

Department of Inorganic Chemistry Fritz-Haber-Institut der Max-Planck-Gesellschaft Faradayweg 4-6, 14195 Berlin

In Situ Vibrational Spectroscopy of Reactants and Probe Molecules on Oxide Catalysts

Friederike C. Jentoft

CECAM WORKSHOP In situ atomic scale characterization of surfaces under high pressures: recent advances in experiment and theory

Lyon, November 4-6, 2004

- 1. Introduction and classical probe molecule spectroscopy Sites and probe molecules, vibrational spectroscopy
- 2. Developments

Selection of probe, band intensity, band shape

- 3. Reactive probing: kinetics of a model reaction H_2 activation on Ag/SiO₂
- 4. In situ diffuse reflectance infrared spectroscopy (DRIFTS) Initiation of *n*-butane isomerization on sulfated zirconia catalysts

Goal: Identify nature of active surface sites and reaction mechanism

 structure of "ideal" surface may be analyzed under special circumstances (UHV conditions)

- structure of "real" catalyst difficult to analyze: inhomogeneous & unsuitable for many methods
- information on bulk insufficient to derive surface properties
- ✤ identify surface properties through adsorption

Surface Sites, Probe Molecules & Vibrational Spectroscopy

Select probe according to expected site properties

- ✤ acid site: basic probe (ammonia, pyridine, CO)
- ✤ basic site: acid probe (CO₂, pyrrole)

Many experimental possibilities: IR, DRIFTS, ATR, IRAS, SFG, EELS, Raman

- ✤ sample form: model system (single crystal), powder
- ✤ selection rules
- wide temperature and pressure range

Example: CO Adsorption on SiO₂ at 77 K

The ideal probe molecule...

- selective adsorption on particular site small, non-reactive molecule
- high extinction coefficients of vibrations of interest
- ✤ large variation of vibrational frequency upon adsorption
- ✤ induce large change in vibration frequency of functional group
- H. Knözinger, Handbook of Heterogeneous Catalysis, Wiley-VCh Weinheim 1997, p. 707-732.

Band positions / shifts are analyzed...

- there is more information in an IR spectrum!
 - analyze band position, intensity, shape, and background

Selection of the probe

- we may be wrong about the nature of the "active sites" example: sulfated zirconia is most likely not highly active in *n*-butane isomerization due to its acidic properties
- why use probe that has different chemistry than reactant?

"active site": reactant is the best probe

Selection of conditions

- ✤ non-reactive conditions will not inform us about mechanism
 - in situ spectroscopy

Information: Band Intensity

- ✤ adsorption of *n*-butane on H-Mordenite at 297 K
- simultaneous independent measurement of adsorbed amount

combine information to determine extinction coefficient

- ★ IMEC ≈ 43.5 cm⁻¹ (cm² µmol) for adsorbed *n*-butane IMEC ≈ 13.1 cm⁻¹ (cm² µmol) for gas phase *n*-butane
- Extinction coefficients can be determined for individual stretching or deformation bands

Information on polarization of adsorbed molecule (reaction begin!)

- rarely considered (sometimes width is discussed)
- Lorentzian / Gaussian shapes

zeolite data: V.B. Kazansky, N.A. Sokolova, M. Bülow, Microp. Mesop. Mater. 67 (2004) 283

Ag/SiO₂ Catalysts: Motivation

- no vibrations of adsorbed H_2 detectable in spectra
- ✤ shift of OH vibration through H_2 adsorption by ca. -35 cm⁻¹
- no difference between SiO₂ and Ag/SiO₂ (8.09 at% Ag)

Exchange of Si-OH with D₂

✤ activation as for catalysis : 598 K, H₂

- OH groups react in D_2 atmosphere to OD groups
- * increase OD bands = decrease OH bands (equal ε?)

- exchange rate increases with temperature
- reaction faster for Ag/SiO₂ than SiO₂
- ✤ rate initially constant, then decrease (consumption of OH groups)

Temperature Dependence of HD Exchange

 Apparent activation energy E_A for HD exchange reaction SiO₂: 90 kJ mol⁻¹ Ag/SiO₂: 68 kJ mol⁻¹

Activation of Hydrogen: DH Exchange

- E_A for DH exchange on Ag/SiO₂
 30 and 50 kJ mol⁻¹
- ★ $E_A(H \rightarrow D) < E_A(D \rightarrow H)$ H₂ more easily activated than D₂

Hydrogenation of Acrolein (TU Darmstadt, Prof. Claus) Ag/SiO₂ at 1013-2026 kPa: E_A ca. 40 kJ/mol

activation of H₂ on Ag rate-determining step

Promotion of Sulfated Zirconia

- sulfated zirconia
 Holm, Bailey 1962, US Patent 3,032,599
 Hino, Arata, JACS 1979 & Chem. Comm. 1980
- Fe or Mn: promoting effect Hollstein et al., 1990 US Patent 4,918,041; Hsu et al., Chem. Comm. 1992; Lange et al., Catal. Lett. 1996

n-Butane Isomerization over MnSZ: In Situ DRIFTS

- sulfate overtones, combination modes, fundamentals (2764-2049, 1400 cm⁻¹)
- butane gas phase CH-stretching and bending vibrations 2966, 2939, 2877, 1466 cm⁻¹

- ✤ bands at 1600 and 1630 cm⁻¹ increase
- Also range of C=C stretching vibrations, but corresponding CH vibrations not ob served
- water bending vibration

Correlation of Spectral and Catalytic Information

- Rate of isomerization proportional to the amount of water formed (induction period)
 X. Li, K. Nagaoka, L.J. Simon, J.A. Lercher, A. Hofmann, J. Sauer, submitted
- Role of Mn is not to improve initiation reaction, in presence of Mn actual isomerization reaction is promoted

- band positions for activated catalyst consistent with S₂O₇²⁻ according to DFT calculations
- Red shift of S=O vibration at 1400 cm⁻¹ with increasing H₂O content calculated Hofmann, J. Sauer, J. Phys. Chem. B 108 (2004) 14652

- IR is a versatile technique, complete spectral information should be exploited
- information on local structure on any surface under wide variety of conditions (materials and pressure gap)
- extinction coefficients of individual bands inform about polarization of molecule upon adsorption: initiation of chemical transformation
- ✤ reaction kinetics (of model reactions) can be studied, determine E_A
- reaction mechanism can be revealed through in situ studies
- comparison with calculated quantities easily possible

Fritz-Haber-Institut der Max-Planck-Gesellschaft Barbara Klose Jutta Kröhnert Gisela Lorenz Annette Trunschke Sabine Wrabetz

Robert Schlögl

Technische Universität Darmstadt Michael Bron Peter Claus

Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow Vladimir B. Kazansky

> Humboldt Universität zu Berlin Alexander Hofmann Joachim Sauer

DFG, MEL Chemicals, MPG

9Ag/SiO₂: AgNO₃/NaOH aufgefällt; 8.09 at% Ag; d = 15 nm

SiO₂ (Alfa): analog behandeltes SiO₂

ICP-AES, TEM: Christian Mohr, Technische Chemie II, TU Darmstadt

Fläche OH-Banden (Si-OH + andere): \bigstar SiO2:22.5 cm⁻¹ g⁻¹ \bigstar Ag/SiO2:12.3 cm⁻¹ g⁻¹

Goal: identify type (B/L), number, strength of acidic sites

IR, NMR, calorimetry (various probes): not superacidic, rather like strongly acidic zeolite *Kustov 1995, Adeeva 1995, Fogash 1995*

no acidic sites that explain activity

Isomerisierungsmechanismen: Butan

Isomerisierungsmechanismen: Pentan

- Ausbildung von Banden im Verlauf der Reaktion bei 358-423 K Bande bei 310 nm, Allylkationen
- Deaktivierung eine Folge der bimolekularen Isomerisierung

Pentanisomerisierung: Reaktionsprofil und "Verkokung"

- ungesättigte Spezies sind keine Intermediate
- keine Folge der monomolekularen Isomerisierung
- Resultat des bimolekularen Mechanismus, Konkurrenzreaktion?

Reaction Profile during Pentane Isomerization

unsaturated species are not intermediates

not a result of monomolecular isomerization

result of bimolecular mechanism, competing reaction to formation of gas phase products

Activation & Catalytic Performance

He: average Mn valence after activation 2.48

O₂: average Mn valence after activation **2.69**

correlation between oxidation state and catalytic activity:

the higher the average Mn valence the higher the maximum isomerization rate

positive effect:
$$50\% O_2$$

Activation & Catalytic Performance

N₂: ca. 180 μ mol g⁻¹ h⁻¹ **O**₂: ca. 140 μ mol g⁻¹ h⁻¹

Zunahme von Bande bei 1597 cm⁻¹ bis max. Umsatz dann Wachstum Bande bei 1628 cm⁻¹ Verschiebung S=O-Bande

Verschiebung S=O Bande korreliert mit Fläche Banden bei 1600+1630 cm⁻¹ Wasserbildung?

Abnahme der Gesamtintensität starke Gasphasenbeiträge im CH-Bereich

Reaction (in situ XAS)

- no correlation of average Mn oxidation state with activity
- no evidence for oxidative dehydrogenation as non-catalytic initial reaction step

- same activity profile after regeneration in O₂
- more than one regeneration possible
- same activity after regeneration in O₂ for N₂-activated catalyst

- recovery of the original spectrum
 - \succ regeneration in O_2 possible
 - reproducible state of catalyst after O₂ treatment

"Regeneration" - N₂

Regenerierung von sulf. ZrO₂

500 mg SZ, 1 kPa *n*-C₄ Reaktion bei 338 K Reaktivierung bei 723 K

✤ "Konditionierung in O_2 "?

ein Modell für sulfatiertes und promotiertes sulfatiertes ZrO₂

Zentren für Alkanadsorption an sulf. ZrO₂

Isobutanadsorption, Anpassung mit Langmuirmodell Monolage \approx 80 µmol/g; Sulfatgehalt \approx 560 µmol/g

nur ca. 15% des Sulfat involviert in Adsorption / Reaktion

Activation of Sulfated Zirconia: In Situ DRIFTS

- ✤ adsorbed water (3700-3000, 1600 cm⁻¹) partly removed during activation at 773 K
- ✤ sulfate overtones, combination modes, fundamentals (2764-2049, 1400 cm⁻¹)
- ✤ band positions consistent with S₂O₇²⁻ according to DFT calculations A. Hofmann, J. Sauer, J. Phys. Chem. B 108 (2004) 14652