tremendously. It remains to be verified, however, how the pseudoisation of the atomic
wavefunctions affects the exchange-integrals in the OEPx approach. This will be the subject of
future studies.

Furthermore we have alluded to the formal connection between the exchange potential in the
OEPx formalism and the exchange part of the self-energy. Our numerical results confirm the
hypothesis that for the class of materials presented here the DFT exact-exchange ground state
constitutes a much better starting point for GW bandstructure calculations. In light of this we
like to conclude with the outlook that the Sham-Schlüter equation (2.29) offers a formal but
heuristic perspective to include quasiparticle correlation into the OEP ground state and thus to
go beyond OEPx+GW .
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[22] D. Gall, M. Städele, K. Järrendahl, I. Petrov, P. Desjardins, R. T. Haasch, T.-Y. Lee, and J. E. Greene,

Phys. Rev. B 63, 125119 (2001).
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[50] V. N. Strocov, R. Claessen, G. Nicolay, S. Hüfner, A. Kimura, A. Harasawa, S. Shin, A. Kakizaki, P. O.



CONTENTS 31

Nilsson, H. I. Starnberg, and P. Blaha, Phys. Rev. Lett. 81, 4943 (1998).
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