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Dynamical clustering in oscillator ensembles with time-dependent interactions
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We consider an ensemble of coupled oscillators whose individual states, in addition to the phase,
are characterized by an internal variable with autonomous evolution. The time scale of this evo-
lution is different for each oscillator, so that the ensemble is inhomogeneous with respect to the
internal variable. Interactions between oscillators depend on this variable and thus vary with time.
We show that as the inhomogeneity of time scales in the internal evolution grows, the system un-
dergoes a critical transition between ordered and incoherent states. This transition is mediated by a
regime of dynamical clustering, where the ensemble recurrently splits into groups formed by varying
subpopulations.
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Synchronization phenomena in interacting dynamical
systems have attracted a great deal of attention in the
last two decades [1]. The spontaneous appearance of
coherent evolution as a result of interactions is ubiq-
uitous in a vast class of natural and artificial systems,
and can be successfully reproduced by relatively sim-
ple models. Most studies of this kind of phenomena
have focused on patterns of highly correlated evolution,
such as full and phase synchronization. Though these
forms of synchronization are essential to certain artificial
systems—for instance, secure-communication and chaos-
control devices—they are expected to play a more re-
stricted role in such objects as biological populations,
where the complexity of their collective function requires
a delicate balance between behavioral coherence and di-
versity [2]. A clear-cut example is the human brain,
where highly coherent functional patterns are only real-
ized under pathological states—notably, during epileptic
seizures. Neural tissues, as well as many natural sys-
tems ranging from intracellular molecular complexes to
social populations, are normally found in segregated con-
figurations, where the system splits into groups of ele-
ments with distinct functions. In these clustered states,
highly coherent evolution occurs inside each group, while
the collective dynamics of different groups are much less
correlated. This is typically a dynamical phenomenon,
since—as a consequence of the evolution of the inter-
nal state of each element—clusters may temporarily dis-
perse to be reconstituted later, and individual elements
or small groups can migrate between clusters.

Clustering has been observed in ensembles of cou-
pled dynamical systems with specific individual dynamics
[3, 4], or subject to sufficiently complex interaction func-
tions [5, 6]. Disintegration of clusters and migration of
elements is typically observed under the action of noise
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[3, 7, 8]. In this Letter, we show that such kind of dy-
namical clustering can occur in an ensemble of coupled
periodic oscillators, in the absence of external fluctua-
tions, when the interaction between oscillators depends
on individual internal state variables with autonomous
evolution. The time scale of this internal evolution dif-
fers between oscillators. A critical transition between
ordered and incoherent evolution, mediated by dynami-
cal clustering, takes place as the inhomogeneity of such
time scales grows.

Consider N coupled phase oscillators, each of them
characterized by a phase variable φi(t), obeying by the
equations

φ̇i = N−1

N
∑

j=1

Jij(t) sin(φj − φi) (1)

(i = 1, . . . , N). When the interaction weights Jij(t) are
constant, Jij(t) ≡ J for all i and j, these equations re-
duce to Kuramoto’s model for identical phase oscillators
[9], which exhibits full synchronization for any positive
value of J . Time-independent non-identical interaction
weights have also been considered, disclosing typical fea-
tures of disordered systems, such as glassy-like behavior,
frustration, and algebraic relaxation towards equilibrium
[10, 11]. Here, we analyze the case where the interaction
weights depend on the internal state of each oscillator,
which is specified by a variable θi(t) with autonomous
evolution. Specifically, we consider that θi is itself a
phase variable evolving according to θ̇i = Ωi, where the
frequency Ωi is chosen at random for each element, from
a fixed distribution g(Ω). The interaction weight is given
by

Jij(t) = J cos[θj(t) − θi(t)], (2)

where J > 0 is a constant factor that can be fixed to
J = 1 by rescaling time. With this choice for Jij , the in-
teraction between the phase φi and φj is attractive when
cos(θj −θi) is positive, and repulsive otherwise. The sign
of Jij changes in a time scale of order |Ωj −Ωi|−1, giving
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rise—at the level of the whole ensemble—to a complex
time-dependent interaction pattern. This evolving con-
nection network makes possible the appearance of several
dynamical regimes, including clustering.

We start our study of the above model by perform-
ing extensive numerical realizations in ensembles rang-
ing in size from N = 102 to 106. The internal frequencies
Ωi are drawn at random from a Gaussian distribution,
g(Ω) = exp[−(Ω − Ω0)

2/2σ2]/
√

2πσ2. Since the dynam-
ics is invariant under a constant shift in these frequencies,
we fix Ω0 = 0. It turns out that the collective behavior
of the ensemble is sensible to the frequency dispersion
σ. For small σ interactions evolve slowly, over long time
scales. Consequently, the phase φi can adiabatically fol-
low the evolution of the interaction weights. For long
times, the system is found in a state where the phases φi

are homogeneously distributed over the interval [0, 2π).
A strong correlation is observed in such state between
φi and the internal variable θi, namely, φi ≈ ±θi + φ0,
where φ0 is a constant. The sign factor of θi and the
value of φ0 are the same for all oscillators, and depend
on the initial condition; moreover, φ0 can slowly change
as time elapses. For large σ, on the other hand, many
of the interaction weights exhibit large changes over very
short times. Each oscillator is thus subject to rapidly
fluctuating forces, which again results in a state where
the phases φi are homogeneously distributed over [0, 2π).
Now, however, there is no correlation between φi and θi.

To characterize the transition between the regimes of
small and large frequency dispersion we introduce, for
each oscillator, the two-dimensional complex vector mi =
(exp[i(φi − θi)], exp[i(φi + θi)]), and define the average

m = N−1

N
∑

j=1

mj ≡ (µ+ exp(iψ+), µ− exp(iψ−)). (3)

The time average µ of
√

µ2
+ + µ2

− is a suitable order pa-

rameter for the transition. If the system spends most of
the time in the state where φi ≈ ±θi + φ0 for all i, we
have µ ≈ 1, while µ ∼ N−1/2 in the incoherent state.
Figure 1 shows numerical results for µ as a function of
σ for various system sizes. The dependence with N sug-
gest the presence of a critical phenomenon for σ ≈ 0.3.
Within a few assumptions supported by numerical evi-
dence, this critical behavior can be analytically studied
in the limit N → ∞, as follows. First of all, we note
that for σ 6= 0 and at sufficiently long times, the internal
variables θi are homogeneously distributed over [0, 2π).
If, in the limit σ → 0 (but σ 6= 0), the temporal variation
of θi is disregarded, φi = ±θi + φ0 is a stationary state
of our system, as direct substitution in Eq. (1) shows.
This conclusion holds for any distribution of frequencies
highly concentrated around Ω = 0. For larger values of
σ, we write φi = ±(θi − δi) + φ0, where δi(t) measures
the deviation of each oscillator with respect to the small-
dispersion state. This deviation satisfies

δ̇i = Ωi −
µ

2
sin δi, (4)

where we have written the order parameter µ in terms of
the distribution of the deviations δi over the ensemble,
p(δ), as

µ =

∫ π/2

−π/2

p(δ) cos δ dδ. (5)

Here, we have assumed that p(δ) is an even function; as
shown below, this amounts to postulate that g(Ω) is itself
even.
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FIG. 1: The order parameter µ as a function of the frequency
dispersion σ for ensembles of various sizes, N = 102 (×), 103

(◦), 104 (•), 105 (�), and 106 (⋄). The curve stands for r
as calculated from Eq. (6). Inset: Schematic representation
of the motion of the four clusters observed for intermediate
frequency dispersions, in φ-space (see text).

Equation (4) has been extensively discussed in connec-
tion with phase-oscillator ensembles [12]. For |Ωi| < µ/2
it has a stable fixed point at one of the solutions of
sin δi = 2Ωi/µ. For |Ωi| > µ/2, on the other hand,
there are no fixed points and |δi| grows indefinitely with
time. The ensemble can therefore be thought of as
consisting of two subpopulations. Those oscillators for
which |Ωi| < µ/2 attain, at asymptotically large times,
a stationary deviation δi, which depends on the value
of Ωi. For the oscillators with |Ωi| > µ/2, in contrast,
the phase φi does not reach a stationary value with re-
spect to θi. We refer to these two subpopulations as
subensembles I and II, respectively. The distribution p(δ)
can be split into contributions from each subensemble,
p = pI + pII. The first contribution is found from the
distribution of frequencies, taking into account the iden-
tity pI(δ)dδ = g(Ω)dΩ. As for pII, it can be shown that
its contribution to the integral of Eq. (5) vanishes. This
equation becomes, then,

µ =

∫ µ/2

−µ/2

g(Ω)
√

1 − 4Ω2/µ2 dΩ, (6)

making it possible to find µ self-consistently for any
(even) distribution of frequencies. Under quite general
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conditions on g(Ω), this equation describes a second-
order transition between disordered (µ = 0) and ordered
(µ 6= 0) states. For µ 6= 0, two states are possible, ei-
ther with µ+ 6= 0 or with µ− 6= 0, which demonstrates
the occurrence of symmetry breaking at the transition.
The curve in Fig. 1 shows the solution to Eq. (6) for the
Gaussian distribution of frequencies considered in our nu-
merical realizations. It vanishes as µ ∼ |σ − σc|1/2 at

σc =
√

π/32 ≈ 0.313.
Note that Eq. (1) can be written, in terms of the av-

erage quantity introduced in Eq. (3), as

φ̇i =
µ+

2
sin(ψ+ + θi − φi) +

µ−

2
sin(ψ− − θi − φi). (7)

This form of the equation of motion for φi emphasizes
the mean-field nature of interactions. The fact that, as
N → ∞, µ vanishes for σ > σc, implies that the two
terms in the right-hand side of Eq. (7) vanish as well.
For finite system sizes, they are of order N−1/2. Hence,
beyond the critical dispersion σc, the evolution of phases
can be thought of as driven by fluctuating forces of or-
der N−1/2. In the thermodynamical limit, for σ > σc,
the dynamics is frozen. Below the transition, evolution
becomes progressively slower as the critical point is ap-
proached.

Numerical simulations show that for intermediate val-
ues of σ, as the predominance of the ordered small-
dispersion state decreases and the critical transition is ap-
proached, a complex regime of clustering develops. Those
oscillators in subensemble II with frequencies just above
their lowest value, |Ωi| & µ/2, become divided into four
clusters in φ-space. Though the structure of each cluster
is not sharply localized, it is still possible to define its
phase by averaging φi over the oscillators in that clus-
ter. Two of the clusters are formed by oscillators with
Ωi > 0, and exhibit anti-phase synchronization, so that
their phases differ by π at all times. They move mono-
tonically around φ-space. The other two move in the
opposite direction. They are formed by oscillators with
Ωi < 0, and also show anti-phase synchronization (see
inset of Fig. 1). Due to the opposite motion of the two
pairs of clusters, they recurrently cross each other. At
these crossings, their populations are temporarily super-
imposed in phase and, at the same time, their motion
decelerates and the clusters become more compact. As
a result, two well-localized and relatively long-lived big
clusters, their phases differing by π, are recurrently built
up out of the ensemble (see Fig. 2c).

The occurrence of two-cluster states is quantitatively
disclosed by the complex quantity

z = N−1

N
∑

j=1

exp(2iφj). (8)

If the whole ensemble splits into two anti-phase well-
localized clusters, we have |z(t)| ≈ 1, while for incoherent
or higher-order clustered states we have |z(t)| ∼ N−1/2.

Figure 2a shows the evolution of |z(t)| in the cluster-
ing regime, displaying its irregular oscillations between
relatively small and large values. For the same realiza-
tion, Fig. 2b displays the phase difference ∆φ between
two oscillators in subensemble II, both with positive val-
ues of Ωi, as a function of time. When |z(t)| is large,
cos∆φ ≈ 1 identifies a two-cluster state where the two
oscillators belong to the same cluster, while cos∆φ ≈ −1
corresponds to the situation where the oscillators are in
different clusters. The intermittent transitions of cos∆φ
between large positive and negative values reveal the dy-
namical nature of clustering, where any two oscillators
may alternatively belong to the same or to different clus-
ters.
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FIG. 2: (a) The quantity |z(t)| as a function of time in a sys-
tem of 104 oscillators with Gaussian frequency distribution of
dispersion σ = 0.31. (b) Phase difference of two oscillators
with similar frequencies, in the same realization as in the up-
per plot. (c) Snapshot of the phase distribution at one of the
maxima of |z(t)|, in the same realization.

The time average ζ of the quantity |z(t)| plays the role
of an order parameter detecting the two-cluster state.
Figure 3 displays the dependence of ζ with the frequency
dispersion σ, for ensembles of several sizes. A peak near
σc becomes clearly defined as N grows. While for σ > σc

the value of ζ apparently vanishes for large system sizes,
a well-defined profile persists below the critical point. It
grows from zero starting at σ ≈ 0.2 and attains its max-
imum, ζ ≈ 0.25, at σ . σc.

The formation of the four clusters whose recurrent su-
perimposition gives rise to the two-cluster states detected
by ζ can be qualitatively understood in terms of previ-
ous results for coupled oscillators with disordered interac-
tions. Given an oscillator whose internal variable evolves
with frequency Ωi, the most persistent interactions af-
fecting the dynamics of its phase φi are due to oscillators
with similar frequencies, Ωj ≈ Ωi. In this case, in fact,
the interaction weights Jij are almost constant over very
long time scales. These weights, however, are still differ-
ent from each other, and can take positive and negative
values. If the effect of frustration is moderate, the os-
cillators become entrained into two anti-phase groups of
similar sizes [10]. The occurrence of this phenomenon
requires that the oscillator phases are not pinned to the
internal variables, and that a consistent population with
similar frequencies Ωi actually exists to trigger conden-
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sation. Such conditions are met by those oscillators of
subensemble II with either positive or negative frequen-
cies, close to the limit |Ωi| = µ/2, where the popula-
tion density is larger. Note that increasing the frequency
dispersion σ contributes in two cooperating ways to the
growth of subensemble II, and thus to the formation of
clusters: it implies, at the same time, a larger population
for high frequencies and—as µ decreases—a population
depletion in subensemble I. As discussed above, however,
clustering is delayed by increasingly long transients as σ
approaches the critical point. In the limit N → ∞, the
evolution freezes just beyond the critical dispersion, and
cluster formation is thus suppressed.
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FIG. 3: The order parameter ζ as a function of the frequency
dispersion σ, obtained from numerical simulations of ensem-
bles of various sizes, N = 102 (×), 103 (◦), 104 (•), 105 (�),
and 106 (⋄). The vertical dashed line indicates the critical

dispersion σc =
√

π/32.

It is possible to give an approximate mathematical de-
scription of the motion of the four clusters, assuming
that one of them is centered around a phase φ∗(t) and is
formed by oscillators whose internal frequencies are, on
the average, Ω∗. The phases and frequencies of the other
three clusters can be derived from symmetry considera-
tions. If the total fraction of the population involved in
clusters is n∗, the approximate equation of motion for

the cluster phase reads

2φ̇∗ = −µ sin(φ∗ ∓ Ω∗t) − n∗ cos(2Ω∗t) sin(2φ∗). (9)

The two terms in the right-hand side correspond, re-
spectively, to the contributions of subensembles I and
II. They have competing dynamical effects, and their
relative importance changes as σ and n∗ grow while µ
decreases. The first term favors the development of cor-
relations between φ∗ and the internal variable Ω∗t. If,
on the other hand, the second term prevails, the phase
difference between clusters of opposite internal frequen-
cies, 2φ∗, spends most of the time close to its two fixed
points, 2φ∗ = 0 or π, with rapid transitions between them
when the sign of cos(2Ω∗t) changes. These fixed points
correspond, precisely, to the mutual crossing of clusters
of opposite frequencies that give origin to the recurrent
two-cluster state.

Preliminary numerical results show that dynamical
clustering occurs also in ensembles of particles moving
in space and coupled through finite-range interactions,
with autonomous internal variables as those considered
above. In more complex models of interacting dynamical
elements with evolving internal states, dynamical cluster-
ing may be enhanced if the internal variables themselves
undergo segregation into coherent groups. This can be
achieved, for example, if interactions between internal
states are allowed. Numerical realizations suggest that
this is the case when the variables θi of the model studied
above are coupled through higher-harmonics interaction
functions [6], which give rise to dynamical clustering if
noise is added to the internal evolution. The same effect
has recently been illustrated for ensembles of interacting
particles moving in space, where the internal dynamics of
each element is represented by a chaotic map whose evo-
lution is coupled to those of neighboring particles [13]. In
real systems—specifically, in biological populations—the
interaction between internal variables is expected to play
an important role when such mechanisms as imitation
and social influence are in action.
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