

Department of Inorganic Chemistry Fritz Haber Institute of the Max Planck Society Faradayweg 4-6, 14195 Berlin, Germany

Characterization of Surface Sites Using IR-Spectroscopy & Microcalorimetry

Jutta Kröhnert, Sabine Wrabetz, Friederike C. Jentoft

Strasbourg, February 18, 2004

Part I - Ag/SiO₂ Catalysts

- samples & characterization by TEM, XPS
- ✤ IR spectroscopy: H/D exchange

Part II - Pt/H-Mordenite Catalysts

- sample series & catalytic performance
- characterization by XRD and TEM
- IR spectroscopy: adsorption of CO & n-butane
- ✤ calorimetry: adsorption of *n*-butane

Target Reaction: Selective Hydrogenation

- selective hydrogenation of acrolein (α,β-unsaturated aldehydes) to allyl alcohol (unsaturated alcohol)
- part of DFG priority program "Bridging the gap in heterogeneous catalysis"

P. Claus, H. Hofmeister, J. Phys. Chem. B 103 (1999) 2766-2775. P. Claus, P.A. Crozier, P. Druska, Fresenius J. Anal. Chem. 361 (1998) 677-679.

Catalysis: Michael Bron and Peter Claus, Technische Chemie II, TU Darmstadt

Questions

- Activation of hydrogen?
- Role of silver?

SiO₂ (Alfa) 9Ag/SiO₂: precipitation AgNO₃ / NaOH 8.09 % Ag

ICP-AES, TEM: Christian Mohr, Technische Chemie II, TU Darmstadt; XPS Andreas Scheybal, FHI

XPS	O/Si	Na/Si	Ag/Si	C/Ag
SiO ₂	2.15	0	0	0
9Ag/SiO ₂	2.10	0.0134	0.0345	0.36

presence of Ag not noticeable in MIR spectra (activation at 523 K)
first idea: investigate interaction with H₂ at low temperatures

Cell for IR Measurements at 77 K

Key Features

- block with cooling coil
- Ouble set of windows with vacuum in between

H₂ gas phase 4161 cm⁻¹

 \clubsuit no adsorbed H₂ visible in spectra

✤ shift of OH vibration through H₂ adsorption by ca. -35 cm⁻¹

 \bullet no difference between SiO₂ and Ag/SiO₂

- no bands of adsorbed D₂
- shift of silanol bands
- formation of OD groups!

Sample Holder for Self-Supporting Wafers and Cell Body

then 1 h in vacuum

Sample holder

Complete Cell body

Complete Setup for Probe Molecule Adsorption and In Situ Measurements

Spectrometer (PE 2000)

 rate of disappearance of OH bands corresponds to rate of formation of OD bands

Wavenumber / cm⁻¹

2800

2600

2400

✤ predominantly isolated Si-OH react

3800

3600

3400

1.5

✤ faster exchange with 9Ag/SiO₂ than with pure SiO₂

- $r \sim dA_{OD}/dt$
- **☆** r = k [OH]ⁿ [D₂]^m
- rinit = k* const(s)*const = k'
- slightly lower activation energy in presence of Ag
- ✤ Ag facilitates activation of D₂

k'	9Ag/SiO ₂ -F	SiO ₂
373 K	0.03	0.01
473 K	0.29	0.12
523 K	0.44	0.38

- ✤ H-D-exchange: completely reversible
- kinetic isotope effect suggests breaking of OH (OD) bond is rate determining

Summary

- Si-OH groups are exchanged to OD groups in D_2
- exchange reaction faster for Ag/SiO₂ than for SiO₂: Ag facilitates H₂ activation
- ✤ kinetic isotope effect

Outlook

- repeat experiment with SiO₂ after "pseudo-Ag-precipitation"
- ✤ investigate D₂ pressure dependence, compare to catalysis
- ✤ adsorb and convert acrolein

- use Pt / H-Mordenite benchmark samples to identify suitable procedures for catalyst evaluation
- part of multigroup BMBF-funded research on combinatorial catalysis
- final goal: apply identified methods in parallelized fashion

Strategy

probe acid sites and metal sites

AC

H-Mordenite, from Na-Mordenite through ion exchange impregnated with $(NH_4)_2$ PtCl₆, dried at RT, calcined

Samples: Prof. F. Schüth, Mülheim; Catalytic tests: Prof. W.A. Maier, Saarbrücken Acidity: Prof. J.A. Lercher, München

Pt content ca. 1 wt%

crystalline phases: Mordenite and Pt

TEM: Pt/HM 500 and Pt/HM 800

Pt/HM calcined at 500 °C

Pt/HM calcined at 800 °C

accumulation of Pt

Iarge Pt particles, outside zeolite framework

- ✤ 3610 cm⁻¹: high frequency OH-group in main channel 3586 cm⁻¹: low frequency OH-group in side pocket Zecchina et al., Chem. Soc. Rev., (1996) 187
- calcination at 800°C affects OH groups

✤ 2221, 2197: Al³⁺ Lewis acid sites;

- ♦ > 2100 cm⁻¹: Ptⁿ⁺, below 2100 cm⁻¹: Pt⁰
- ✤ 2110 cm⁻¹: Pt²⁺-CO
- ✤ samples are different, difficult to correlate sites and activity

✤ n-butane (0.8 mbar) interacts with acidic OH groups

♦ Pt/HM 500: Δv (OH) ≈ -110 cm⁻¹, no measurable shift for Pt/HM 800

Shift of HM OH groups upon adsorption of CO: -294 cm⁻¹ A. Zecchina, C. Otero Arean, Chem. Soc. Rev., (1996) 187

pressure gauge sample cell

dosing volume pressure difference gives number of molecules introduced

measure equilibrium pressure in cell, calculate adsorbed amount

The Calvet Calorimeter

Microcalorimeter & Volumetric System

E.N. Coker, H.G. Karge, Rev. Sci. Instrumen. <u>68</u> (1997) 4521

<u>Sampleholder</u>

L = 70 mm $\emptyset = 15 \text{ mm}$

Adsorption Calorimetry Raw Data: Equilibrium Pressure and Thermosignal

✤ generation of adsorption isotherm

differential heats of adsorption

Adsorption Isotherm of *n*-Butane at $40^{\circ}C$

★ at p =0.8 mbar Pt/HM 500 adsorbs about 40 µmol/g more *n*-butane than Pt/HM 800

difference in number of sites is only one factor

act. 450°C vacuum

- Majority of sites on individual sample equivalent (high coverage)
- Slightly higher average for Pt/HM 500 than for Pt/HM 800
- Pt containing catalyst exhibit high initial heats of adsorption (low coverage)

Fit equation:

$$\mathbf{y} = \mathbf{y}_0 + \mathbf{A} \cdot \boldsymbol{exp} \left(-\frac{\mathbf{x} - \mathbf{x}_0}{\tau} \right)$$

- y signal from thermopile [V]
- x time [s]
- $y_0 y$ offset, baseline height [V]
- A peak height [V]
- x_0 peak position on time scale [s]
- au time constant [s]

 slower or faster decay of signal indicates endo- or exothermic secondary reactions after adsorption
C. Pluntke, G. Wedler, G. Rau, Surf. Sci. 134 (1983) 145-160

Correlation of Heats and Signal Decay for Interaction of Pt/HM 500 with n-Butane

$(\Delta$	C

Sample	Adsorbed amount n-Butane [μmol/g]	Time constant [s]
Pt/HM 500°C	0.069	689
	0.587	380
Pt/HM 800°C	0.06	442
	0.697	404
HM 500°C	0.099	260
	0.469	288
ohmic	_	245
resistance		260

Pt/HM catalysts produce a slow signal decay; indicating secondary reactions after the adsorption

Influence of Pretreatment: Heats of Adsorption

- reduced sample: only one type of sites
- initial high heats: reduction of Pt through *n*-butane?

Influence of Pretreatment: Adsorbed Amount

 activation temperature and atmosphere determine number of sites

Combination of IR Spectroscopy & Calorimetry

- identification of type and strength of acid sites and valence of metal sites by using two methods and two probes (CO and *n*-butane)
- ✤ adsorption calorimetry: secondary reactions may be detected

Pt/H-Mordenite

- Pt not ideally dispersed
- partial destruction of OH-groups through 800°C calcination
- interaction with *n*-butane mostly through OH-groups, weaker for sample calcined at 800 than at 500°C
- ✤ hypothesis: *n*-butane reduces Ptⁿ⁺ (activation in vacuum)

Fritz-Haber-Institut

Frank Girgsdies Edith Kitzelmann Axel Knop-Gericke Norbert Pfänder Andreas Scheybal Detre Teschner Genka Tzolova-Müller Xiaobo Yang Robert Schlögl

DFG SPP 1091 BMBF MPG

Technische Universität Darmstadt

Michael Bron Christian Mohr Peter Claus

Max-Planck-Institut für Kohlenforschung Stuart Thomson

Stuart Thomso Ferdi Schüth

Universität des Saarlandes

Pierre-Alain Weiss Wilhelm A. Maier

Technische Universität München Johannes A. Lercher

sample calcined at 500°C

The sintered Pt particles exhibit irregular shapes and sizes (ca. 0.05 to 20 μ m).

No Pt can be detected within the zeolite channels by line scan.

sample calcined at 800°C

Sample	CO adsorbed on:	ν (CO) in cm ⁻¹
Pt/HM 500°C	Al ³⁺ oct. Al ³⁺ oct. nonframework Al Pt	2171 2165 2222, 2196 2110, 2101
Pt/HM 800°C	Silanol (OH) nonframework Al Pt	2138 2222, 2192 2101
НМ	Al ³⁺ oct. nonframework Al	2171(slight) 2222, 2196

CO adsorption at RT on Lewis acid and on metal (Pt) sites

Reference:

A. Zecchina, *J. Catal.*, 107 (1987) 244-247 Konigsberger et al., *Topics in Catal.*, 15 (2001) 35

