

38. Jahrestreffen Deutscher Katalytiker

16.-18. März 2005, Weimar

Investigation of Structural Transformations during Synthesis of MoVTeNb mixed oxide catalysts

P. Beato, A. Blume, O. Timpe, G. Weinberg, R.E. Jentoft, F. Girgsdies, A.Trunschke, R. Schlögl

Fritz-Haber Institut der MPG, Abt. Anorganische Chemie,14195 Berlin

E. Omar, Q. Basher, L. Mhod Salim , F.A. Hamid, S.B.A. Hamid

Combinatorial Technology and Catalysis Research Centre (COMBICAT)

University Malaya, 50603 Kuala Lumpur, Malaysia

See also P89, P93, P98

Acknowledgements: S. Knobl, D. Niemeyer, V. Makwana, J. Wagner, U. Wild

Outline

- 1. Introduction
- 2. Preparation of a catalyst for direct oxidation of propane to acrylic acid
- 3. Raman spectroscopy on aqueous solutions
- 4. Drying of the precipitate
- 5. Activation of the catalyst precursor
- 6. Conclusions

Manufacture of acrylic acid

•Acrylic acid yields up to 87%

•Propene accounts for about 80% of the variable costs

•Alternative raw material: propane

- •Liquified petroleum gas (LPG) from refineries
- •Natural gas liquid (NGL) from gas fields

Catalysts for propane oxidation to acrylic acid

Examples of catalysts studied in propane oxidation to acrylic acid

- Modified vanadium pyrophosphate (VPO) catalysts
 - Ce/VPO (Y_{AA} ca. 19%)
 - VPO/TiO₂-SiO₂ (Y_{AA} ca. 13%)
- Heteropoly acids and salts
 - $H_{1.26}Cs_{2.5}Fe_{0.08}P_1V_1Mo_{11}O_{40}(Y_{AA} ca. 13\%)$
- Multi-component metal oxide catalysts
 - $Mo_1V_{0.3}Te_{0.23}Nb_{0.125}O_x(Y_{AA} ca. 48\%)$
 - T. Ushikubo, H. Nakamura, Y. Koyasu, S. Wajiki, Mitsubishi Kasei Corporation, US 005380933A (Jan.10, 1995).

Structural aspects of MoVTeNb catalysts

Objectives and approach

 $Mo_1V_{0.3}Te_{0.23}Nb_{0.125}O_x$ would serve as a basis for a possible commercial process to convert propane directly to acrylic acid

•Described preparation procedure not reproducible ($Y_{AA} = 0 - 50\%$)

•Systematic inspection of the preparation procedure required

•Which preparation step is crucial for phase distribution in the final catalyst?

<i>in-situ</i> Raman spectroscopy:	Monitoring of formation and rearrangement of molecular building blocks
X-ray diffraction:	Phase composition of precursors and final catalyst
Scanning electron microscopy (SEM):	Microstructure

2. Preparation procedure

Preparation of Mo₁V_{0.3}Te_{0.23}Nb_{0.125}O_x: "Slurry method"

3. Aqueous solutions

Raman spectroscopy on individual POM solutions

$$7 \text{ MoO}_4^{2-} + 8 \text{ H}^+ \longrightarrow [\text{Mo}_7\text{O}_{24}]^{6-} + 4 \text{ H}_2\text{O}_{24}$$

ν [cm ⁻¹]	assignment		
937 (s) 893 (m)	v (Mo=O) Mo ₇ O ₂₄ ⁶⁻		
955 (sh)	ν (Mo=O) Mo ₈ O ₂₆ ⁴⁻		
944 (s) 900 (sh)	v (V=O) [VO ₃] ⁿ⁻		
644 (s)	ν (Te-O)		
570 (m) 942 (s) 919 (s)	v (Nb-O) v (Nb=O)		

M.T. Pope, Heteropoly and Isopoly Oxometalates, Springer Verlag, Berlin 1983.

3. Aqueous solutions

Raman spectroscopy on mixed solutions

 $TeMo_6 = 0.126 mol Mo + 0.021 mol Te$ + 0.008 mol residual $Te(OH)_6$

I.L. Botto et al. Mater. Chem. Phys.47 (1997) 37.

ν [cm⁻¹] assignment ν (Mo=O) Mo₇O₂₄⁶⁻ 937 (s) 893 (m) v(V=O) [VO₃]ⁿ⁻ 950 (sh) 980 (s) ν (V=O) [V₁₀O₂₈]⁶⁻ 956 (m) 848 (m) v (V-O-V) or v (Mo-O-V) ν (V=O) $[H_{x}V_{10}O_{28}]^{(6-x)-1}$ 1000 (m) or v (M=O) $[TeMo_5VO_{24}]^{7-1}$ 975 (vw) ν (Mo=O) [TeMo₆O₂₄]⁶⁻ 937 (s) 899 (m)

3. Drying

Raman spectra of spray-dried precursors

3. Drying

SEM images of the spray-dried precursor

Molar ratios of elements normalized to Me	D
from EDX	

	spot 1	spot 2	spot 3	spot 4	synthesis
Мо	1	1	1	1	1
V	0.30	0.33	0.28	0.35	0.3
Те	0.28	0.24	0.25	0.27	0.23
Nb	0.22	0.13	0.20	0.20	0.125

Decomposition of the Anderson-type precursor

Thermogravimetry / Differential Scanning Calorimetry

1. Calcination in static air up to 275°C (10°C/min)

2. Activation in flowing He up to 600°C (2°C/min)

38. Jahrestreffen Deutscher Katalytiker, 16.-18. März 2005, Weimar

Development of phase structures

Development of phase structures

*simulation based on the model of P. De Santo et al. Z. Kristallogr. **219** (2004) 152.

Development of phase structures

Conclusions

An Anderson-type molybdotellurate is formed during preparation of Mo₁V_{0.30}Te_{0.23}Nb_{0.125}O_x in the initial ternary MoVTe solution.
V mainly coexists with the molybdotellurate as protonated decavanadate.
Nb does not change the structure of the polyoxometalate species in solution.

•The Anderson-type heteropolyanion is preserved in the spray-dried material.

•Crucial for catalyst activation seems to be the calcination in air at 275°C that results in the decomposition of the Anderson-type species and significant structural rearrangements.

•Thermal treatment in He at 600°C leads to the crystallization of the phases established during calcination and may cause the formation of other phases.