

Structural and Catalytic Investigation of Binary Palladium-Gallium Intermetallic Compounds

J. Osswald,¹ R.E. Jentoft,¹ F. Girgsdies,¹ R. Giedigkeit,² Y. Grin,² R. Schlögl,¹ T. Ressler¹ ¹Inorganic Chemistry, Fritz Haber Institute of the MPG, Faradayweg 4-6; 14195 Berlin, Germany, http://www.fhi-berlin.mpg.de ²Chemical Metals Science, MPI for Chemical Physics of Solids, Nöthnitzer Str. 40, 01187 Dresden, Germany, http://www.cpfs.mpg.de

Introduction

Palladium is well known as an important catalyst for hydrogenation and for combustion reactions^[1]. Typical Pd catalysts are supported on metal oxides and show high activity but limited selectivity and stability under hydrogenation and oxidation reaction conditions.

Motivation

The limited selectivity of Pd catalyst is due to neighbouring active sites on the catalyst surface^[2]. Active site isolation may increase selectivity. The structures of the Pd-Ga compounds studied contain isolated Pd atoms.

Goal

Determination of thermal stability in different gas atmospheres with in situ XRD and XAS measurements. Investigation of selectivity and reactivity for catalytic hydrogenation of acetylene

In situ XRD

In situ XRD measurements were conducted using a STOE diffractometer with Cu-Ka radiation in Bragg-Brentano geometry (secondary monochromator) equipped with a Bühler HDK chamber.

In situ XRD of PdGa in (I) 10% H₂, (II) 20% O₂ and (III) Pd₃Ga₇ in 10% H₂

0.1

Cell parameters:	
Cell volume:	4 ml
Sample diameter:	5 mm pellet
Cell windows:	Al foil
Gas in:	Gas flow controller
Gas out:	Exhaust with MS detection

Reaction parameters Sample mass Diluent: Gas flow: Heating rate: 9-11 mg 30 mg BN 30-40 ml/min 6 K/min

Determination of the thermal stability of Pd_3Ga_7 in 5% H_2 (VII) and (VIII) 100% $\mathrm{H}_{2}.$ Diagrams (VIIa) and (VIIb) show selected refined distances and Debye-Waller factors of Pd₂Ga₇ in 5% and 100% H₂ (VIIIa+b). In the temperature range from 180 to 250 °C changes in R1+2 and R3 and a strong increase of the Debye-Waller factor (DW3) are observed. That may be correlated to the onset of catalytic activity shown in (V).

local

0.01

(VIIIb)

Acetylene hydrogenation over PdGa after ballmilling: Increase of activity with maintenace of the structure. Diagram (IX) shows time resolved FT and the first shells with the refined distances (IXa) and Debye-Waller factors (IXb). There is maybe a correlation to the catalytic data shown in (IXc).

120 Temp

220 320 arature [°C]

PdGa in 10% C₂H₂ + 20% H₂

Summary

- Bulk characterisation of PdGa + Pd₃Ga₇
- High thermal stability under different atmospheres.
- In 100% H₂ anomalous trends of the interatomic distances and Debye-Waller factors for Pd₃Ga₇ are observed. That may correspond to the incorporation of hydrogen and to the onset of catalytic activity (V).
- During acetylene hydrogenation PdGa show a strong increase of distance R3 (IXa) that may correspond to the
- minimum in the catalytic activity (IXc).
- Catalytic studies of PdGa + Pd₃Ga₇: Preliminary results
- · The Pd-Ga alloys show activity for hydrogenation reactions
- Increased activity can be obtained by mechanical treatment (ball milling) while the structure and stability of the material is preserved.
- The selectivity for the hydrogenation of acetylene to ethylene is higher compared to the commercial catalyst Pd on Al₂O₃.

In situ EXAFS

• Further preparation of high surface area samples by mechanical treatment. • Quantitative catalytic studies.

Acknowledgement

Literature

- ¹⁰G. Ertl, H. Knoezinger, J. Weitkamp: Handbook of heterogeneous catalysis, VCH, 1997
 ¹⁰A.J. Den Hartog, M. Deng, F. Jongerius, V. Ponec, J. Mol. Catal. 60 (1990) 99-112
 ¹⁰E. Hellner, F. Laves, Z. Naturforsch. 2a (1947) 177-183
 ¹⁰H. Pfisterer, K. Schubert, Z. Metallkunde 41 (1950) 433-441
- HASYLAB + ESRF for providing beamtime HASYLAB beamline staff XI: P. Kappen, J. Wienold ESRF beamline staff ID24: S. Fiddy Group Geometric Structure at FHI: E. Kitzelmann, B. L. Kniep, A. Szizybalski, O. Kirilenko, E. Rödel Max-Planck-Gesellschaft

2.65

2.55

2.50

(VIIIa)

- R3 (1 Pd) R1+2 (4+4 Ga

220

Temp erature [°C]

2.60