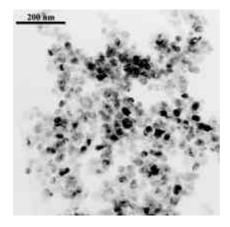
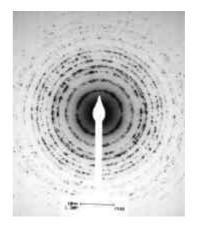
Tribomechanical Treatment of Vanadium- Containing Oxides: Propane Oxidative Dehydrogenation

Ibrar Ayub¹, Dangsheng Su¹, Olaf Timpe¹, Gisela Weinberg¹, Helmunt Knözinger² and Robert Schlögl¹

1. Fritz Haber Institute of the Max Planck Society,

Faradayweg 4-6, D-14195 Berlin, Germany.


2. Ludwig-Maximilians-Universität München,


Department Chemie, Physikalische Chemie, AK für Oberflächenchemie und Katalyse, Butenandtstraße 5-13, Haus E, D-81377, München

Introduction

 V_2O_5 , V_2O_5 /TiO₂, Sb_2O_3 /TiO₂, and V_2O_5 / Sb_2O_3 /TiO₂ were milled in a planetary ball mill between 1 to 20 h. The interaction between V_2O_5 , Sb_2O_3 and TiO_2 under milling was characterised by SEM, TEM and was tested for their catalytic activity towards propane oxidative dehydrogenation (ODH). Titania supported vanadia catalyst were modified by addition of antimony oxide for application in propane oxidative dehydrogenation. Ball milling reduces the particle size, destroys the structure and leads to the reduction of V_2O_5 . Ball milling of the ternary system (V_2O_5 / Sb_2O_3 / TiO_2) results in the fine dispersion of V_2O_5 . The ternary system also exhibits higher performance to propane ODH.

Keywords: V₂O₅, Sb₂O₃, TiO₂, mechanochemical treatment, propane oxidative dehydrogenation, electron microscopy

