

Modern Methods in Heterogeneous Catalysis Research: Theory and Experiment

Low Energy Electron Diffraction - LEED

Wolfgang Ranke Dep. Inorganic Chemistry Group Model Surface Analysis Fritz-Haber-Institut der MPG

> For script: see homepage

or

mail to: ranke@fhi-berlin.mpg.de

Literature:

G. <u>Ertl</u>, J. <u>Küppers</u>, Low Energy Electrons and Surface Chemistry, VCH, Weinheim (1985).
M. <u>Henzler</u>, W. <u>Göpel</u>, Oberflächenphysik des Festkörpers, Teubner, Stuttgart (1991).
M.A. Van Hove, W.H. Weinberg, C.-M. Chan, Low-Energy Electron Diffraction, Experiment, Theory and Surface Structure Determination, Springer Series in Surface Sciences 6, G. Ertl, R. Gomer eds., Springer, Berlin (1986).
M. Horn-von Hoegen, Zeitschrift für Kristallographie 214 (1999) 1-75.

Si(111)-(7x7)

LEED is surface sensitive

Low energy electrons interact strongly with matter:

electron mean free path λ_e

is small.

Only e⁻ scattered from near surface can leave the surface,

surface sensitive

M.P. Seah, W.A. Dench, Surf. Interf. Anal. 1 (1979) 2

The observation of a LEED pattern does not guarantee that the whole surface is ordered!

Coherence of e^{-} -beam limited by ΔE and beam divergence. Coherence length = diameter of coherently scattering area.

> The coherence length of a standard LEED optics is only 10 – 20 nm!

1st approximation: Scattering from 2-D lattice.

Analogy to optical grating.

Constructive interference: Enhancement of intensity only in certain directions:

 $n \lambda = d \sin \phi$

For 2D arrangement (plane lattice): scattering conditions have to be fulfilled in both directions

Note:

If the lattice constant(s) $a_1 (a_2) \underline{in}$ crease, the scattering angle for the beam h (k) <u>de</u>creases.

This is the reason for the reciprocity of the real and the s.c. reciprocal lattice.

Useful: Introduction of reciprocal lattice

Real lattice vectors Reciprocal lattice vectors

a₁,a₂ a₁*, a₂*

Definitions:

 a_1^* perpendicular to a_2 a_2^* perpendicular to a_1

 $a_1^* = 1/(a_1 \sin \gamma)$ $a_2^* = 1/(a_2 \sin \gamma)$ γ angle between a_1 and a_1

 $\mathbf{a_1} (\mathbf{s} - \mathbf{s_0}) = \mathbf{h} \ \lambda$ $\mathbf{a_2} (\mathbf{s} - \mathbf{s_0}) = \mathbf{k} \ \lambda$

(Laue conditions for 2 dimensions) Real 2D system: 3rd Laue condition always fulfilled.

It follows for the direction of beams:

$$\frac{1}{\lambda} (\mathbf{s} - \mathbf{s_0}) = \frac{1}{\lambda} \Delta \mathbf{s} = h \mathbf{a_1}^* + k \mathbf{a_2}^* = \mathbf{g}$$

$$\mathbf{g} = \text{reciprocal lattice vector}$$

Ewald sphere construction

- plot reciprocal lattice (rods)
- plot direction of incident beam (s₀) towards (00) spot
- go $1/\lambda$ along this direction
- make circle (sphere) with radius $1/\lambda$
- direction from circle (sphere) center towards cut with reciprocal lattice rods gives direction of all possible diffraction spots (hk)

Usual arrangement:

Normal incidence, symmetrical diffraction pattern

Expected diffraction pattern for (001) surface, e.g. Pt(001) (unreconstructed), $E_0=313 \text{ eV}$

Surface diffraction with X-rays, He-atoms and electrons. Example: diamond-type (111) surface like C, Si, Ge. The darkness of rec. latt. spots and rods symbolizes diffraction intensity

Horn-von Hoegen, fig. 2.1

LEED:

2. Simple

Kinematic theory (single scattering) Size, shape and symmetry of surface unit cell, Superstructures Domains **only** if long-range ordered

No information about atomic arrangement within the unit cell

3. Less simple

Kinematic theory Deviations from long-range order: Spot width \rightarrow domain size Background intensity \rightarrow point defect concentration Spot splitting \rightarrow atomic steps

4. Difficult

Dynamic theory (multiple scattering) Spot intensities $I(E_0)$ or I-V curces \rightarrow structure within unit cell

2. LEED – simple

Superstructures result from:

Reconstruction = rearrangement of surface atoms on clean surfaces Ordered adsorption

Structure examples

Three possible arrangements yielding c(2x2) structures. Note: different symmetry!

Ertl/Küppers fig. 9.6, p.208

coincidence latt. commensurate

incoherent, incommensurate Ertl/Küppers fig. 9.3, p.205

Ertl/Küppers fig. 9.19, p.224

Real and reciprocal space lattices

Van Hove et al. fig. 3.5, p.55

REAL SPACE LATTICE	RECIPROCAL LATTICE
	$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{cases} fcc (100) - \begin{pmatrix} 10 \\ 01 \end{pmatrix} \\ fcc (100) - (1 \times 1) \end{cases}$
	$\begin{cases} fcc (100) - \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} \\ fcc (100) - (2 \times 1) \end{cases}$
	∇ € û 6 B ● • • ● • • • ○ • • • ○ • c • 0
	$\begin{cases} fcc (100) - \begin{pmatrix} 20\\ 02 \end{pmatrix} \\ fcc (100) - (2\times 2) \end{cases}$
\diamond	$ \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $
	$ \begin{cases} \text{fcc (110)-}\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \\ \text{fcc (110)-}(1 \times 1) \end{cases} $
	$\begin{cases} fcc (110) - \begin{pmatrix} 20\\ 01 \end{pmatrix} \\ fcc (110) - (2 \times 1) \end{cases}$
	$\Box :: \left\{ \begin{array}{c} fcc(110) - \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \\ fcc(110) - (1 \times 2) \end{array} \right\}$
	$\bigcirc \left\{ fcc(111) - \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right\} \\ fcc(111) - (1\times 1) \\ fcc(11) - (1\times 1) \\ fcc(11)$
	$\begin{cases} fcc (III) - \begin{pmatrix} 1 & 1 \\ 2 & -1 \end{pmatrix} \\ fcc (III) - (\sqrt{3} \times \sqrt{3}) R30^{\circ} \end{cases}$
	$\begin{cases} fcc (11t) - \begin{pmatrix} 20\\ 02 \end{pmatrix} \\ fcc (11t) - (2\times 2) \end{cases}$
	$\begin{cases} fcc (111) - \begin{pmatrix} 10\\ 02 \end{pmatrix} \\ fcc (111) - (1\times 2) \end{cases}$

Superstructures, example 1

GaAs(001) clean, different preparations

As(31)/Ga(55) Auger peak height ratios: c(8x2) 1.74 (4x6) 1.77 1.92 c(6x4) (1x6) 2.12 2.25 c(2x8) 2.7 c(4x4)

Information from patterns:

- symmetry of unit cell
- size and shape of surface unit cell
- sharpness of spots \rightarrow domain size
- background intensity \rightarrow concentration of point defects

c(8x2) (4x6) 66eV 110eV (1x6) 35eV c(4x4) 44eV 80eV

Superstructures, example 2 Si(001) clean

 C, Si, Ge (001)

0000000000

φοφοφοφοφο

no 2x2 structure! central spots missing → two-domain 2x1

Wasserfall, Ranke, 1994

(2x1) and (1x2)

(b)

(d)

Figure 3. Buckled dimer reconstructions on the (001) surface of germanium: (a) $b(2 \times 1)$; (b) $c(4 \times 2)$; (c) $p(4 \times 1)$; (d) $p(2 \times 2)$.

Payne et al. J. Phys.: Cond. Matter 1 (1989) SB63

3. LEED – less simple

Information from spot shape (profile), background, E_0 -dependence (k_{\perp} -dependence)

2	Nachweis vo	n Oberfläc	hendefekten m	nit Beugu	Jng
Dimen - sion	Beispiele An	Einfluß auf Reflexprofil			
0	Punktfehler thermische Bewegung statische Unordnung	Anordnung: statistisch korreliert			K <u>t</u> Abhängigkeit keine
1	Stufenkanten Domänen (Größe, Grenzen)	statistisch regelmäßig	oder oder	Nh	periodisch (Stufen) keine (Domänen)
2	Überstruktur Facetten				keine periodisch
3	Volumendefekte (Mosaik, Verspannung)		IN	Л.	monoton
id	eale Oberflächen	4	LA	۸_	keine

Henzler, Göpel Abb. 3.8.10, p.176

Facets and mosaic

Henzler, Göpel Abb. 3.8.4, p.167 a)

Mosaik Struktur

Regular atomic steps

Van Hove et al., fig. 3.6, p.58

fcc (755)

fec (911)

Henzler, Göpel, fig. 3.8.3, p.165

Pt(9,11,11)

Example: Si(001)vic

Si(001) **†** [-110]

Si(001)vic, 5°→[110]

Wasserfall, Ranke, 1994

4. LEED – difficult

Spot intensities contain information on structure within the unit cell

I ~ $|F|^2 \cdot |G|^2$

 $|G|^2$ = structure factor or lattice factor

contains shape and arrangement of repeat units (unit cells) yields reciprocal lattice determines location and shape of spots, kinematic theory

 $|F|^2$ = structure factor or form factor

contains contribution from all atoms within the repeat unit, includes multiple scattering, in-depth attenuation, dynamic theory

Multiple scattering

Henzler/Göpel fig. 3.7.3, p.151

Dynamic LEED analysis: No direct deduction of structure from I-V-curves:

Guess structure model calculate I-V-curves compare with measured curves modify model check if improval if yes: proceed modifying in this direction if no: modify in another direction or guess new model

Disadvantage: Only for ordered structures Much computer time

But:

One of very few methods for structure analysis of first few atomic layers (~1 nm)

FeO/Pt(111), satellite pattern: multiple scattering, kinematic

0,0 (1,1),0 1,0 adlayer substrate

0.9 ML FeO(111) on Pt(111), "structure 1"

5. LEED in model catalysis - example

Distinguish different Fe-O-phases

as measured

contrast enhanced

FeO(111)/Pt(111), 1 ML

Fe₃O₄(111)

 $\alpha\text{-}\mathsf{Fe}_2\mathsf{O}_3(0001)$

Change of order and phase during reaction

Starting surface: α -Fe₂O₃(0001) (hematite), defective

After reaction

- no long-range order
- strong C peak in AES

After mild TPO (thermal programmed oxidation)

- reordered
- no longer hematite but Fe₃O₄(111) (magnetite

Osama Shekhah

Modern Methods in Heterogeneous Catalysis Research: Theory and Experiment

6. Conclusions

For qualitative information on surface structure very simple (display LEED)

- •Order
- Periodicity
- Symmetry

For quantitative information on deviations from ideal order (SPA-LEED)

- •Domain size
- Antiphase domains
- •atomic steps

For quantitative analysis of surface structure (dynamic I-V-curve analysis)

- •Precise atomic arrangements
- Relaxations
- Reconstructions