

Hamburger Synchrotronstrahlungslabor HASYLAB at Deutsches Elektronen-Synchrotron DESY Annual Report 2003

Structural and Catalytic Investigation of Palladium-Gallium Intermetallic Compounds

J. Osswald, 1 R.E. Jentoft, 1 F. Girgsdies, 1 R. Giedigkeit, 2 Y. Grin, 2 R. Schlögl, 1 T. Ressler 1

¹Inorganic Chemistry, Fritz-Haber-Institut der MPG, Faradayweg 4-6, 14195 Berlin ²Chemische Metallkunde, MPI für Chemische Physik fester Stoffe, Nöthnitzer Str. 40, 01187 Dresden

Introduction

Palladium constitutes an important catalyst for hydrogenation (e.g. the hydrogenation of acetylene to ethylene or 1,2-butadien to 1-buten) and for combustion reactions. Typical Pd-catalysts are supported on metal oxides and show high activity but only limited selectivity^[1]. The limited selectivity of Pd catalysts may be caused by neighbouring active sites on the catalyst^[2-6]. Binary intermetallic compounds prepared by the group of Prof. Y. Grin are stoichiometric compounds with ordered crystallographic structures. These materials are

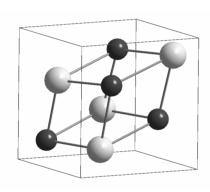


Figure 1: Unit cell of PdGa

particularly interesting as potential catalysts because of the isolation of the Pd atoms in the structure. In both structures the Pd atoms are surrounded by a coordination sphere of Ga atoms (i.e. coordination number of 7 in PdGa and 8 in Pd₃Ga₇). This site isolation changes the geometry and the electronic structure of the active Pd atoms and may modify adsorption and desorption properties at the catalyst surface^[9]. Therefore, this significant difference in the local structures of Pd metal clusters and the Pd-Ga intermetallic compounds permits to tailor the selectivity of palladium catalysts in hydrogenation reactions.

Experimental

The thermal stability of PdGa and Pd_3Ga_7 in various atmospheres was investigated by in situ XAS (X-ray absorption spectroscopy) at both the Pd and the Ga K-edge, in situ XRD (X-ray diffraction), and thermal analysis (TG, DSC). The XAS experiments were carried out at beamline X1 and E4 at HASYLAB and Id24 at ESRF. Catalytic studies were carried out in a 4 ml cell reactor with MS detection and the surface area was determined by BET measurements and CO adsorption.

Results

BET measurements of the ground samples resulted in a surface area of 1-2 m^2/g for both compounds. The structural evolution of PdGa and Pd₃Ga₇ in helium, hydrogen, and oxygen in the temperature range from 293 to 773 K shows that the palladium-gallium ICs are stable under these conditions. Also no phase transition in this temperature range and no oxidation within the detection limit of XAS and XRD were observed. In 100% H₂ anomalous trends of the interatomic distances and XAS Debye-Waller factors were observed. These may correspond to the incorporation of hydrogen in the structure of the IC and to the onset of catalytic activity.

Hamburger Synchrotronstrahlungslabor HASYLAB at Deutsches Elektronen-Synchrotron DESY Annual Report 2003

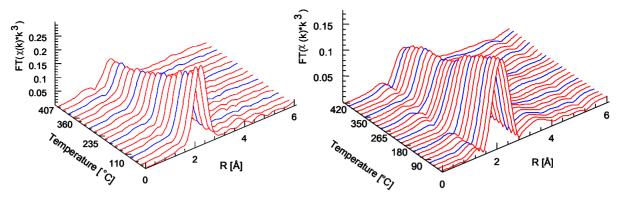


Figure 2: In situ EXAFS at Pd K-edge of Pd₃Ga₇ in 20% O₂ (left) and 100% H₂ (right).

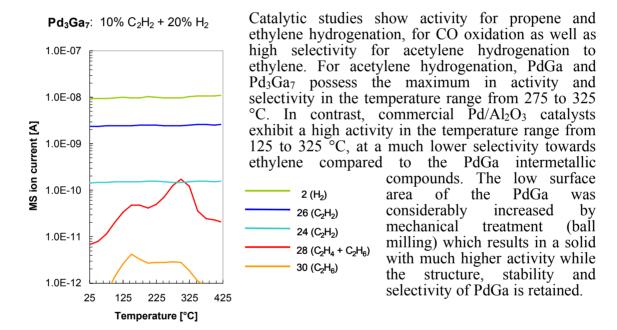


Figure 3: Acetylene hydrogenation with Pd_3Ga_7 . The MS ion current for m/z= 28 shows the formation of C_2H_4 and/or C_2H_6 . The ion current m/z= 30 shows the formation of C_2H_6 .

Literature:

^[1]G. Ertl, H. Knoezinger, J. Weitkamp: *Handbook of heterogeneous catalysis*, VCH, **1997**

^[2]A.J. Den Hartog, M. Deng, F. Jongerius, V. Ponec, J. Mol Catal. 60, **1990**, 99

^[3] A. Borodzinski, *Catal Lett.* 63, **1999**, 35-42

^[4]J. H. Kang, E. W. Shin, W. J. Kim, J. D. Park, S. H. Moon, *J. Cat.* 208, **2002**, 310-320

^[5]W. Palczewska, in *Hydrogen effects in Catalysis*, ed. Z. Paál, and P.G. Menon, Marcel Dekker Inc, **1988**, 381-386

^[6]D. Duca, F. Frusteri, A. Prmalina, and G. Deganello, *Appl. Catal. A* 146, **1996**, 269-284

^[7]E. Hellner, F. Laves, Z. Naturforsch. 2a, **1947**, 177-183

^[8]H. Pfisterer, K. Schubert, Z. Metallkunde 41, **1950**, 433-441

^[9]L. Guczi, and Z. Schay, in Studies in surface science and catalysis, vol. 27, ed. L. Cervený, Elsevier, 1986, 313-335