Low Energy Electron Diffraction - LEED

Wolfgang Ranke
Dep. Inorganic Chemistry Group Model Surface Analysis
Fritz-Haber-Institut der MPG
For script:
see homepage
or

mail to: ranke@fhi-berlin.mpg.de
Literature:
G. Ertl, J. Küppers, Low Energy Electrons and Surface Chemistry, VCH, Weinheim (1985).
M. Henzler, W. Göpel, Oberflächenphysik des Festkörpers, Teubner, Stuttgart (1991).
M.A. Van Hove, W.H. Weinberg, C.-M. Chan, Low-Energy Electron Diffraction, Experiment,

Theory and Surface Structure Determination, Springer Series in Surface Sciences 6,
G. Ertl, R. Gomer eds., Springer, Berlin (1986).
M. Horn-von Hoegen, Zeitschrift für Kristallographie 214 (1999) 1-75.

1. Introduction, General

De Broglie wavelength: $\quad \lambda=\mathrm{h} /(\mathrm{mv})$
For electrons:
E_{0} in eV, λ in \AA.
For 100 eV -electrons: $\quad \lambda(100)=1.22 \AA$ (low energy)

Si(111)-(7x7)

LEED display system

LEED is surface sensitive

Low energy electrons interact strongly with matter:
electron mean free path λ_{e} is small.
Only e- scattered from near surface can leave the surface, surface sensitive

M.P. Seah, W.A. Dench, Surf. Interf. Anal. 1 (1979) 2

The observation of a LEED pattern does not guarantee that the whole surface is ordered!

Coherence of e^{-}-beam limited by $\Delta \mathrm{E}$ and beam divergence. Coherence length = diameter of coherently scattering area.

> The coherence length of a standard LEED optics is only $10-20 \mathrm{~nm}$!

1st approximation:
 Scattering from 2-D lattice.

Analogy to optical grating.
Constructive interference:
Enhancement of intensity only in certain directions:

$$
\mathrm{n} \lambda=\mathrm{d} \sin \varphi
$$

For 2D arrangement (plane lattice): scattering conditions have to be fulfilled in both directions

Note:

If the lattice constant(s) $a_{1}\left(a_{2}\right)$ increase, the scattering angle for the beam $\mathrm{h}(\mathrm{k})$ decreases.
This is the reason for the reciprocity of the real and the s.c. reciprocal lattice.
 (order)
Formation of diffraction pattern

Useful: Introduction of reciprocal lattice

Real lattice vectors
Reciprocal lattice vectors
a_{1}, a_{2}
$a_{1}{ }^{*}, a_{2}{ }^{*}$

Definitions:

$$
\mathbf{a}_{1}{ }^{*} \text { perpendicular to } \mathbf{a}_{\mathbf{2}}
$$ $\mathbf{a}_{\mathbf{2}}{ }^{*}$ perpendicular to $\mathbf{a}_{\mathbf{1}}$

$a_{1}{ }^{*}=1 /\left(a_{1} \sin \gamma\right)$
$a_{2}{ }^{*}=1 /\left(a_{2} \sin \gamma\right)$
γ angle between a_{1} and a_{1}

0

0
0

0

Constructive interference for:

$$
\begin{aligned}
& \mathbf{a}_{1}\left(\mathbf{s}-\mathbf{s}_{\mathbf{0}}\right)=\mathrm{h} \lambda \\
& \mathbf{a}_{\mathbf{2}}\left(\mathbf{s}-\mathbf{s}_{\mathbf{0}}\right)=\mathrm{k} \lambda
\end{aligned}
$$

Example
(Laue conditions for 2 dimensions)
Ert//Küppers fig. 9.11, p 216
Real 2D system: 3rd Laue condition always fulfilled.

It follows for the direction of beams:

$$
\begin{gathered}
1 / \lambda\left(\mathbf{s}-\mathbf{s}_{0}\right)=1 / \lambda \Delta \mathbf{s}=\mathrm{h} \mathbf{a}_{1}{ }^{*}+\mathrm{k} \mathbf{a}_{2}{ }^{*}=\mathbf{g} \\
\mathbf{g}=\text { reciprocal lattice vector }
\end{gathered}
$$

Ewald sphere construction

- plot reciprocal lattice (rods)
- plot direction of incident beam (\mathbf{s}_{0}) towards (00) spot
- go $1 / \lambda$ along this direction
- make circle (sphere) with radius $1 / \lambda$
- direction from circle (sphere) center towards cut with reciprocal lattice rods gives direction of all possible diffraction spots (hk)

Usual arrangement:
Normal incidence,
symmetrical diffraction pattern

Ert//Küppers fig. 9.13, p. 218

Expected diffraction pattern for (001) surface, e.g. Pt(001) (unreconstructed), $E_{0}=313 \mathrm{eV}$

Surface diffraction with X-rays, He-atoms and electrons.
Example: diamond-type (111) surface like C, Si, Ge.
The darkness of rec. latt. spots and rods symbolizes diffraction intensity
2. Simple

Kinematic theory (single scattering)
Size, shape and symmetry of surface unit cell,
Superstructures
Domains
only if long-range ordered
No information about atomic arrangement within the unit cell
3. Less simple

Kinematic theory
Deviations from long-range order:
Spot width \rightarrow domain size
Background intensity \rightarrow point defect concentration Spot splitting \rightarrow atomic steps
4. Difficult

Dynamic theory (multiple scattering)
Spot intensities I(E_{0}) or I-V curces \rightarrow structure within unit cell

2. LEED - simple

Superstructures result from:

Reconstruction = rearrangement of surface atoms on clean surfaces Ordered adsorption

Structure examples

Overlayer structures
Ertl/Küppers fig. 9.2, p. 204

Superstructure nomenclature
Wood: Simplest in most cases p or $\mathrm{c}(\mathrm{n} \times \mathrm{m}) \mathrm{R} \vartheta^{\circ}$ unit cell vector lengths $\mathrm{b}_{1}=\mathrm{n} \mathrm{a}_{1} \quad \mathrm{~b}_{2}=\mathrm{m} \mathrm{a}_{2}$ rotation $\vartheta \quad \mathrm{p}=$ primitive, $\mathrm{C}=$ centered

Wood $(2 \times 2)\left[\vartheta=0\right.$ is omitted] $(\sqrt{ } 3 \times \sqrt{ } 3)$ R 30°
Matrix $20 \quad 11$
02
2-1

Three possible arrangements yielding $\mathrm{c}(2 \times 2)$ structures. Note: different symmetry!

on top

bridge 4-fold hollow

coincidence latt.

Real and reciprocal space lattices
Van Hove et al. fig. 3.5, p. 55

REAL SPACE LATTICE	RECIPROCAL LATTICE
	$\square \square^{\circ}$ - $\left\{\begin{array}{l}\mathrm{fcc}(100)-\left(\begin{array}{l}10 \\ 01 \\ \mathrm{fcc}(100)\end{array}\right) \\ (1 \times 1)\end{array}\right.$
	$\begin{aligned} & \ldots . . \\ & \ldots . . \end{aligned}\left\{\begin{array}{l} \operatorname{ccc}(100)-\left(\begin{array}{l} 20 \\ 0 \\ 0 \end{array}\right) \\ \operatorname{fcc}(100)-(2 \times 1) \end{array}\right.$
[a:	\because $\because \because$ \because
[\# $\because \because$	
	$\therefore \therefore\left\{\begin{array}{l} \operatorname{fec}(100)-\left(\begin{array}{ll} 1 & 1 \\ \operatorname{lec}(100)-\sqrt{2} & 1 \end{array}\right) \\ \mathrm{ffc}(100)-\mathrm{y}) \mathrm{cc}(2 \times 2) \end{array}\right.$
¢0]: 0	
	...0.f...... $\left\{\begin{array}{l}f \mathrm{cc}(110)-\left(\begin{array}{l}20 \\ 0 \\ 0\end{array}\right) \\ \mathrm{fcc}(110)-(2 \times 1)\end{array}\right.$
	$\therefore: \therefore\left\{\begin{array}{l} \text { fce }(110)-\left(\begin{array}{ll} 1 & 0 \\ 0 \end{array}\right) \\ \text { fcc }(110)-(1 \times 2) \end{array}\right.$
8	$>:\left\{\begin{array}{l} \operatorname{lcc}(111)-\binom{10}{0} \\ \mathrm{fcc}(111)-(1 \times 1) \end{array}\right.$
2ٌ\%	$\begin{aligned} & \therefore \because \\ & \because \therefore\left\{\begin{array}{l} \text { fcc }(111)-\left(\begin{array}{ll} 1 & 1 \\ 2 & -1 \end{array}\right) \\ \text { fcc (111)-(} \sqrt{3} \times \sqrt{3}) R 30^{\circ} \end{array}\right. \end{aligned}$
	$\therefore \because:\left\{\begin{array}{l} \left\{\operatorname{tcc}(111)-\binom{20}{\text { tcc }(111)-(2 \times 2)}\right. \end{array}\right.$
-	$:\left\{\begin{array}{l} f c c(111)-\binom{10}{0} \\ \mathrm{fcc}(111)-(1 \times 2) \end{array}\right.$

Superstructures, example 1

GaAs(001) clean, different preparations

As(31)/Ga(55)

Auger peak height ratios:

$c(8 \times 2)$	1.74
(4×6)	1.77
$c(6 \times 4)$	1.92
(1×6)	2.12
$c(2 \times 8)$	2.25
$c(4 \times 4)$	2.7

Information from patterns:

- symmetry of unit cell
- size and shape of surface unit cell
- sharpness of spots \rightarrow domain size
- background intensity \rightarrow concentration of point defects

Superstructures,
example 2
$\mathrm{Si}(001)$ clean

no 2×2 structure! central spots missing \rightarrow two-domain 2×1

Wasserfall, Ranke, 1994

no 4-fold rotation symmetry!

Figure 3. Buckled dimer reconstructions on the (001) surface of germanium: $(a) b(2 \times 1)$; (b) $c(4 \times 2) ;(c) p(4 \times 1) ;(d) p(2 \times 2)$.

Payne et al. J. Phys.: Cond. Matter 1 (1989) SB63

3. LEED - less simple

Information from spot shape (profile), background, E_{0}-dependence (k_{\perp}-dependence)

Nachweis von Oberflächendefekten mit Beugung				
Dimension	Beispiele An	Einflun auf Reflexprofil		
0	Punktfehler thermische Bewegung statische Unordnung	Anordnung: statistisch korreliert		K_{\perp} Abhängigkeit keine
1	Stufenkanten Domänen (Größe, Grenzen)	statistisch regelmäfig	$\Omega_{\text {oder }}^{\text {oder }}$	periodisch (Stufen) keine (Domänen)
2	Überstruktur Facetten		$\begin{array}{lll} A & A & A \\ A & A \end{array}$	keine periodisch
3	Volumendefekte (Mosaik, Verspannung)			monoton
ideale Oberflächen			10	keine

Henzler, Göpel Abb. 3.8.10, p. 176

Facets and mosaic

Henzler, Göpel
Abb. 3.8.4, p. 167
a)

b)

Mosaik Struktur

$\operatorname{Pt}(9,11,11)$

$\mathrm{T}=1000 \mathrm{~K}$

Example: $\mathrm{Si}(001) \mathrm{vic}$

\$pobobobo
dopopopodo
copobobodo
popopodo Sasobe (2x1) and (1x2)

Wasserfall, Ranke, 1994

4. LEED - difficult

Spot intensities contain information on structure within the unit cell

$$
\begin{aligned}
& I \sim|F|^{2} \cdot|\mathrm{G}|^{2} \\
& |\mathrm{G}|^{2}=\text { structure factor or lattice factor } \\
& \begin{array}{l}
\text { contains shape and arrangement of repeat units (unit cells) } \\
\begin{array}{l}
\text { yields reciprocal lattice } \\
\text { determines location and shape of spots, } \\
\text { kinematic theory }
\end{array} \\
|\mathrm{F}|^{2}=\begin{array}{l}
\text { structure factor or form factor } \\
\text { contains contribution from all atoms within the repeat unit, } \\
\text { includes multiple scattering, in-depth attenuation, } \\
\text { dynamic theory }
\end{array}
\end{array}
\end{aligned}
$$

I-V-curve (schem.)
a)

b)

c) 1_{0}

d)

Henzler/Göpel, fig. 3.7.4, p. 152

Dynamic LEED analysis: No direct deduction of structure from I-V-curves:

Guess structure model calculate I-V-curves compare with measured curves modify model
check if improval
if yes: proceed modifying in this direction if no: modify in another direction or guess new model

Disadvantage:
Only for ordered structures
Much computer time
But:
One of very few methods for structure analysis of first few atomic layers ($\sim 1 \mathrm{~nm}$)

$\mathrm{Fe}_{3} \mathrm{O}_{4}(111)$, (inverse spinel)
10 nm thick on $\operatorname{Pt}(111)$

LEED-I-V analysis is one of very few reliable surface structure analysis methods!

Michael Ritter, Werner Weiss Guido Ketteler

c)

FeO/Pt(111), satellite pattern: multiple scattering, kinematic

0.9 ML FeO(111) on Pt(111), „structure 1"

5. LEED in model catalysis - example

Manfred Swoboda Christian Kuhrs Werner Weiss

Distinguish different Fe-O-phases

as measured

contrast enhanced

$\mathrm{Fe}_{3} \mathrm{O}_{4}(111)$
$\mathrm{FeO}(111) / \mathrm{Pt}(111), 1 \mathrm{ML}$

Change of order and phase during reaction

$\alpha-\mathrm{Fe}_{2} \mathrm{O}_{3}(0001)$

Starting surface:
$\alpha-\mathrm{Fe}_{2} \mathrm{O}_{3}(0001)$
Starting surface
$\alpha-\mathrm{Fe}_{2} \mathrm{O}_{3}(0001)$ (hematite), defective

After reaction

- no long-range order
- strong C peak in AES

After mild TPO (thermal programmed oxidation)

- reordered
- no longer hematite but $\mathrm{Fe}_{3} \mathrm{O}_{4}(111)$ (magnetite

Modern Methods in Heterogeneous Catalysis Research:
 Theory and Experiment

6. Conclusions

For qualitative information on surface structure very simple (display LEED)

- Order
- Periodicity
-Symmetry
For quantitative information on deviations from ideal order (SPA-LEED)
-Domain size
-Antiphase domains
-atomic steps
For quantitative analysis of surface structure (dynamic I-V-curve analysis)
-Precise atomic arrangements
- Relaxations
-Reconstructions

