

Department of Inorganic Chemistry Fritz Haber Institute - Max Planck Society Faradayweg 4-6, 14195 Berlin, Germany

Sulfated Zirconia Catalysts for Alkane Isomerization: Recent Progress

Friederike C. Jentoft

ExxonMobil Chemical ESEP European Award Symposium Machelen, December 4, 2003

Outline

Results

- 1. Role of sulfate
- 2. Preparation of sulfated zirconia catalysts
- 3. Handling of sulfated zirconia catalysts
- 4. Effect of promoters Mn, Fe
- 5. Deactivation

Conclusions

Outlook

- Sulfated zirconia" isomerizes *n*-butane to isobutane at 373 K Hino, Arata, JACS 1979 & Chem. Comm. 1980
- "sulfate-treated zirconia-gel catalyst" Holm, Bailey 1962, US Patent 3,032,599

Promotion of Sulfated Zirconia

Low temperature isomerization of *n*-butane

Fe and Mn exert strong promoting effect Hollstein et al., 1990 US Patent 4,918,041; Hsu et al., Chem. Comm. 1992; Lange et al., Catal. Lett. 1996

Initial Ideas on Sulfated ZrO₂

- sulfate introduces acidity
- Mn and Fe increase the acidity of the "solid superacid" sulfated zirconia, evidence: catalytic activity, benzene TPD Hsu et al. Chem. Comm. 1992, Lin et al. Chem. Comm. 1992
- …no sites consistent with extreme acidity could be identified….. Adeeva et al. J. Catal. 1995, Wan et al. J. Catal. 1996

1. Role of Sulfate Sulfate Structures I

Arata et. al., Adv. Catal. 1990

Yamaguchi et. al., Appl. Catal. 1990

0

Zr

н

O

Zr+₋

0

Riemeret. al., Chem. Comm. 1994

Clearfield, Catal. Today 1994

Adeeva et al., J. Catal. 1995

Platero and Mentruit, Catal. Lett. 1995

S

Sulfate Structures II

- state depends on concentration (typically 5-10 wt% sulfate) / hydration
- sulfate is extremely flexible
- several structures may coexist

Number of Sites on Sulfated Zirconia

- ✤ isobutane adsorption isotherm fit (modified Langmuir model)
- ☆ monolayer is ≈80 µmol/g; sulfate content is ≈560 µmol/g

000000

 only minority (15%) of sulfate involved in adsorption / reaction identification of "active" sulfate species will be extremely difficult

Fe- and Mn- promoted sulfated zirconia

MEL Chemicals XZO 682/01 " ZrO_2 *2.5 H_2O ", (NH_4)₂SO₄ X-ray amorphous

incipient wetness Fe(III), Mn(II) nitrates

calcination 923 K (SZ 823 K)

"FeSZi, MnSZi"

nominal promoter content in wt% metal

Reproducibility?

Calcination Procedure

events during calcination

- ✤ loss of water
- decomposition of NO₃⁻ and NH₄⁺
- crystallization / sintering of ZrO₂
- endo- / exothermic events

temperature deviations from program? (preparative scale)

- temperature overshoot, max. calcination T may be exceeded "glow phenomenon", Berzelius 1812
- promoters influence calcination chemistry (systemic), Fe and Mn different
- strong batch size dependence

Glow Phenomenon: MnSZ and FeSZ

- temperature overshoot, max. calcination T may be exceeded "glow phenomenon", Berzelius 1812
- promoters influence calcination chemistry (systemic), Fe and Mn different
- strong batch size dependence

✤ samples calcined in larger batches are more active (1 vol% *n*-butane at 338 K)

an extensive quantity influences the activity

 samples are ground or milled to homogenize or obtain a fine powder

samples have to be "prepared" for certain analytical techniques; pressing of wafers for transmission spectroscopy

- ,...tetragonal ZrO₂ phase is ... necessary" Morterra et al., J. Catal. 1995
- …activity... of monoclinic samples ... just by a factor 5-7 lower" Stichert and Schüth, J. Catal. 1998
- tetragonal and cubic can be stabilized through dopants (Y)

Grinding: 0.5% MnSZi

- zirconia sensitive to mechanical stress, tetragonal to monoclinic transition Whitney, Trans. Faraday. Soc. 1965 (footnote!)
- manual grinding: strong operator influence
- ✤ catalytic activity affected

✤ pressing of a self-supporting wafer (as for IR): ca. 33 wt% monoclinic ZrO₂

sample preparation for analysis may alter catalyst

4. Effect of Promoters Preparation of Reference Compounds

Can Mn, Fe stabilize certain zirconia bulk phases?

promoters and zirconia are interspersed in the primary solid

X-ray Diffraction

Analysis of bulk phase by X-ray diffraction

- ✤ SZ (calc. 823 K):
- ✤ SZ (calc. 923 K):
- ✤ MnSZi, FeSZi (calc. 923 K): t-ZrO₂

✤ MnZc, FeZc (calc. 923 K): t-ZrO₂, towards c-ZrO₂

- t-ZrO₂, sometimes traces of m-ZrO₂
- predominantly m-ZrO₂

Analysis of Lattice Parameters

Unit cell shrinkage with increasing promoter content

- * incorporation of Mn, Fe into zirconia lattice J. Stöcker Ann. Chim. 1960
- determination of incorporated amount difficult, 2 additional factors
- Mn more easily incorporated than Fe? More surface Fe in presence of Mn?

Analysis of top-most layer by ion scattering spectroscopy (ISS)

- ✤ Fe detectable at content of 2 wt%, Mn not detectable
- ✤ Fe: surface and bulk species?

Fe as Promoter: EPR

- isolated Fe³⁺ (incorporated)
 small Fe₂O₃ particles
 Fe³⁺ in oxygen environment of lower symmetry
- ✤ supported by Mössbauer spectra, only Fe³⁺

Removal of Surface Species from FeSZi

ZrO₂

Fe K edge XANES

• 42% Fe removed removed by oxalic acid, Fe_2O_3

sulfate also removed in washing

Analysis of Mn valence by in situ X-ray absorption spectroscopy (XAS)

- mixed valence for Mn, slightly reduced during activation in inert gas: Mn participates in reactions
- ✤ no change of Mn oxidation state detectable during reaction

Model for Surface Sites

cations with a valence < +IV in zirconia lattice essential</p>

role of sulfate?

Regeneration of SZ

500 mg SZ, 1 kPa n-C₄ reaction at 338 K regeneration at 723 K

♦ "conditioning in O_2 "?

a model that holds for SZ and promoted SZ

Isomerization can proceed through 2 different mechanisms – does only one lead to surface deposit formation?

band at 310 nm after *n*-butane reaction: allylic cations Spielbauer et al., Catal. Lett. 1996

monitor band growth and catalytic performance

Reaction Profile during Pentane Isomerization

- unsaturated species are not intermediates
- not a result of monomolecular isomerization
- result of bimolecular mechanism, competing reaction to formation of gas phase products

Reaction of Surface Deposits with Air

- ✤ reaction of surface deposits with components of air (O_2 , H_2O ?)
- volatilization?

study "coke" in situ without exposure to air

Role of sulfate

- only a minority of sulfate participates
- active species will be difficult to identify

Preparation of sulfated zirconia catalysts

- calcination parameters essential; batch size (extensive quantity) and packing have influence on catalytic activity
- explains differences between preparations from different groups

Handling of sulfated zirconia catalysts

ZrO₂ not "inert": succumbs to mechanical stress

handle with care...

Effect of promoters

- Fe, Mn stabilize tetragonal (cubic) phase through incorporation in lattice
- promoters: on surface + in lattice, distribution depends on preparation
- Mn is not involved in stoichiometric redox reactions
- ✤ lower valence of Fe, Mn (other promoters) vs. Zr^{4+:} oxygen vacancies
- a common model for promoted and unpromoted SZ

Deactivation and regeneration

- deactivation result of bimolecular mechanism
- surface deposits are reactive in air, may be volatilized?

Materials

- "improved preparation"
- other anions (tungstated zirconia)
- other promoters (periodic table)
- supported sulfated zirconia (SiO₂, MCM-41, Al₂O₃)
- nano- and mesostructured zirconia

Catalysis

- prevention of deactivation by Pt/H₂
- other reactions
 Yadav & Nair, Microp. Mesop. Mater. 1999

...and Understanding???

Fritz-Haber-Institut der Max-Planck-Gesellschaft Rafat Ahmad (UV-vis spectroscopy) Alexander Hahn (calcination, incorporation, regeneration) Barbara Klose (mechanical stress) Rolf E. Jentoft (grinding "operator 1", XRD, XAS cell development & measurements) Edith Kitzelmann (grinding "operator 2", XRD) Jutta Kröhnert (preparation of reference materials and AAS) Bärbel Lehmann (photography) Gisela Lorenz (catalyst preparation) Jörg Melsheimer (UV-vis spectroscopy) Thorsten Ressler (XRD, XAS) Manfred Thiede (UV-vis cell development) Genka Tzolova-Müller (UV-vis spectroscopy) Ute Wild (ISS) Sabine Wrabetz (adsorption calorimetry) Xiaobo Yang (preparation of new zirconia materials) Robert Schlögl (Department of Inorganic Chemistry director)

Technische Universität München

Carmen Häßner (EPR) Klaus Köhler (EPR)

DAAD, Hasylab Beamline E4, MEL Chemicals, Max-Planck-Gesellschaft