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Introduction 
Sulfated zirconia, a catalyst in use for the low temperature skeletal isomerization of 
alkanes, has been investigated for more than two decades, but no convincing 
structure–activity relationship has evolved. A point in question is the role of  the bulk 
phase of zirconia. First, only the tetragonal phase was considered to be active [1]; 
recently, the monoclinic phase, which is the room temperatu re stable modification, 
was reported to be similarly active [2]. Sulfated zirconia can be promoted by cations 
of Mn, Fe, Co, or Ni whose function is not yet understood [3]. The aim of this work 
was to study the nature and s tability of the zirconia bulk structure and its influence on 
catalytic behavior, including deactivation and regeneration.  
 
Results and Discussion  
Three different types of SZ catalysts were investigated: (i) “SZ”, obt ained through 3 h 
calcination at 823 K of sulfated hydrous zirconia (MEL Chemicals XZO 682/01), (ii) 
“MnSZ” and “FeSZ”, Mn- and Fe-promoted SZ, containin g 0.5 to 5.0 wt% metal, 
obtained through incipient wetness impregnation of sulfated hydrous z irconia and 
subsequent calcination at 923 K [4], and (iii) “omSZ”, ordered mesoporous sulfated 
zirconia, obtained fro m zirconium n-propoxide, ammonium sulfate, and hexadecyl -
tri-methyl-ammonium chloride at 373 K followed by calcination at 813 K [5].  
Within the detection limits of XRD, only the tetragonal phase of zirconia was found 
in the calcined samples of SZ and of pr omoted SZ with promoter contents >1%. The 
promoters were in part incorporated into the bulk zirconia, as evidenced by a 
contraction of the unit cell (XRD), the 
presence of isolated Fe 3+ and Mn2+ in a 
highly symmetric environment (EPR [6]), 
and, for MnSZ, t he absence of Mn at the 
surface at low Mn contents (ISS).  
The phase composition proved to be 
extremely sensitive to any kind of 
mechanical stress [7]. Grinding by hand 
in a mortar, milling in a vibrating mill, 
and pressing affected the phase 
composition in that monoclinic zirconia 
was formed. Depending on the treatment, 
the resulting monoclinic fraction was as 
much as 57 w t%. Two diffractograms of 
SZ powder and of an SZ wafer, which 
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Figure 1: Diffractograms of SZ (dotted 
line, asterisks indicate internal standard 
corundum) and pressed SZ (solid line).  



was prepared as for an IR experiment i.e. using 540 MPa o f pressure, are shown in 
Figure 1. Arrows indicate the monoclinic phase, which contributed 33 wt%. Ground 
and milled SZ and MnSZ samples were also tested for their n-butane isomerization 
activity (fixed bed flow reactor, 0.5 g sample, activation at 723 K, 80 ml/min 1% n-
butane in N2 at atm. pressure, reaction at 323 –378 K). Milled SZ and ground MnSZ 
(0.5%Mn) exhibited only 25 –30% of the  conversion attained with untreated sample.  
Deactivation of SZ and omSZ was studied by in situ UV -vis spectrocopy [8]. Under 
the selected conditions (50 ml/min 5% n-butane, 1.2 g SZ a t 378 K and 0.6 g omSZ at 
453 K), SZ reached a maximum isomerization rate of 700 µmol g -1 h-1 after 50 min 
and then deactivated rapidly, reaching a steady production of 100 µmol g -1 h-1 at 150 
min, omSZ also reached a maximum rate of 700 µmol g -1 h-1 but only after 100 min 
and it deactivated slowly to 550 µmol g -1 h-1 within 10 h. The spectra of SZ showed a 
band at 310 n m which developed during the period of high activity and then did not 
increase further. The spe ctra of omSZ showed a band at 285 nm which slowly grew 
in intensity throughout the observation span. Both these bands can be attributed to 
allylic cations [9], but the nature of the unsaturated species and/or the polarization 
through the underlying surface  are different for the two catalysts.  
A series of consecutive reactivation experiments were conducted with SZ, using 50% 
O2 at 723 K and alternatingly a short (1 
h) and a lon g (71–88 h) reactivation 
procedure. The short exposure to O 2 
produced a more act ive and the long 
exposure a less active catalyst (Figure 
2). The catalyst could be  switched back 
and forth between these states. The 
different responses to O 2 on a scale of 
hours suggest solid state (bulk) 
reactions. 
Our experiments show that the zirconia 
bulk plays a role in the p romotion, 
deactivation, and reactivation of sulfated 
zirconia catalysts. The bulk phase is also 
metastable and transformations can occur 
during standard laboratory procedures.  
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Figure 2: Isomerization activity of SZ at 
338 K after regeneration in O 2 for 1 h 
(squares), and for 71 –88 h (circles). 
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