

Studies of Processes Occuring during Alkoxide Derived V-O-W Unsupported Catalyst Formation

Mieczyslawa Najbar^{1*}, Fujio Mizukami², Pawel Kornelak¹, Aleksandra Weselucha-Birczyńska³, Barbara Borzęcka-Prokop¹, Elzbieta Bielańska⁴, Anna Białas¹, Joanna Banaś¹ and Dang Sheng Su⁵

¹Department of Chemistry, Jagiellonian University, 30 060 Kraków, Ingardena 3, Poland;

*Phone: (4812) 6336377 ext. 2011, fax: (4812) 6340515, e-mail: mnajbar@chemia.uj.edu.pl

²Laboratory for Membrane Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), AIST-Tohoku, Japan;

³Regional Laboratory of Physicochemical Analyses and Structural Research, Jagiellonian University, 30 060 Kraków, Ingardena 3, Poland;

⁴Institute of Metallurgy and Material Science, PAS, Kraków, Reymonta 25, Poland;

⁵Department of Inorganic Chemistry, Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, D-14195 Berlin, Germany;

ABSTRACT

The aim of this paper is to investigate the processes occurring during V-O-W unsupportedcatalyst formation in order to gain the knowledge necessary to design supported catalysts. Sol-gel synthesis of V-W hydroxo-oxide hydrate (W:V=9:1) from tungsten and vanadyl isopropoxides is described. The hydrate structure is shown to be related to WO₃·0.33H₂O one. The role of vanadium in the formation of this structure is discussed. Hydrate dehydration is shown to result in the formation of V-W hydroxo-oxide isostructural with hexagonal WO₃. Further heating of hydroxy-oxide causes a loss of hydroxy groups accompanied by formation of V-W oxide bronze isostructural with tetragonal WO₃. Annealing the bronze in an air atmosphere results in the removal of vanadium from the bronze crystallites due to its surface segregation. The formation of the surface vanadia-like species on WO₃related crystallites is found to be a result of vanadium segregation. Increasing the annealing temperature causes recrystallization of the surface species. The synthesis of the V-W/TiO₂ oxide catalyst via a mixed oxide formation in the presence of titania sols followed by surface vanadium segregation in an air containing atmosphere is proposed. The application of the knowlegde gained during investigation of the formation of the unsupported V-O-W catalyst to the discussion of the morphology of the V-O-W/Ti,SnO₂(rutile) catalyst is also demonstrated.