

UNIVERSITÄT LEIPZIG Institut für Technische Chemie

Bildung von Essig- und Ameisensäure bei der Selektivoxidation von 1-Buten und einigen C₂-C₄-Zwischenprodukten

J-H. Eberle^a, H. Papp^b, C. Rüdinger^a, <u>T. Machold^b</u>, W. Suprun^b, B. Kubias^c
a) Consortium der Elektrochemischen Industrie GmbH München, 81379 München
b) Institut für Technische Chemie, Universität Leipzig, 04103 Leipzig
c) Fritz-Haber-Institut, Abt. Anorganische Chemie, Faradayweg 4-6, 14195 Berlin

Katalysatorcharakterisierung:

TPR-H₂

TPR-Butan

Katalysatorcharakterisierung:

Oxidationszahlen von Vanadium und Gehalt an aktivem

Die oxyhydratisierende Spaltung von Buten/Butan-Gemischen unter Verwendung von VO_x-haltigen Katalysatoren ist ein aussichtsreiches Verfahren zur Herstellung von Essig- und Ameisensäure [1]. Nach [2,3] erfolgt die Bildung dieser Carbonsäuren über die Zwischenprodukte (ZP): 2-Butanol (2-BuOH), Methylethylketon (MEK), Acetaldehyd (AcH) und Propionaldehyd (PrA). Ziel dieser Arbeit war es, den Einfluss der Temperatur und der Katalysatorzusammensetzung auf die Oxidation von 1-Buten und den ZP an VO_x-TiO₂- und VO_x/SbO_x-TiO₂-Katalysatoren zu untersuchen. Es wurden mögliche Reaktionswege zur Bildung der beiden Säuren abgeleitet.

Experimentelles

Katalysatorherstellung: Die Katalysatoren wurden nach einem Sprühtrocknungsverfahren aus einer wässrigen Lösung der entsprechenden Metalloxide hergestellt, in Luft kalziniert, verpresst und in verschiedene Korngrößenfraktionen ausgesiebt. Für die Untersuchungen wurde die Kornfraktion von 0,1 bis 0,3 mm verwendet [1]. Der VO_x-TiO₂-Katalysator enthielt 6,1 % Vanadium (Gew.-% Metall) und der VO_x/SbO_x-TiO₂-Katalysator 4,4 % Vanadium und 6,4 % Antimon.

Katalysatorcharakterisierung: BET-Oberfläche, Temperatur-programmierte Reduktion (TPR) mit H_2 und Butan, Temperatur-programmierte Desorption von O_2 (TPD- O_2), Röntgen-Diffraktometrie (XRD) und Bestimmung der Oxidationszahlen (OZ) von Vanadium mittels Cerimetrie.

Katalytische Oxidation: Quarzreaktor (ID: 0,5 cm; L: 10 cm); Atmosphärendruck; T: 393 - 553 K; GHSV: 18,000 h⁻¹; Katalysatormasse: 200 mg; Eduktgaszusammensetzung: 1,3 Vol-% 1-Buten bzw. 0,13 Vol-% Zwischenprodukt (2-BuOH, MEK, AcH oder PrA); 4,0 Vol-% Sauerstoff; 17,0 Vol-% Wasserdampf; Rest: Helium

TPR: 8 Vol-% H₂/Argon bzw. 5 Vol-% Butan/Argon; 50 ml/min; Heizrate: 10 K/min; Probeneinwaage: 50 mg.

TPD-O₂

Gittersauerstoff (aus TPD-O₂)

Katalysator	Form/Reaktionsbedingungen	OZ	O ₂ -Gehalt
			(gO ₂ /mg Katalysator)
VO _x -TiO ₂	frisch kalziniert	4,92	8,5
	3 h; 493 K; Oxidation	-	6,1
	10 h; 493 K; Oxidation	4,66	2,9
	10 h; 493 K; Isomerisierung	4,33	0
VO _x -SbO _x -TiO ₂	frisch kalziniert	4,65	7,2
	3 h; 493 K; Oxidation	-	6,2
	10 h; 493 K; Oxidation	4,50	5,7
	10 h; 493 K; Isomerisierung	4,21	0

Isomerisierung: [Buten], 5 %; Oxidation: [Buten], 1,2 Vol-%; [O2], 4 Vol-%; Rest Helium

Katalytische Oxidation:

Reihenfolge der Entstehung einiger Produkte

1-Buten-Oxidation an VO_x-TiO₂ (Abb.1)

2-Butanol-Oxidation an VO_x-TiO₂ (Abb.2)

Einige mögliche Reaktionswege

Analyse der Oxidationsprodukte: MS-Online-Analyse (Pfeiffer Vacuum Omni Star GSD 301 C2)

Ergebnisse und Diskussion

Katalysatorcharakterisierung: Die BET-Oberfläche der Katalysatoren lag zwischen 73 und 79 m²/g. TPR-, TPD-O₂ und die OZ von Vanadium zeigten, dass der Gehalt an aktivem Gittersauerstoff bei frischen Katalysatoren höher ist als bei gebrauchten (mehrere Stunden Oxidation von 1-Buten). Die Reduzierbarkeit des Vanadiumoxids in VO_x/SbO_x-TiO₂ ist im Vergleich zu VO_x-TiO₂geringer. In den XRD-Profilen der Katalysatoren konnten TiO₂ Anatas und geringe Spuren von TiO₂R util nachgewiesen werden. Weiterhin konnte in beiden Katalysatoren kristallines V₂O₅ entdeckt werden. VO_x/SbO_x-TiO₂e nthielt kristallines Sb₂O₃.

Katalytische Oxidation: Die Bildung von Essig- und Ameisensäure wird deutlich durch die Temperatur beeinflusst, wobei die maximalen Ausbeuten aus den einzelnen Edukten bei unterschiedlichen Temperaturen liegen. Die Höhe der maximalen Ausbeute an Essigsäure (ES) aus den einzelnen Edukten nahm in der Reihe AcH > MEK > PrA > Buten > 2-BuOH ab. Während der Oxidation von 1-Buten bei einer Temperatur von 413 K entstanden zuerst PrA und MEK, gefolgt von 2-BuOH und zuletzt ES (Abb.1). Während der Oxidation von 2-BuOH entstanden bei 413 K zuerst Buten und PrA, gefolgt MEK und zuletzt ES (Abb.2). Offensichtlich ist bei der Oxidation von 2-BuOH bei niedrigen Temperaturen die Dehydratisierung von 2-BuOH ein bevorzugter Schritt. Essigsäure entstand bei der katalytischen Oxidation von 1-Buten und 2-BuOH mit einiger Verzögerung. Die Ausbeute an Ameisensäure (AmS) war bei der Oxidation von 2-BuOH relativ temperaturunabhängig. Die allgemeine Oxidationsaktivität von VO_x-TiO₂w ar höher als die von VO_x/SbO_x-TiO₂ Mit steigenden Temperaturen nahm die Tendenz zur Totaloxidation bei allen Edukten zu.

Katalytische Oxidation:

Temperaturabhängigkeit der Ausbeute an Essig- und Ameisensäure während der Oxidation von verschiedenen Edukten an VO_x-TiO₂

Essigsäure

Ameisensäure

Vergleich der Ausbeuten an Essig- und Ameisensäure aus der Oxidation von Propion- und Acetaldehyd an VO_x-TiO₂ und VO_x/SbO_x-TiO₂

Zusammenfassung

Die Bildung von Essig- und Ameisensäure hing von der Temperatur und der Katalysatorzusammensetzung ab. Die Oxidationsaktivität von VO_x -TiO₂ war höher als die von VO_x/SbO_x -TiO₂. Oberhalb von 543 K unterlagen alle untersuchten Verbindungen der Totaloxidation. Durch die Oxidation von Zwischenprodukten konnten Informationen über mögliche Reaktionswege während der katalytischen Oxidation von 1-Buten erhalten werden.

Reaktionsbedingungen: T: 393 - 553 K; GHSV: 18,000 h⁻¹; Katalysatormasse: 200 mg; Eduktgas: 1,3 Vol-% 1-Buten bzw. 0,13 Vol-% ZP; 4.0 Vol-% O₂; 17,0 Vol-% Wasserdampf; Rest: Helium

Literatur

1) Ch. Rüdinger; H-J. Eberle: Eur- Pat. Appl. (1999) EP 99-109226-19990521

2) T. Seiyama, K. Nita, T. Maehara, N. Yamazoe, Y. Takita, J. Catal. 49 (1997) 164

3) K. Kaneko, T. Hoshino, S. Wada, Bull. Jap. Petrol. Inst. 16 (1974) 24

Danksagung

Die vorliegende Arbeit wurde durch das BMBF (FKZ: 03C323C) gefördert.