EuropaCat-VI, August 31 – September 04, 2003, Innsbruck, Austria Oral contribution ## Styrene Synthesis: High Yield over Unpromoted Iron Oxide Model Catalysts O. Shekhah, W. Ranke, R. Schlögl Dept. Inorganic Chemistry, Fritz Haber Institute, Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany Dehydrogenation of ethylbenzene to styrene is usually run over potassium promoted iron oxide based catalysts at 870 K in presence of steam. Here we present conversion yield measurements on unpromoted single crystalline α-Fe₂O₃ (0001) model catalysts by combining surface science techniques with an in-situ micro flow reactor (Fig.1). The influence of H₂O and O₂ on the reaction was investigated by varying the composition of the feed. The initial conversion over Fe₂O₃ is always high (5-8%, Fig. 2), independent of the type of the feed composition. Only the length of this period depends on the feed composition. In presence of O₂ (EB: $H_2O:O_2 = 2:20:1$), the high yield period can be maintained, in absence of O_2 (EB: $H_2O = 1:10$) it decreases in two steps of about a factor of 2-3 each. The reaction was interrupted in the different yield regimes, and the sample structure and composition was analyzed. The high yield is related to Fe₂O₃ with Fig. 1: Micro flow reactor Fe₂O₃ Fe₃O₄ Coke Fig. 2: Styrene yield over Fe₂O₃ and its decrease by reduction to Fe₃O₄ and by coking, schematically. almost no carbon deposits. O_2 in the feed maintains this phase. Without O_2 , Fe_2O_3 is reduced to Fe_3O_4 and the yield drops to the intermediate region. The same yield is observed on clean Fe_3O_4 . Carbon deposits increase but do not yet limit conversion. This happens at the transition to the low yield regime where a thick layer of carbon deposits is observed. With H_2O in the feed, the oxide below the carbon deposits remains Fe_3O_4 , without H_2O , it is reduced to metallic Fe. We ascribe the low yield to catalysis by carbonaceous species. The study shows that the high yield is typical for Fe_2O_3 and can be maintained by proper admixture of O_2 to the feed.