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Summary

Experimental results have shown that adsorption and incorporation of Si on GaN
surfaces depend extremely on the growth technique and on the growth conditions.
The aim of this work was to provide a deeper understanding of Si adsorption on the
bare GaN (0001) surfaces and its effect on surface morphology employing density-
functional theory within the pseudopotential approach. In addition, a systematic
study of the structural and electronic properties of the most relevant bare GaN
(0001) surfaces has been performed.

One important issue when theoretically studying bulk and surface properties is
the choice of the appropriate methods and techniques to perform the calculations.
In the beginning of this work, there was no systematic study of how the exchange-
correlation functional (PBE, LDA) performs on the properties of GaN surfaces.
We have shown that, as a rule, the structural properties are similarly described
using both functionals. Also, surface states are not affected either qualitatively or
quantitatively by the exchange-correlation functional.

Regarding the thermodynamic stability of the structures, under Ga-rich con-
ditions the description using PBE is fully compatible with the LDA calculations.
However, under N-rich conditions, PBE performs very differently from LDA. This
behavior has been related to the severe underestimation of the GaN formation en-
thalpy when using PBE. Based on these results, we have chosen to apply LDA to
investigate adsorption of Si on the GaN (0001) surfaces.

A systematic study involving more than 100 model structures showed that Si is
stabilized at the surface only under extreme N-rich/Si-rich conditions. Under more
Ga-rich/Si-rich conditions Si prefers to incorporate at subsurface sites. Based on
these results, we have derived a surface phase diagram which includes all thermody-
namically stable structures. The surface phase diagram allowed a direct comparison
of our results with experiment.

The general trends are that under Ga-rich/Si-rich conditions surface segrega-
tion of Si does not occur and Si can be easily incorporated in GaN bulk. As a
consequence for growth, we conclude that such surfaces are essentially free of Si in
the top surface layer and topologically very similar to the bare GaN (0001) sur-
face. Thus we expect no change in the growth morphology. Such conditions are
typically realized in molecular beam epitaxy (MBE), where indeed Si (even at high
concentrations) does not affect the surface morphology. On the other hand, un-
der N-rich/Si-rich conditions (as realized in metalorganic chemical vapor deposition
(MOCVD) and molecular vapor phase epitaxy (MOVPE) to achieve high Si-doping
levels) our phase diagram predicts Si acts as an anti-surfactant, i.e., it enhanced the
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roughness of the surface and promotes three-dimensional growth. This behavior is
indeed observed in MOCVD.

In summary, our work allowed the interpretation of the puzzling behavior of
Si adsorption on GaN (0001). We identified under which conditions Si acts as an
anti-surfactant, when it has no effect on the surface morphology, when it can cause
polarity inversion and how to inprove the Si doping efficiency. Besides, our results
gave contributions to a better understanding of the properties of the bare GaN
(0001) surfaces.
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Zusammenfassung

Experimentelle Untersuchungen haben gezeigt, dass die Adsorption und Inkorpo-
ration von Si auf GaN Oberflichen extrem stark von der Wachstumstechnik und
den Wachstumsbedingungen abhéngen. Ziel dieser Arbeit war das Verstéindnis
der Si-Adsorption auf reinen GaN (0001) Oberflichen und der Einfluss auf die
Oberflichen-Morphologie durch Anwendung der Dichte-Funktional-Theorie inner-
halb des Pseudo-Potential-Ansatzes. Zusatzlich wurde eine systematische Studie der
strukturellen und elektronischen Eigenschaften der wichtigsten reinen GaN (0001)
Oberflachen durchgefiihrt.

Ein wichtiger Punkt bei einer theoretischen Betrachtung der Volumen- und
Oberflachen- Eigenschaften ist die Wahl der geeigneten Methoden und Techniken
zur Durchfithrung der Rechnungen. Zu Beginn dieser Arbeit gab es keine systema-
tische Studie des Einflusses des Austausch-Korrelations-Funktionals (PBE, LDA)
auf die Eigenschaften von GaN-Oberflichen. Wir haben gezeigt, dass generell die
strukturellen Eigenschaften mit beiden Funktionalen in gleicher Weise beschrieben
werden. Desweiteren werden Oberflichen-Zustinde weder qualitativ noch quantita-
tiv vom Austausch-Korrelations-Funktional beeinflusst.

Im Hinblick auf thermodynamische Stabilitét der Strukturen ist unter Ga-reichen
Bedingungen die Beschreibung mit PBE vollstdndig kompatibel mit den LDA-
Rechnungen. Unter N-reichen Bedingungen jedoch verhalten sich PBE und LDA
sehr unterschiedlich. Dieses Verhalten konnte auf die starke Unterschitzung der
GaN Formations-Enthalpie bei PBE zuriickgefiihrt werden. Von diesen Ergebnis-
sen ausgehend haben wir zur Untersuchung der Adsorption von Si auf GaN (0001)
Oberflachen die Anwendung von LDA gewahlt.

Eine systematische Studie unter Einbeziehung von mehr als 100 Modell-Struk-
turen hat gezeigt, dass Si auf der Oberfliche nur bei extrem N-reichen/Si-reichen
Bedingungen stabilisiert ist. Unter mehr Ga-reichen/Si-reichen Bedingungen wird Si
bevorzugt an Plitzen unterhalb der Oberflidche eingebaut. Basierend auf diesen Re-
sultaten haben wir ein Oberflichen-Phasen-Diagramm entwickelt, dass alle thermo-
dynamisch stabilen Strukturen enthélt. Das Oberflichen-Phasen-Diagramm er-
laubte einen direkten Vergleich unserer Ergebnisse mit dem Experiment.

Die generelle Tendenz ist, dass unter Ga-reichen/Si-reichen Bedingungen Ober-
flichen-Segregation von Si nicht auftritt und Si leicht in den Kristall eingebaut
werden kann. Als Konsequenz fiir das Wachstum folgern wir, dass solche Oberflichen
in der obersten Oberflichenlage im wesentlichen frei von Si sind und topologisch den
reinen GaN-Oberflichen sehr dhneln. Demnach erwarten wir keine Anderung der
Oberflachen-Morphologie. Solche Bedingungen sind typischerweise in der Molekular-



Strahl-Epitaxie (MBE) realisiert, wo tatséchlich Si (sogar in hohen Konzentrationen)
die Oberflichen-Morphologie nicht beeinflusst. Andererseits sagt unser Oberflichen-
Phasen-Diagramm voraus, dass unter N-reichen/Si-reichen Bedingungen (wie sie in
metallorganischer Gas-Phasen-Abscheidung (MOCVD) und metallorganischer Gas-
Phasen-Epitaxie (MOVPE) realisiert sind, um hohe Si-Dotierungen zu erreichen)
Si als anti-surfactant agiert, d.h. es vergrossert die Rauigkeit der Oberfliche und
fordert drei-dimensionales Wachstum. Dieser Effekt wird bei MOCVD/MOVPE
tatsédchlich beobachtet.

Zusammenfassend erlaubte unsere Arbeit die Interpretation des ratselhaften Ver-
haltens der Si-Adsorption auf GaN(0001). Wir stellten fest, unter welchen Bedin-
gungen Si als anti-surfactant agiert, wann es keinen Einfluss auf die Oberflachen-
Morphologie hat, wann es Polaritéits-Inversion verursachen kann und wie man die
Effektivitat der Si-Dotierung verbessern kann. Desweiteren trugen unsere Ergebnisse
zu einem besseren Verstéindnis der Eigenschaften reiner GaN(0001) Oberflachen bei.
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Chapter 1

Introduction

1.1 Technological importance

The group-III nitrides (AIN, GaN and InN) represent an important trio of semicon-
ductors because of their direct band gaps which span the range 1.9-6.2 eV, including
the whole of the visible region and extending well out into the ultraviolet (UV)
range. Most recent measurements have shown that the band gap of InN can be
even smaller than 1.9eV, as obtained in Ref. [1] (0.7eV) and Ref. [2] (1.0eV). The
group-III nitrides form a complete series of ternary alloys which, in principle, makes
available any band gap within this range and the fact that they also generate ef-
ficient luminescence has been the main driving force for their recent technological
development. In particular, GaN has a band gap of 3.4eV at room temperature
(300 K) and has been by far the most intensively studied material among the group-
IIT nitrides. A graph showing the dependence of the energy gap as a function of the
lattice parameter for the group-III nitride and their alloys is shown in Fig. 1.1.

High brightness visible light-emitting diodes (LEDs) are now commercially avail-
able, a development which has transformed the market for LED-based full colour
displays and which has opened the way to many other applications, such as in traffic
lights and efficient low voltage, flat panel white light sources [3-5]. Continuously
operating UV laser diodes have also been demonstrated in the laboratory, exciting
tremendous interest for high-density optical storage systems, UV lithography and
projection displays.

In a remarkably short space of time, the nitrides have therefore caught up with
and, in some ways, surpassed the wide band gap II-VI (ZnS, ZnSe, MgSe) compounds
as materials for short wavelength optoelectronic devices. The devices so far available
are based on the binary compound GaN, together with the ternary alloys AlGaN
and InGaN, containing modest amounts of Al or In.

The nitrides crystallize preferentially in the hexagonal wurtzite structure. How-
ever, the cubic, zinc blende form is known for all three compounds, and cubic GaN,
which can be achieved when GaN is epitaxially grown on a substrate with cubic
symmetry such as GaAs [6-8] or SiC [9,10], has been the subject of sufficient work
to merit a brief account in its own right. There is significant interest based on-
possible technological advantages, such as easier doping, easier cleaving (for laser
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Figure 1.1: Band gap E, and bowing parameters b of hexagonal (a-phase) and cubic (5-
phase) InN, GaN, AIN and their alloys versus lattice constant ag. After O. Ambacher [13].

facets) and easier contacting. It also appears, at present, that the cubic form gives
higher electron and hole mobilities than the hexagonal form. However, all the de-
vices commercially produced until now were done using the hexagonal phase [5].
Therefore, in this thesis we will mainly focus on the hexagonal phase.

1.2 Heteroepitaxy and growth

The main problem in growing GaN thin films is the lack of suitable lattice matched
substrates. Since the first synthesis of GaN has been succesfully obtained in 1932
[11], much effort has been done in order to improve the quality of the grown material.
However, at that time, neither metalorganic precursors containing In or Al with high
purity nor substrate materials with reasonably good thermal properties and lattice
matches to the nitrides were available. Nowadays MBE, MOCVD and MOVPE are
the most used techniques.

In particular, single crystals of GaN for use as substrates for homoepitaxial
growth have been produced [12], but they are still not available in large scale.
Therefore the use of heteroepitaxial growth is unavoidable and the choice of a good
substrate is essential.

The most popular substrates are sapphire (a-Al;O3) and SiC, due to their ad-
equate thermal and chemical stability at growth temperatures, excellent structural
and surface morphology. For device fabrication, sapphire has other advantages, such
as the lower price and the availability of large crystals. SiC has attracted the inter-
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est because of its good thermal conductivity and the ease of n- and p-type doping.
However, SiC is still rather expensive.

The use of heteroepitaxial growth presents not only the disadvantages of lattice
and thermal mismatch, but also the possibility of unintentional doping from the sub-
strate during the growth. Measurements demonstrate that even stable compounds
like Al;O3 and SiC are the source of large amounts of impurities such as O and
Si [14,15]. The contamination is enhanced by the presence of high concentrations
of structural defects in GaN (such as dislocations, grain and twin boundaries) which
provide efficient diffusion channels and gathering sites for the impurities [13,16].

1.3 Dopants and surfactants

As-grown GaN shows a tendency to have n-type background carrier concentration,
which can reach up to 10%° ecm™3. First studies invoked the spontaneous formation
of N vacancies [17,18] as source of the background concentration. Only recently
Neugebauer and Van de Walle [19,20] investigated the problem using first-principles
calculations and showed that for n-type conditions the equilibrium concentration
of N vacancies is too low to explain the unintentional doping. Thus, it has been
concluded that the unintentional n-type conductivity must be attributed to the
incorporation of donor impurities such as Si or O [19].

On the other hand, intentional doping of GaN is necessary to produce n- and
p-type layers. Therefore an understanding of which elements can be efficiently used
as dopants is crucial to obtain films and crystals with optimized properties. Atoms
with tetrahedral radii close to the cation or anion would be most apt to substitute
for these. However, a problem in doping a material with impurities is that com-
pounds containing constituents of the host material and the dopant may be formed.
Although this effect results in a high solubility of the impurity in the host material,
the formation of such compounds will severely limit the doping efficiency.

Intentionally n-type doping of GaN-bulk has been always quite easy, although
to achieve concentrations >10' cm ™3 is still a challenge. The impurity of choice for
n-type doping is Si. For p-type doping Mg has been found to be the dopant with
the best characteristics. However, highly efficient p-type doping has been difficult
to achieve, since experimental investigations showed that the hole concentration is
limited to 10'® em™® [21,22]. The main doping limiting mechanism is the formation
of MgyN3, which is the solubility limiting phase. Alternative dopants such as Li,
Na, K, Be, Zn and Ca have been theoretically investigated by Neugebauer and Van
de Walle [23], but none of the candidates exhibited better characteristics than Mg.
Only Be emerged as a potential alternative dopant, although it has limited solubility
and the tendency to form interstitials under p-type conditions [24].

In order to fabricate devices with good performance, it is also important to
understand the effect of doping on surfaces and interfaces. Recently, the use of
surfactants has been used to modify the growth modes and consequently the surface
properties of GaN. The basic idea of using the surfactant is the following: before
growing a material A on a material B, a third material C, the surfactant, is deposited
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on the substrate. Surfactants have a lower surface energy and floats on the surface
without being incorporated into the subsurface layers. In particular, surfactant
effects have been investigated for O [25], Mg [26,27], In [28] and Bi [29]. From the
theoretical point of view, first-principles calculations have also been performed in
order to predict or confirm how dopants affect the surface properties. For example,
O [30], Mg [31] and In [32] have been investigated.

Surfactants do not necessarily need to be an impurity. The possibility of Ga itself
acting as an self-surfactant on the GaN surfaces has also been recently explored
[33-35]. Several works [33-36] have shown that by changing the Ga/N ratio and the
substrate temperature it is possible to control the growth going from two-dimensional
to three-dimensional mode and thus providing information under which conditions
the material has a better morphology.

1.4 Aim of this work

Although Si is the most common impurity used as n-type dopant in GaN and its
properties in GaN bulk have been extensively studied from both theoretical [20]
and experimental [37,38] point of view, little is known about its incorporation on
GaN surfaces. From the experimental point of view, scanning tunneling microscopy
(STM) measurements by Lee et al. [39,40] demonstrated that the incorporation of
Si leads to smooth surfaces under Ga-rich conditions.

On the other hand, it has been reported that Si-concentrations needed to achieve
10 — 10" cm™3 carrier concentrations in GaN using MOCVD [41] and MOVPE
[42] modify the GaN growth from a step-flow mode to a three-dimensional mode,
i.e., Si acts as an anti-surfactant' and produces rough surfaces. This limits affects
the achievable doping levels in GaN to < 10 cm 3.

Indeed, MOCVD growth has shown that Si concentrations above 1 x 10 cm™3
induce roughness [43] and crack formation [44]. Munkholm et al. [45] have reported
that at high concentrations (above 2 x 19 cm™3) Si segregates to the surface and
changes the growth mode from step-flow to layer-by-layer over a large range of
growth temperature (870-1170 K).

Thus, it is important to identify the mechanisms which cause the anti-surfactant
behavior and under which conditions they occur. While the anti-surfactant behav-
ior of Si is detrimental to achieving high n-type doping, it may be used to make
structural modifications of the surface.

Therefore, in order to understand how Si affects microscopically the surface mor-
phology and under which conditions the optimum growth can occur, we have per-
formed density-functional theory (DFT) calculations for Si adsorbed on the GaN
(0001) surfaces. In addition, to gain a better understanding of the bare GaN (0001)
surfaces, we performed also an extensive study of the structural and electronic prop-
erties of the most relevant bare GaN (0001) surfaces.

LAn anti-surfactant has the opposite effect of a surfactant, i.e., it enhances the roughness of the
surface, leading to three-dimensional growth.
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1.5 Structure of this work

In Chapter 2 we start with a short introduction on DFT which allows us to accu-
rately describe atomic geometry, electronic structure and energetics of the surfaces.
Also, we describe the pseudopotential method, which will be used to solve the DFT
equations.

The calculated structural and thermodynamic properties of both cubic (for a
matter of comparison) and hexagonal phases of GaN, Si-bulk, Ga-bulk, SizN, and
Ns-molecule are presented and discussed in Chapter 3 and compared with experi-
mental and previous theoretical results.

In Chapter 4 we present and discuss results for structural properties of the most
important bare GaN (0001) surfaces. To obtain a futher understanding of these
surfaces, a study of their electronic properties will also be performed.

In Chapter 5 the results concerning to adsorption of Si on GaN (0001) surfaces
will be discussed. We will perform an analysis of Si adsorbed on the top layers
and also at subsurface sites for various Si coverages in order to identify the ther-
modynamically most stable structures. Then, we make a connection between our
results and the available experimental data, in order to understand the effect that
Si adsorption has on the surface morphology of GaN (0001) surfaces.

Finally, mechanisms and consequences for growth of Si adsorption on GaN (0001)
surfaces are summarized in Chapter 6.
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Chapter 2

Theoretical Background

The systems we want to study, GaN bulk and surfaces, are many-body systems, i.e.,
involve many electrons and nuclei. In this chapter we will describe methods that
allow us to model such complex systems. The Hamiltonian of a system consisting
of N, electrons and N; nuclei is given by

N;

- —z BT zzm -

=1 =1
N; N;
& 47,
, 2.1
* ZZ|—| *2 2 ®, R 21)

where M7 is the mass and Z; is the atomic number of the nucleus I and r; and R;
are the positions of the electron ¢ and nucleus I, respectively. The first and second
terms are the kinetic energy of the electrons and nuclei, respectively. The third
term is the attractive Coulomb interaction between nuclei and electrons, the fourth
term and fifth terms describe the repulsive Coulomb interaction between electrons
and between nuclei, respectively. Here we use atomic units in all the equations, i.e.
h=1m, =172 =1

The ground state of a system of N, electrons and N; nuclei is determined by
solving the time-independent Schrédinger equation

\P({ri}a {RI}) = E\I/({I'i}, {RI}) ) (2'2)

where W({r,}, {R;}) is the many-particle wave function of the system and E is the
total energy of the system. Because of the complexity of the equation above, to
make its solution feasible, some approximations must be done. One of the most
used one in solid-state physics and also in atomic and molecular physics is the Born-
Oppenheimer approximation, which decouples the electronic and nuclear movement.
This approximation is described in the next section.

7



8 CHAPTER 2. THEORETICAL BACKGROUND

2.1 The Born-Oppenheimer Approximation

The Born-Oppenheimer approximation is based on the fact that the movement of
the nuclei is much slower than the movement of the electrons, since the nuclei are
much heavier than the electrons. Hence, a good assumption is that the N, electrons
move in the field of N; fixed nuclei. Within this approximation, the second term of
Eq. (2.1) can be neglected and the last term can be considered as a constant. Within
the Born-Oppenheimer approximation, the wave function ¥({r;}, {R}) takes the
form

U({r:}, {Rr}) = ¢e({r:}; {Ri})x({Rs}), (2.3)

where 1. ({r;}; {R}) is the electronic wave function and x({R;}) the nuclear wave
function. The parametric dependence ¥.({r;}; {R;}) means that the nuclei are
frozen in a single arrangement and the ground state of the electrons moving in this
stationary potential is found. Thus, the Hamiltonian describing the motion of N,
electrons in the field of NV, nuclei is

where the solution to a Schrodinger equation involving the electronic Hamiltonian
H,

Hepe({r:}; {R1}) = Ec({Ri})ve({ri}; {R1}) (2.5)

is the electronic wave function ¥ ({r;}; {R}). The Hamiltonian of the nuclei moving
in the average field of the electrons (term between brackets) is then

N Ne Ne N; 7 Ne N. )
Hnuc = - —V? - 2 _ 71 _
> v (XYY Ay )
I=1 i=1 i=1 =1 i=1 5>t
I=1 J>1 [Rr —Ry|
N; Ni N,
2 K 1 Z Z
= =Y ——Vi+E({R})+ Ut
=1 2M; I=1 J>1 [Rr —Ry|
N
= -y 2—Mlv§ + Bt (Ry). (2.6)

The total energy Fi.({R;}) provides a curve for nuclear motion and also includes
the nuclear repulsion

N; N;

Buw((Ri}) = BB+ 3 |R]ZI_Z;{J| (2.7)

I=1 J>1I
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This function constitutes a potential energy surface. Thus the nuclei in the Born-
Oppenheimer approximation move on a potential energy surface obtained by solving
the electronic problem. Solutions to a nuclear Schrodinger equation describe the
rotation, vibration and translation of the nuclei. The nuclear Schrédinger equation
is given by

Huex({Rr}) = Ex({R1}), (2.8)

where F includes electronic, vibrational, rotational, and translational energy. In this
work we do not consider the vibrational-rotational problem, but concentrate solely
on the electronic problem.

In semiconductors, the use of the Born-Oppenheimer approximation is justified
considering that the frequencies of ionic vibrations are typically less than 103571,
To estimate the electron response time, we note that the energy necessary to ex-
cite electrons in a semiconductor is given by its fundamental band gap. Taking as
example a band gap of 1eV, the frequencies of the electronic motion in semicon-
ductors are of the order of 10* s~ [46]. As a result, electrons can respond to ionic
motion almost instantaneously, which means that the ions are almost stationary to
the electrons.

Although the Born-Oppenheimer approximation is broadly used, it is not al-
ways valid. A breakdown of the Born-Oppenheimer approximation occurs when the
movement of the nuclei cannot be decoupled from the movement of the electrons.
One example are highly excited rotational states of molecules, when the nuclear
framework moves so fast that the electrons may be unable to follow this movement
instantaneously [47].

The electronic structure described by the Eq. (2.5) is not easily solved in a reason-
able computational time. Several different approaches have been used. For example,
in quantum-chemistry a very common approach is the Hartree-Fock approximation.
In the Hartree-Fock approximation the all-electron wave function is approximated
by one Slater determinant that contains the single-electron wave functions. The
Hartree-Fock method has the advantage of being variational and a trial wave func-
tion is assigned for the total wave function which minimizes the total energy. How-
ever, the Hartree-Fock method does not take into account the correlation between
the electrons.

A very accurate method that accounts for the correlation is the Configuration-
Interaction (CI) [48], which provides a systematic way of improving the Hartree-
Fock wave function and energies by considering a combination of Slater determinants
which includes the ground and excited states. However, due to the extremely large
number of possible configurations, this method is very demanding and its applica-
bility has been restricted to systems with only few electrons [49].

A statistical approach is the Quantum Monte Carlo method (QMC). This method
can provide correlated wave functions, which provide rigorous upper bounds on
the ground state energy. It is an explicit many-body method which takes electron
correlation into account from the outset. It gives consistent, highly accurate results
while at the same time exhibiting favourable scaling of computational cost with
system size. This is in sharp contrast to the CI method. Although powerful, the use



10 CHAPTER 2. THEORETICAL BACKGROUND

of QMC has been greatly hampered over the last two decades by a combination of
insufficient computer power and inefficient computer techniques. Only over the last
few years many efforts have been done to speed up the method [50,51].

In solid state physics, the state-of-the-art in first-principles calculations is the
density-functional theory (DFT) [52,53], which will be described in the next section.
Since there are many text books and articles dedicated to this subject (see for
example Refs. [49,54,55]), we will give here only a brief description.

2.2 Density-functional Theory

2.2.1 The Hohenberg-Kohn theorems

The history of the density-functional theory, which is mathematically based on two
theorems of Hohenberg and Kohn [52], has its origins with the works of Thomas and
Fermi in the 1920s [54,56-59], which treats the many-body problem assuming the
electron charge density n(r) as basic variable. It has been originally developed for a
system with non-degenerate ground-state, but was later extended for the degenerate
case [55]. The two theorems of Hohenberg and Kohn are described in the following.

The first Hohenberg-Kohn theorem

Consider N, electrons moving in an external potential v(r) (for instance, electrons
in a positive background of ions). The first Hohenberg-Kohn theorem [52] states
that the external potential v(r) is determined, within a trivial additive constant, by
the electron density n(r). Since n(r) determines the number of electrons, it follows
that n(r) also determines the ground-state wave function and all other electronic
properties of the ground state. The total energy functional F,[n] is then written as

E,[n| = /n(r)v(r)dr + Fuk|[n|, (2.9)
where

Fu[n] = Tln) + Eecln)]. (2.10)

Here T'[n] is the kinetic energy and Ee.[n| is the energy due to the electron-electron
interaction. Note that Fyk[n] is defined independently of the external potential v(r),
which means that Fygk[n] is an universal functional.

The second Hohenberg-Kohn theorem

The second Hohenberg-Kohn theorem states that the correct ground state electron
density minimizes the total energy functional

E,n] = T[n] + Eex|[n] + Eee[n] = Fux[n] + Foxt|n], (2.11)
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where Fey[n] is the energy due to the external potential v(r). If we denote E,[ng] as
the ground state energy and ng(r) as the ground state electron density, the second
Hohenberg-Kohn theorem provides the variational principle. For a trial electron
density n(r), such that n(r) > 0 and [ n(r)dr = N, then

Eyn] = / o(E)n(r)dr + Fug(n] > Eylno) (2.12)

with

/v(r)no(r)dr + Fuk[no(r)] = E,[nol . (2.13)

Assuming differentiability of F,[n|, the variational principle requires that the
ground-state density satisfies the stationary principle

5 {Ev[n] o [/ n(r)dr — Ne] } 0 (2.14)

which gives the Euler-Lagrange equation

- (SEU[TL] — o(r (SFHK[TL]
H= T = Ot

where p is the Lagrange multiplier.

If the exact form of the functional Fyxk[n| would be known, then Eq. (2.14) would
be the exact equation for the ground-state electron density. Once we have an ex-
plicit form (approximate or accurate) for Fyk[n], we can apply this method for any
system. After the proposal of the density-functional theory, Kohn and Sham pro-
posed an scheme to treat the variational problem of equation Eq. (2.14), which will
be described in the next sections.

(2.15)

2.2.2 The Kohn-Sham equations

We have seen that the ground state energy of a many electron system can be obtained
by minimizing the functional

E,[n] = /v(r)n(r)dr + Fuk|[n| (2.16)
with

Fac[n] = Tn) + Eealn]. (2.17)

In a trade for simplicity, Kohn and Sham [53] proposed an indirect approach to
the kinetic functional 7'[n]. They proposed to introduce orbitals into the problem
in a such a way that the kinetic energy can be computed simply to good accuracy.
The functional Fyk[n], which is unknown until this point, is rewritten as

FHK = Ts[n] + J[n] + Exc[n] ) (2'18)
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where J[n] is the classical electrostatic repulsion (Hartree term)

= %// %drdr’. (2.19)

T[n] is the kinetic energy of a system of non-interacting electrons and FE,.[n] is the
so-called exchange-correlation energy. Thus, the energy functional F,[n] becomes

E,n] = Tyn]+ Jn|+ Ex[n] + /v(r)n(r)dr

_ NZ / G5 (r) (—%W) Gi(r)dr + By [n] + / o(X)n(r)dr,  (2.20)

i

where 1;(r) are the Kohn-Sham orbitals and the sum runs over all the occupied states
Nyee- According to the Kohn-Sham formalism, the Kohn-Sham orbitals should be
orthonormal

Now let us define the functional Q[{w);}] of Ny orbitals

Nocc Nocc

[{wz = ZZQJ/@D @Dz (2-22)

where ¢;; are the Lagrange multipliers for the constraints of Eq. (2.21). For E,[n] to
be a minimum, it is necessary that

SO =0, (2.23)

which leads to the equations

Nocc

bt = [~V + varle)| ) = D ynt) 224

with veg(r) determined through

5J[n] dEyc[n)
_l’_
on(r) 5n( )

Vet (r) = v(r)+

dr’ + vy
]r—r’] + e (r)

r) + vg(r) + vk (1) , (2.25)

where v,.(r) is the so-called exchange-correlation potential. Therefore, for a
given veg(r) one obtains n(r) that satisfies the Eq. (2.15) by solving the one-electron
equations
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[—%VQ + Ueff(r):| Vi(r) = €ii(r) (226)
and setting

NOCC

n(r) = 3 [l . (227)

The Egs. (2.25), (2.26) and (2.27) are the so-called Kohn-Sham equations and
need to be solved self-consistently. It follows then, that the total energy is calculated
as

NOCC

E,. = ZZ: €; — %/%drdr' + Exc[n] - /ch(r)n(r>dr . (228)

The Kohn-Sham equations are open for improvement with each better approxi-
mation to the exchange-correlation functional Fyk[n], although there is no recipe to
successively improve the functional Fyk[n]. As we will describe in the next sections,
there are various approximations Fyx|[n].

2.2.3 The Local-Density Approximation

The Kohn-Sham equations, while exactly incorporating the kinetic energy Ti[n],
still leave the exchange-correlation functional Ey.[n| unsettled. The most com-
monly used approximation to treat the exchange-correlation term within the density-
functional theory is the local-density approximation (LDA). In this approximation,
the exchange-correlation energy at each point of the space is replaced by that one for
the homogeneous electron gas. The exchange-correlation energy in the local-density
approximation is given by

Ey[n] = EXPA[n] = /n(r)ehom(n(r))dr (2.29)

Xc

and therefore the potential by

LDA () _ 5E>ECDA[”] _ _hom ”(r)a€>}£m

oPA) = T = () + TR

where €°™n(r) is the exchange-correlation energy per particle of a homogeneous
electron gas of density n(r). Thus, the Kohn-Sham equations within the LDA takes
the form

(2.30)

[—%VQ +o(r) + / ‘:(_I.lgl‘dr' + vEPA () | oy = el (2.31)

hom
XC

The function €)9™(n(r)) is then divided into exchange and correlation contributions

e (n(r)) = € (n(r)) + € (n(r)) . (2.32)

XcC x c
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The exchange part is given by the exact Thomas-Fermi-Dirac exchange energy func-
tional [55]

€hom (1 (p)) = —% (§)1/3n<r)1/3. (2.33)

™

Accurate values for the correlation part €2°™(n(r)) are available, thanks to the
Quantum Monte Carlo (QMC) calculation of Ceperley and Alder [60]. These values
have been interpolated to provide an analytic form for "™ (n(r)). The most widely
used has been constructed by Perdew and Zunger [61], which we will use in this
work. The Perdew and Zunger [61] parameterization for spin-unpolarized systems®

has the form

elom = —0.1423(1 + 1.0529,/r, + 0.3334r,) " if re > 1
= —0.0480 + 0.0311Ilnr, — 0.01167r, + 0.002r nr, if 0<r, <1,
(2.34)

where 7, = (47n(r)/3)~/? is the so-called Wigner-Seitz radius.

LDA has been the backbone of applications of density-functional theory. An
approach to go beyond the LDA is to include gradient corrections in the electronic
density, by making F..[n] a functional of the density and its gradient, which is
described in the next section.

2.2.4 The Generalized Gradient Approximation

A way of including the gradient in the expansion is to construct a functional that
depends on the local-density n(r) and on a gradient of the density |Vn(r)|. This
approach is called generalized gradient approximation (GGA) and it has the general
form

FCGA,] — / Fa[n(r), [Vn(r)|Jdr (2.35)

For the functional Fy. various forms have been proposed, such as Becke [62] (ex-
change part) and Perdew [63] (correlation part) (BP), Becke [62] (exchange part)
and Lee-Yang-Parr [64] (BLYP), Perdew and Wang [65], Perdew and Vosko [66],
and the revised PBE [67] (revPBE). Here we use the parameterization done by
Perdew-Burke and Ernzerhof [68] (PBE).

In the GGA, the exchange-correlation energy is expressed in terms of an en-
hancement factor Fy. over the local exchange

ECCA[,] — / P (r)eom F (s, 8)dr (2.36)

For spin-polarized systems (local spin-density density approximation (LSDA)) the charge den-
sity depends on the spin up n¢(r) and spin down n|(r) densities, so that n(r) = ny(r) + n(r).



2.2. DENSITY-FUNCTIONAL THEORY 15

Here s(r) = L is a dimensionless density gradient, where k, = +/4kp/7,

2kpn
kr = (372n)'/3. The exchange Fy(s) term in the PBE parameterization is given by

FPBE(s) =14k —

14 &=

b= (%) | (237)

where k = 0.804 and 3 ~ 0.066725. The correlation part F is given by

FPPE[n(r), [Vn(r)]] = / n(r) [ (n(r)) + HPPP(ry, )] dr,with  (2.38)

C

1+ At?
HPBE(r . t) =~ln |1 @F 2.39
C (r7) ,yn +’}/ 1—|—At2+A2t4 ) ( )
_ B 1
A — gm P (240)
1 —1n2
,7 - 71_2 9 (24]‘)

and t = % is another dimensionless density gradient.

2.2.5 LDA/GGA limitations

LDA is broadly used, mainly because of its ability to reproduce experimental ground
state properties (bond lengths, cohesive energies) of many systems, although there
is a tendence to overestimate binding energies and underestimate lattice constants
of solids. LDA can successfully deal with atoms, molecules, clusters, surfaces and
interfaces. Even for dynamical processes like the phonon dispersion, it has been
shown to yield good results [69,70].

However, in the course of time, many systems have been found that are incor-
rectly described by LDA. The most popular examples of this class are dielectric
constants and related quantities, as well as weak bonds, in particular hydrogen
bonds [71]. In the field of metals, the ground state structure of crystalline iron
is predicted to be paramagnetic face-centered cubic instead of ferromagnetic body-
centered cubic [72], which is correctly predicted using GGA.

For semiconductors it is well known that LDA/GGA underestimates the band
gap. It has been claimed that this problem lies on the DFT itself, a ground-state
theory. However, it is an open question if DFT would be solved exactly, it would



16 CHAPTER 2. THEORETICAL BACKGROUND

provide the correct band gap. Ways of remedy the band gap problem are exact-
exchange and time-dependent density-functional theory (TD-DFT) (see for example
Refs. [73] and [74]) and green-function methods (GW), but those methods are com-
putationally expensive when treating solids.

In the past years several gradient-correction functionals were introduced and
their properties were studied. In particular the description of the hydrogen bond is
well achieved using BLYP [64,75], as discussed in Ref. [76]. The general behavior
of GGA is that the bond lengths in molecules and solids tend to be slightly too large
compared to the experimental values and consequently the bulk moduli tend to be
too small. The reaction barriers are better described with GGA [77,78] and the
surface energies are often lower than the ones described with LDA, probably due to
the weaker bonds provided by GGA.

Until now, no systematic study of how LDA and GGA performs for GaN in the
wurtzite structure and GaN surfaces was done. Therefore, we calculate various bulk
and surface properties in order to test the performance of the LDA compared to

GGA.

2.3 Pseudopotential Method

The Kohn Sham equations (2.25), (2.26) and (2.27) can be solved expanding the
Kohn-Sham orbitals in a complete set of known basis functions (atomic orbitals,
gaussians, plane-waves). Here we use plane waves, as it will be described in Sec. 2.4.
When describing a periodic system, plane waves have invaluable numerical advan-
tages, besides their conceptual simplicity. They allow a simple integration of the
Poisson equation for the calculation of the Hartree potential and for the calculation
of the kinetic energy expression.

However, due to the large oscillations of the core orbitals in the neighborhood of
the atoms, plane waves cannot be used directly in the Kohn Sham formalism. These
oscillations would require an enormous basis set size to be described with acceptable
resolution.

However, the total energies associated with the core orbitals are several orders of
magnitude larger than those of the valence band wavefunctions. Further, chemical
reactions involve exclusively the valence electrons which are relatively far away from
the nuclei. In contrast to this, the core electrons remain almost unaffected by the
chemical bonding situation. They can be approximated to be frozen in their core
configurations. This approximation considerably simplifies the task of solving the
Kohn Sham equations, by eliminating all the degrees of freedom related to the core
orbitals.

In the pseudopotential framework, the chemically inert core electrons are elimi-
nated by considering them together with the nuclei as rigid ions. The electrostatic
and quantum-mechanical interactions between the valence electrons and the ions and
core electrons are described via pseudopotentials. Those pseudopotentials reproduce
the true potential outside a defined core region, but are much smoother inside. The
idea of the pseudopotential is to eliminate the nodes of the core wave functions,
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Figure 2.1: An example of the pseudo (solid line) and all electron (dashed line) wave
functions for the 3s orbital of Al.

which strongly oscillates near the core region, and replace them by node-free wave
functions, as shown in Fig. 2.1 for the 3s orbital of Al.

In the present work, we use pseudopotentials constructed within the Troullier-
Martin scheme [79,80]. Those pseudopotentials are constructed from atomic all-
electron calculations. Within density-functional theory, the construction of such
pseudopotentials is done by assuming a spherical screening approximation and solv-
ing self-consistently the radial Kohn-Sham equation

1d* I(l+1
NES)

2 dr? 272

+ Veft [n; T] TRnl (r) - EanRnl(r> ) (242)

where veg[n; 7] is the self-consistent one-electron potential

Z
Vet [n; 7] = - + op[n; r] + vke[n; 7). (2.43)

Here vy[n;r] is the Hartree potential and vy.[n;r] is the exchange-correlation po-
tential. 7R, (r) = u]” is the radial part of the pseudopotential wavefunction. Most
pseudopotentials are then constructed such that they satisfy four general conditions:

(i) The valence pseudo wave functions generated from the pseudopotential should
contain no nodes. This stems from the fact that we want to construct smooth
pseudo wave functions and therefore nodes are not desirable.

(ii) The normalized atomic radial pseudo wave function with angular momentum
[ is equal to the normalized radial all-electron wave function u2F beyond a
chosen cutoff radius r{, which divide the core (r < rf) and valence (r > 77)
regions



18 CHAPTER 2. THEORETICAL BACKGROUND

ul*(r) = udf(r) for >y (2.44)
This spatial separation of the region allows us to choose which electrons are
included in the core region and which electrons are included in the valence
region, controlling this way the number of plane waves used to described the
system.

(iii) To ensure the correct electrostatic description of the atom in various environ-
ments, the charge enclosed inside the core region should be the same for the

all-electron and pseudopotential approximation. Thus, the following condition
should be satisfied

c

C ,r.l
|u£lE(T)|2dr . (2.45)

| repar = |
r=0 r=0

(iv) The all-electron and pseudopotential eigenvalues must be equal

e = e (2.46)
If a pseudopotential satisfies the conditions (i)-(iv), then it is called norm-conserving
pseudopotential [81]. These conditions ensure that the electrostatic potential felt
by the pseudo valence function outside the core region (r > rf) is the same as
the all-electron one. As we mentioned above, the pseudo wave function should not
contain radial nodes. In order to obtain a continuous pseudopotential which does
not diverge at the origin, it should satisfy lim, _u"(r) oc 71, The pseudopotential
components then correspond to the inversion of the Schrédinger equation for the
respective wave function

I(1+1) 1 &
+ ————u (7). 2.47
2r2 2ul>(r) dr? (r) (2:47)
The final ionic pseudopotentials are determined by subtracting from the screened
pseudopotential V;"***(r) the electrostatic and exchange-correlation screening con-
tributions due to the valence electrons

%pS,SCI‘(T> — G?S _

VP (r) = VP (r) — op[nP®; r] — o*[nP*; 1], (2.48)
with the pseudo charge density

lmax

1
nP(r) = i Zfz
=0

Here f; are the occupancy numbers. Due to the spherical symmetry, states with
the same quantum numbers n; = n and [; = [, but different m; are energetically
degenerate, €; = €p,,m;, = €u. Thus, it holds that f; = 2(2l + 1) for ¢ < ey,
0 < fi <22l+1) for ¢ = en, and f; = 0 for ¢ > €ey,. All pseudopotential

S S 2
u () [ (2.49)

r
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components V;**(r) reduce to the ionic Coulomb potential at large distances r, i.e.,
they get independent from [. Therefore it is possible to express the pseudopotential
as a local potential part Visca plus only a few [ dependent components for [ < [y,
of the type

<I"Vps‘r/> = <r‘f/local+5Vsemifloca1’r/>

lmax 1
_ ‘/llocal(r)(;(r . I'/> + Z Z ljn(Qr)(;‘/lsemi—local(r)
=0 m=-1

(2.50)

where the local potential is taken as one of the semi-local pseudopotential compo-
nents and V™10l (1) = VP*(r) — Vjl°cal () vanishes beyond 7¢. The local potential
can be in principle arbitrarily chosen. However, since the summation in [ will be
truncated at some [y, [ should be chosen in such a way to reproduce the scattering
properties for all the higher angular momentum channels.

The computational cost can be dramatically reduced if the above form is trans-
fered into the fully separable form of Kleinman-Bylander [82]:

<r|‘7ps|r,> _ <r|V10cal+6vKB|rl>

lmax l

_ Vlocal(r)(s(r —r')+ Z Z <r])(§§nB> ElKB <X§§r]?|r,> . (2.51)

=0 m=—1

Here, the short-ranged second term is a fully nonlocal operator, where <r|XlIf7]13>
are the projector functions and EFB is the Kleinman-Bylander energy [82,83]. A
problem with this form is that it may lead to additional (ghost) states that are
unphysical [83]. Eigenstates below the real ground state can occur, if the choice of
the local component of the pseudopotential is not done properly. The presence of
ghost states affects the transferability of the pseudopotential when comparing the
results with all-electron calculations.

In the reference configuration in which it was generated, the pseudopotential
should accurately reproduce the all electron eigenvalues outside the core region
compared to all electron calculations. In practice we want it to reproduce other
all-electron calculations in different environments, that is we want it to be “trans-
ferable”. The logarithmic derivatives provides then a first test of the transferability
of the screened pseudopotential.

A possible method to improve the transferability to the solid is to generate the
pseudopotential using an atomic configuration that as closely as possible mimics
the environment in which will be placed. This may require the use of non-bound
eigenvalues, as suggested by Hamann [81]. In general, ionic pseudopotentials are
insensitive to reasonable variations in the reference atomic configurations. Shirley et
al. [84] proposed equating additional energy derivatives of the logarithmic derivatives
of the wave function, but in general it has been found that the errors are negligible
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[79]. The easiest way of improving the transferability is to decrease the cutoff radius
r, reducing the difference between the all electron and pseudopotential results.

However, there are practical limits on how far rj can be decreased, since it has
to be larger than the outermost node of the all-electron wave function if we insist
on having nodeless pseudo wave functions. Also, decreasing rj makes the pseudopo-
tential computationally more expensive. Therefore, according to the considerations
above we use the ground state atomic configuration to generate all our pseudopo-
tentials.

2.3.1 Non-linear core correction

As mentioned in the last section, the final ionic pseudopotentials are determined by
subtracting from the screened pseudopotential above the electrostatic and exchange-
correlation screening contributions due to the valence electrons

VI (r) = VP (r) = ol 1] = v ), (252)
with
b L Jup(en) [
nP*(r) = g lz:;fz . (2.53)

Here v*[nP%; r| refers to the exchange-correlation interaction between the valence
electrons themselves. The exchange-correlation interaction between the valence and
the core electrons is includes in the pseudopotential, as a term that depends linearly
on the valence charge density n?*(r). Although Ej. is a non-linear functional of the
total electron density n(r), the above linearization of its core-valence contribution
is a usual and mostly used approximation within LDA and GGA [85].

However, explicit account of the non-linearity is sometimes required. This is
done by restoring the non-linear dependence of Fy.[n] on the total electron density.
Rather than the full core density, it suffices to add a partial core density n°"(r), as
suggested by Louie et al. [86]. It reproduces the full core density n®™(r) outside a
chosen cutoff radius r™°, but it is a smoother function inside. In this work we use
the same idea, but a different function from Ref. [86], which is given by

A (r) = n(r) for T 2 Tnle (2.54)
6
= ¢y+ Z ciri for 7 < Tnle s
i=3

where we take the coefficients ¢; such that n&°™(r) has zero slope and curvature

at the origin, decays monotonically, and joins the full core density up to the third
derivative. The resulting nonlinear core-valence exchange-correlation scheme uses
the redefined ionic pseudopotentials

VP (r) = VP25 (r) — og[nP; 1] — vge[nP + 0 r] . (2.55)
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As a rule, the non-linear exchange-correlation plays a significant role for alkali metals
and with increasing atomic numbers, i.e., the farther the upper core orbitals extend
into the tails of the valence density (for example Zn, Cd). Of course if the uppermost
semi-core states hybridize with true valence states they have to be treated as valence
states, like 3d, 4d and 5d states of Ga and In in GaN and InN, where these interact
significantly with the N-2s states [87].

2.3.2 Reference atomic configuration

In this section we describe the atomic configuration used to generate our pseudopo-
tentials. The reference configuration and cutoff radii are shown in Table 2.1. Those
pseudopotentials have been successfully used to describe bulk properties of cubic
phases of group-III nitrides [87]. For H with fractional charge we use the —Z/r
potential, where Z = 5/4e~ is the electronic charge of the hydrogen used to passi-
vate the incomplete bond of the N atom on the back side of the slab used to model
our surfaces (see Sec.2.4). In principle, the H pseudopotential has no immediate
physical meaning. However, it has been used as a powerful tool to perform plane
wave calculations with a much smaller number of plane waves [88].

It works for Hy reasonably well, provided the pseudopotential cutoff radius is
chosen not too large. In our case we need a significantly large energy cutoff to
calculate the GaN properties of the bulk and surfaces. Thus, we did not generate a
H pseudopotential and decide to use the —Z/r potential, which is well described with
our optimum cutoff energy. We perform calculations for the NH; and Hs molecules
and negligible differences in the cohesive properties and bond lenghts were found
comparing —Z/r and pseudopotentials [89].

As exemplified in Table 2.1, for the Ny molecule, which has a short bond length
of 1.06 A, such an overlap is significant (2ry = 1.58A > dn-n) and affects the
total energy and consequently the properties of the molecule. For GaN-bulk, the
overlap occurs only for the p component, and is negligible (0.05 A) For Si-bulk this
overlap is slightly larger (=~ 0.2 A) than the Si-Si bonds and occurs for the p and
d components. For Ga-bulk, there is no overlap for the Ga-3d pseudopotential,
but a small overlap for the p-component of the Ga-nlcc pseudopotential (0.1 A) and
relatively large for the d-component (0.5 A) Decreasing the cutoff radii eliminates
the overlap, but then the number of plane waves required increases, making the
calculations computationally much more expensive. Besides, experimental bond
lenghts have an error bar of 0.1-0.2 A. Thus we consider the overlaps mentioned
above as acceptable.

Fuchs et al. [87] have shown that the inclusion of Ga-f orbitals (when used as the
local component) slightly improves the energetic properties of GaN. However this
improvement does not compensate the computational effort demanded. Thus, we
decided to have d as the highest angular momentum component. Their explanation
why local f orbitals perform better is that the f component is less repulsive than
the s component in the core region. Also, we also perform calculations using nlcc to
compare how the Ga-nlcc pseudopotential compares to the Ga-3d pseudopotential.
The corresponding ionic pseudopotentials described above are shown in Fig. 2.2.
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Table 2.1: Atomic reference configuration for Ga, N, and Si pseudo atoms used in the
present work. rg, r, and rq are the cutoff radii for the s,p and d pseudopotential compo-
nents, e is the cutoff radii used in the nlcc approximation and dy_N, dga_Ga, dGa—N,
dsi—s; are the experimental first neighbors distances for No-molecule, Ga-bulk, GaN-bulk,
and Si-bulk. All units are in Angstroms.

atom |reference configuration| rs | 7, | 7q | Tnlc |AN-N |dGa—Ga |dGa—N | dsi—si
1.06 | 244 | 1.95 | 2.34

Ga 3d 3d04p24pt 1.10]1.21[1.10

Ga nlcc 4524p>4d° 1.21]1.27]1.48]0.68

N 2522p33d° 0.79]0.79]0.79

Si 3523p?3d° 1.04]1.27|1.27
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Figure 2.2: Tonic pseudopotentials for the elements (a) Ga (including the 3d electrons

as valence electrons), (b) N and (c) Si using the configuration reference shown in
Table 2.1.

2.4 Plane-wave representation and k-points

Density-functional theory allows the many-body problem to be replaced by a single
particle problem. Nevertheless, it is impossible to solve a problem of 10?3 particles
moving in a certain effective potential. This problem can be overcome if we choose a
minimum representation of the system we want to study, for instance the bulk unit
cell for crystals and a slab to represent a surface.

The systems are treated periodically in all the three directions but perpendicular
to the surface it is separated by a vacuum region to avoid interactions between the
surfaces. For isolated systems, like atoms or molecules, we use large supercells to en-
sure that there is no interaction between isolated systems belonging to neighbouring
super cells.

Since a plane wave is a periodic function, periodic boundary conditions [90] are
a consequence. If there is an atom at the position R, there are atoms also in
R; + nia; + noas + nzas, where aj, as, ag are the primitive lattice vectors of the
supercell in the real space and ny, ny, ng are integers. Fig. 2.3 shows, for instance, a
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repeated slab geometry which allows the description of surfaces. The Bloch theorem
states that the solution for a one-electron Hamiltonian can be written as

V(1) = e (r), (2.56)
where i is the band index, k is a point in the first Brillouin Zone (BZ) and u;(r) is
a function with the periodicity of the real space lattice so that

wi(r + Ry) = up(r) . (2.57)

As u(r) is a periodic function, it can be expanded in Fourier components such that

Wik (r \/7 Z Cixrae'® (2.58)

where V' = a; - (ag X a3). The set of G vectors is limited to those which have the
periodicity of the real space

G = m1b1 + m2b2 + mgbg s (259)

with my, ms, m3 integers and the reciprocal lattice vectors are by, bs, bs.
Thus, ¥ (r) can be written as

Pic(r \/_ Z Cixra(G)e' e, (2.60)

Using the expression (2.60) for the Kohn—Sham orbitals, the Kohn-Sham equation
(2.26) is written as

1
> [jk + G2ge + (G — G) + (G — G) + 14(G — G) | Cigerar = €xCikic -
G/
(2.61)
In practice the expansion in plane-waves includes terms with kinetic energy up
to a certain cutoff

1
Eeuorr < 5[k + G|*. (2.62)

The quality of the basis set depends on how large F o i, i.e., on the number
of plane waves. This number has to be checked for each system. Convergence tests
with respect to the number of plane waves for the systems studied here can be found
in Appendix A.

One consequence from the spatial periodicity within the supercell approach and
the Bloch theorem is that all inequivalent values of the quasi-momentum k lie within
the BZ. In a trade for numerical simplicity, the integrals are replaced by weighted
sums over a discrete set of k-points, so that

VZ/ f €k — |wzk‘ 3 N Zzwkf Elk—€F>|wzk’ (263)
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Figure 2.3: Schematic picture showing the slab model to study surfaces. The slab is
periodic in all dimensions and separated along the z direction by a vacuum region.

where V' is the volume of the super-cell, wy, is the weight of each k-point which
obeys >, wy, = 1, and ep is the Fermi energy. The summation runs over all bands
1 and the occupancies have the step-like distribution

1
eléix—er)/kpT 1 1~

f(ei,k - GF) =

where kg is the Boltzmann constant and T is an artificial temperature used to
achieve a better convergence [91]. Choosing a sufficiently dense mesh of integration
points is crucial for the convergence of the results, and is therefore one of the major
objectives when performing convergence tests. Here it should be noted that there
is no variational principle governing the convergence with respect to the k-points
mesh. This means that the total energy does not necessarily should decrease as the
density of the k-point mesh increases.

In this work we use the Monkhorst-Pack scheme [92] to construct the k-point
mesh inside the BZ. In practice one uses a few selected k-points of the form

(2.64)

K, = Kby + kb, + kP bs (2.65)
The three coefficients in Eq. (2.65) are given by

(k)
ki = o , (2.66)
with q; = ]_, 2, ...lj, k= 1, 2, Nk
The number of k-points can be reduced if the crystal structure under investiga-
tion has additional point group symmetries (for instance rotations, mirror planes).
In this case, the k-points are chosen only to span the irreducible part of the Brillouin
Zone (IBZ). As a result the N symmetry equivalent k-points are only a subset of
the Ny points. The sum is then taken only over the reduced set with corresponding
weighting factors wy,.
The number of k-points used in the BZ depends on the system to be studied.
In general systems with a gap need a few k-points, while for metallic systems a
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much denser k-point mesh is required, to ensure a good description of the Fermi
surface. The quality of the k-point mesh should be tested for each system, so that a
convergence of the total energy with respect to the number of k-points is achieved.
Such tests were performed in the present work and can be found in Appendix A.

2.5 Atomic forces

We are interest in achieving the lowest energy atomic configuration. This is in prin-
ciple not known and we have to start from a certain guess geometry (arrangement of
the atoms). During the atomic optimization, the forces F; on the atoms are calcu-
lated and use as a criterion to achieve the equilibrium configuration. In all structure
relaxation runs performed in this work, geometries were considered converged if the
residual forces were smaller than 0.025eV/ A. The Hellmann-Feynman theorem [93]
states that the force on the ion [ is minus the derivative of the total energy of the
system with respect to the position of the ion

N;

By 717, dE,

F _ — pu— - 2.67

"7 4R, 2 R;—R,| dR;’ (2:67)
J=1

The electronic part consists of two terms, namely

;lf{j =— aiRIv(r)n(r)dr + /[v(r) + vg(r) + U"C(r)]aiRln(r)dr’ (2.68)

where the first term is called Hellmann-Feynman force [93] and the second term is
the Pulay force [94]. It can be shown that once the Born-Oppenheimer surface is
achieved, the Pulay forces are zero and only the Hellmann-Feymann force remains.
As a criterion, all the structure relaxations in this work were performed until the
forces on the atoms were smaller than 5 x 10~* Hartree/Bohr & 0.025 eV/A.

2.6 The fhiPP and fhi98md packages

For all the calculations done in this work, we used the fhiPP and fhi98md packages,
developed at the Fritz-Haber-Institute of the Max-Planck Society in Berlin. The
fhiPP package was used to constructed the pseudopotentials used in this work. The
fhi98md was used to perform the total energy calculations within the pseudopoten-
tial framework for all systems here considered. Informations about these programs
and applications can be found in Refs. [91,95,96].
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Chapter 3

Bulk Properties

Before starting surface calculations for any material, it is crucial to perform calcula-
tions for its bulk phase in order to determine the structural (e.g., lattice parameters,
bulk modulus) and thermodynamic properties (e.g., cohesive energy, formation en-
thalpy). In particular, the lattice parameters of the bulk phase will be needed to
perform the calculations of surfaces. Also, in the approach we use, the formation
enthalpy is a quantity necessary to calculate the surface properties (surface ener-
gies). It is therefore assumed that the calculated properties are transferable and the
properties determined using smaller systems like the bulk phase hold also for larger
systems as surfaces.

As it was discussed in Chapter 2, there are different approximations for the
exchange-correlation functional (LDA, GGA). In the recent years, several works were
done to understand how these functionals perform for group-III nitride materials.
Previous studies within the pseudopotential approach for group-III nitrides have
been shown that the properties are sensitive to the choice of the pseudopotential
[87,97-99].

Two interpretations might come out from the pseudopotential calculations. One
is that GGA might perform differently for group-III nitrides compared to the tra-
ditional semiconducting III-V materials (GaAs, AlAs, GaP). The other one is that
the difference is not due to the exchange-correlation functional, but comes from the
use of the pseudopotential approach.

To clarify this aspect, Fuchs et al. [87] carried out pseudopotential and all-
electron Full-Potential Linearized Augmented Plane Waves (FP-LAPW) calculations
(within LDA and GGA) for group-III nitrides. By comparing the FP-LAPW and
pseudopotential results, it was possible to check the transferability of the pseudopo-
tentials, and hence understand how good pseudopotentials should be constructed
for the group-III nitrides.

However, this work focused only on the bulk properties of the cubic phase. There-
fore, as we are interested in the wurtzite phase of GaN, we perform calculations to
verify how the LDA and GGA (within the PBE parameterization described in Chap-
ter 2) approach performs for GaN in this phase, which are necessary for our study on
GaN surfaces. Based on those results then it is possible to decide which exchange-
correlation functional is more accurate to describe the surface properties of GaN

27
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surfaces.

In this chapter we present and discuss results for the structural and thermody-
namic properties of the hexagonal and cubic phases of GaN-bulk, the Ny molecule,
Ga-bulk, Si-bulk and SigN4-bulk. Si-bulk and SigNy-bulk will be needed when study-
ing Si adsorption on GaN surfaces.

3.1 Structural and thermodynamic properties

The equilibrium structure for GaN-bulk, Si-bulk and SizN4-bulk is obtained by mini-
mization of the total energy with respect to the primitive unit cell volume V. For the
zinc-blende case (GaN-bulk in cubic phase and Si-bulk) the volume is directly related
to the lattice constant a (V' = a3/4), while for the wurtzite structure (GaN-bulk in
hexagonal phase and SizgNy-bulk) the volume is a function of the lattice parameters
cand a (V = v/3a’c/2). Therefore, for the wurtzite structure, the minimization has
to be performed by a two-step procedure: the ratio ¢/a and the internal parameter
u have to be optimized for each given volume V. This procedure is repeated for
other volumes near the experimental one. We chose for all cases a range from -9%
to +9% around the experimental value.

The minimum of energy is calculated interpolating the total energy curve versus
volume V' using the Murnaghan equation of state [100]. Let us start with the
definition of the bulk modulus B

oP
By(T,P)=-V =] . 3.1
)= (52) (3.)
It follows that the derivative of the bulk modulus Bj is then given by
0 OP(T,V)
By=——= | V—r—~ . 3.2
= (), o

In terms of By and B{, the Murnaghan equation of state to determine the minimum
of energy is given by

E(V)—EW) =

BoV {(Vo/V)B") +1} BoVo (3.3)

B, | By—1 B/ -1

The equation above is solved self-consistently together with Egs. (3.1) and (3.2) to
determine the equilibrium volume Vy = V(P = 0), By, Bj and E(V}) .

The cohesive energy is by definition the energy necessary to separate the crystal
into its constituent parts. This energy depends on what the constituent parts are
considered to be. They are generally taken to be the individual atoms of the chemical
elements out of which the solid is composed

o AB—bulk A—atom B—atom
Eeon = Etot - Etot - Etot ) (3-4)
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Figure 3.1: Conventional unit cells of (a) #-GaN (zinc-blende structure) and b) a-GaN
(wurtzite structure). a and c are the lattice parameters and u is the internal parameter.
In the pictures the atoms belonging to the primitive unit cell are indicated.

where FAB-Pulk pA-atom pBratom a6 the total energies of AB-bulk, A and B free
atoms!. In the calculation of the cohesive energy we include the so-called spin-
polarization correction energy for the spin-saturated spherical free (pseudo) atom
by adding the difference of the total energies of the spin-polarized and saturated
all-electron atom within the respective exchange-correlation scheme.

When the constituent parts are taken to be the solid phases we have the formation

enthalpy of the solid at zero temperature, defined as:

AHJ=(AB) = B — B0 — BB 5)

where EAB=bulk pA=bulk pBbulk 5.0 the total energies of the bulk phases of the

compounds AB, A, and B, respectively. Besides the comparison with experiment,
the formation enthalpy will also be used in order to calculate the surface energies,
as will be explained in the next chapter.

The primitive lattice vectors for the zinc-blende structure are a; = 37 + %l;‘, a, =

30+ 3)a3 = 3]+ %l% and for the wurtzite structure are a; = §i + a{’j, a; =
50— a\/T‘;’j, az = cl%, where 72,7 and ki are the unitary vectors along the z,y and z
directions respectively.

3.1.1 Structural and cohesive properties

It has been argued that the explicit inclusion of the Ga-3d electrons are essential
for a better description of the group-III nitrides structural and cohesive properties

"We should note that in order to calculate the total energy of a free atom using periodic
boundary conditions, some technical aspects should be considered. A large cubic supercell is
needed to prevent that one atom from a certain unit cell interacts with an atom of a neighboring
unit cell. Convergence tests to determined the optimum size for the supercell for all the species
involved are presented in Appendix A.
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Figure 3.2: Calculated total energy difference of GaN-bulk per Ga-N pair versus nor-
malized volume V/Vj, where Vj is the experimental volume for the wurtzite structure.
Here we use a) LDA with the non-linear core correction for the exchange-correlation term
and b) LDA including the Ga-3d electrons explicitly as valence electrons. The solid line
refers to the hexagonal phase (wurtzite structure), while the dotted line refers to the cubic
phase (zinc-blende structure). The energy difference in a) is 10meV and in b) 16 meV.
The energy reference is set on the lowest energy value for the wurtzite structure.

[20,101-104]. On the other hand, due to the localization of 3d functions, it is difficult
to converge the wave functions in a plane-wave basis set since a high energy cutoff
is required. Therefore, nlce, which does not include the Ga-3d explicitely as valence
electrons, has the advantage of being computationally cheaper, since it requires a
smaller energy cutoff. Therefore, we carried out calculations including the Ga-3d
electrons and within the nlcc approach to verify whether nlcc gives a good description
of the structural and cohesive properties of GaN.

The total energy differences per Ga-N pair for GaN-bulk versus the normalized
volume V/V, (Vp is the experimental volume) are presented in Figs. 3.2(a) and (b).
In Fig.3.2(a) we treat the Ga-3d electrons as core, i.e., within the so-called nlcc
approximation and in Fig. 3.2(b) we include the Ga-3d electrons explicitly.

Our results show that the nlcc approximation can predict correctly the stability of
the GaN phases, where we find that the cubic phase is less stable than the hexagonal
phase by 10 meV /pair. Including the Ga-3d electrons we find that this difference
is 16 meV /pair. This difference is in good agreement with other theoretical results
(97,104, 105], where it was found that the difference in energy between the two
structures less than 20meV. Our results also agree with experiment, where the
hexagonal phase of GaN is found to be the most stable phase [12].

Now we want to discuss the lattice parameters of GaN. The discussion concerns
both cubic and hexagonal phases, otherwise noted. Tables3.1 and 3.2 show the
results for the calculated bulk properties: lattice constants ay and c¢y/ag, bulk mod-
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Table 3.1: Calculated and experimental structural and thermodynamic properties of (3-
GaN using LDA and PBE: equilibrium lattice constant ag, bulk modulus By, bulk modulus
derivative By, cohesive energy Ecop, and formation enthalpy AH }F:O' A cutoff energy of
70 Ry and 28 k-points in the IBZ were used. The nlcc calculations were done using a cutoff
energy of 50 Ry. The cohesive energy was corrected by a spin-polarization correction of
0.145eV (LDA) and 0.179eV (PBE) for the Ga atom and 3.03eV (LDA) and 3.12eV
(PBE) for the N atom. PP stands for pseudo-potential, FP-LMTO for full-potential linear
muffin-tin orbitals, FP-LAPW for full-potential linearized augmented plane waves and
USPP for ultra-soft pseudopotential. PP (nlcc) means that non-linear core correction was
employed and PP(3d) that the Ga-3d electrons were explicitly included as valence electrons
(see Chapter 2).

LDA
Ref. Method ap (A) By (Mbar) B Econ (eV) AHT=O(eV)
[99] PP (1o 3d) 1.33 2.38 —0.46
this work PP (nlcc) 4.38 1.97 4.50 —11.01 —0.50
[106] PP (nlcc) 4.45 1.95
[99] PP (nicc) 4.44 1.93 —0.57
[104] PP (nicc) 445 2.07 3.94
this work PP(3d) 4.52 1.88 4.35 —10.38 —1.22
[97] PP(3d) 4.52 1.91 4.14 ~10.18
[87] PP(3d) 4.50 1.93 ~10.42 ~1.34
[102] PP(3d) 4.46 1.87
[107] PP(3d) 452 2.06 3.70 ~10.53
[108] PP(3d) 4.52 2.00 415 ~10.54
[109] PP(3d) 4.30 2.51 2.76
[99] PP(3d) 4.48 2.18 ~0.99
[110] USPP 4.45 ~10.98 ~1.69
[87] FP-LAPW 4.46 4.46 —10.80 —-1.55
[101] FP-LMTO 4.47 1.98 —10.88

PBE
[99] PP(no 3d) 4.45 2.08
this work PP(nlcc) 4.43 2.13 4.41 -9.93 —1.28
this work PP(3d) 4.60 1.66 4.12 —8.52 —0.62
[97]* PP(3d) 4.59 1.56 4.25 ~8.25
[110] USPP 4.54 —9.25 ~1.10
98] FP-LMTO 457
[99] PP (nlcc) 4.45 2.08
[87] PP(3d) 4.60 1.67 ~8.53 ~0.59
[87] FP-LAPW 4.55 1.72 4.01 —8.86 -0.90
M2, 111] exp. 152 1.73 3.70 —8.96 ~1.20

* Note: In this work the PWII [65] exchange-correlation potential was used. All other calculations
were done using PBE [68].

ulus By, first derivative of the bulk modulus B}, cohesive energy E.op, and formation
enthalpy AH ;=0

We find that LDA underestimates the experimental lattice parameters (for the
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Table 3.2: Calculated and experimental structural and thermodynamic properties of a-
GaN using LDA and PBE: equilibrium lattice constants ag, ¢g/ag ratio, internal parameter
u, bulk modulus By, bulk modulus derivative By, cohesive energy Eon, and formation
enthalpy AH;F =0 A cutoff energy of 70 Ry and 33 k-points in the IBZ were used. The nlcc
calculations were done using a cutoff energy of 50 Ry. The cohesive energy was corrected by
a spin-polarization correction of 0.145eV (LDA) and 0.179eV (PBE) for the Ga atom and
3.03eV (LDA) and 3.12eV (PBE) for the N atom. PP stands for pseudo-potential, FP-
LMTO for full-potential linear muffin-tin orbitals, FP-LAPW for full-potential linearized
augmented plane waves and USPP for ultra-soft pseudopotential. PP(nlcc) means that
non-linear core correction was used and PP(3d) that the Ga-3d electrons were explicitly
included as valence electrons.

LDA
Ref. Method ag (A)  co/ao u By (Mbar)  Bj  Eeon(eV) AHI(eV)
[105] PP(no 3d) 3.095 1.633 0.378
[112] PP(no 3d) 3.160 1.622 0.377 1.95
[106] PP(no 3d) 3.146 1.629 0.377 1.95
this work  PP(nlcc) 3.133  1.633 0.375 2.17 423  —11.03 —1.80
[104] PP(nlcc)  3.145 1.626 0.377 2.15 5.90
this work PP(3d) 3.196  1.631 0.375 1.87 9.39 —10.40 —1.25
[97] PP(3d)  3.193 1.634 0.376 ~10.19
[110] USPP 3.131  1.630 0.377 —10.99 —1.69
[98] FP-LMTO 3.160 1.626 0.377 1.99
[113] FP-LMTO 3.170 1.626 0.379 4.5

PBE
this work  PP(nlec) 3.191  1.633 0.375 1.84 4.79 -9.31 —1.15
this work PP(3d) 3.252  1.629 0.376 1.62 4.06 —8.54 —0.64
[97] PP(3d) 3.245 1.632 0.376 1.72 5.11 —8.27
[110] USPP 3.199 1.634 0.377 —9.27 —1.12
[12] exp. 3.189 1.624 0.375 1.88 4.3 —9.06 —1.15

* Note: In this work the PWII [65] exchange-correlation potential was used. All other calculations
were done using PBE [68].

cubic and hexagonal phases) by around 1% when the Ga-3d electrons are included
explicitly and by 3% when nlcc is employed. We find that the cohesive energy
using LDA is overestimated with respect to the experimental value by 17% and the
formation enthalpy by 8%. The lattice parameter with PBE overcorrects and gives
a 2% too large value (nlcc) and 3% (Ga-3d) compared to experiment.

The GaN cohesive energy is overestimated by 6% compared to the experimental
result, which confirms the fact that PBE improves the binding energies in many
solids [114-117]. However, the formation enthalpy (—0.64¢V) is underestimated
by 44% compared to the experimental value (—1.15eV). On the other hand, PBE
(nlec) gives a value (—1.28 V) very close to the experimental value (overestimated by
3%). Compared to other theoretical results, we can see that the formation enthalpy
is poorly described when using LDA-nlcc within the pseudopotential approach (less
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than 50% of the experimental value). Compared to all-electron calculations, LDA-
3d gives an error of 0.3 eV. Ultra-soft pseudopotential [110] results overestimate the
formation enthalpy by 0.5eV when LDA is used, but are in very close agreement
when PBE is used (difference of 0.1eV).

In order to understand this behavior, the individual contributions (Ny-molecule,
Ga-bulk and GaN-bulk) to calculate the formation enthalpy are analyzed. The
formation enthalpy (Eq.(3.5)), involves the binding energies of solid phases of the
constituent systems. According to the diagram of Fig.3.3 we can see that LDA
always overestimates the cohesive energy for the constituent species with respect to
the experimental value, which means that the error is always positive. Thus, when
one calculates the formation enthalpy according to Eq. (3.5), the difference among
the individual terms brings the LDA value close to the experimental one.

However, for PBE, the error for the individual systems have different signs: for
the Ny molecule the error is positive, whereas for the GaN-bulk and Ga-bulk the
error is negative. Therefore, the difference pushes the PBE value far from the exper-
iment. On the other hand, from the Table 3.2 we can see that using PBE within the
nlcc approximation gives very close results (difference of 0.03eV) for the formation
enthalpy as using the LDA including the Ga-3d electrons. However, the structural
properties and cohesive energies (of the bulk materials) are not well described. Based
on the results discussed above, we can draw the following conclusions:

(i) the magnitude of the error of the structural properties are similar using LDA
and PBE; however, in different directions: LDA underestimates the lattice
parameters whereas PBE underestimates them;

(ii) PBE gives better results than LDA for the structural properties and cohesive
energy of all compounds (Ga-bulk, No-molecule and GaN-bulk) if the Ga-3d
electrons are included as valence electrons;

(iii) PBE performs worse than LDA for the formation enthalpy, but we can explain
it noticing that the description of the binding energies for the Ny molecule and
the bulk phases have errors with different signs (with respect to the experi-
mental value) using LDA and PBE;

(iv) LDA-nlcc performs worse than PBE-nicc for structural properties and for en-
ergetics as well;

(v) PBE-nlcc gives similar results to LDA for the structural properties, cohesive
energy and formation enthalpy;

Therefore, to reduce computational efforts, combining PBE and nlcc might be a
good approach for the exchange-correlation functional when calculating GaN bulk
properties, since the energy cutoff can be reduced from 70 Ry to 50 Ry, which means
that the number of plane waves is reduced. Now that we understand how LDA and
PBE performs for GaN-bulk, let us discuss a possible way of improving the descrip-
tion of the energetics using the pseudopotential approach. The way of constructing
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Figure 3.3: Relative error with respect to the experimental value for the binding energies
of the No molecule (LDA, 0.94eV and PBE, 0.42eV), a-Ga (LDA, 0.48¢eV and PBE,
0.27¢eV) and GaN-bulk (LDA, 0.67¢eV and PBE, 0.26eV). The black boxes refers to the
PBE and the white boxes to the LDA.

more complete pseudopotentials consists in including more angular momentum com-
ponents [ for the pseudoatom. Fuchs et al. [87] have systematically studied such an
effect for group-III nitrides materials. They found that the inclusion of the Ga-f or-
bitals in addition to Ga-d orbitals improves (leads values closer to the experimental
ones) the formation enthalpy of cubic GaN by 0.19eV using LDA and by 0.16eV
using PBE (see Table3.1).

Therefore, trying to improve the pseudopotential leads to a better, description
of the formation enthalpy compared to the experimental values. Since the inclusion
of Ga-3f orbitals is computationally more demanding when studying surfaces (even
using f as the local component for the pseudopotential, we still have to calculate
the d projectors). Since the improvement on the formation enthalpy is smaller than
0.2eV, we consider the inclusion of the s,p and d orbitals only.

3.1.2 Electronic properties

Figs.3.4(a)-(d) show results for the band structure calculations of GaN in the
wurtzite and zinc-blende structures using LDA [(¢) and (d)] and PBE [(a) and (b)].
Both phases have a direct band gap, with valence band maximum and conduction
band minimum located at the I' point of the Brillouin zone. The Brillouin zones
are shown in Figs. 3.5(a) face-centered cubic lattice and (b) hexagonal lattice. The
theoretical band gap is calculated using the energy difference between the highest
occupied eigenvalue and the lowest unoccupied eigenvalue.

While there is a single conduction band with I'; symmetry, there are three valence
bands, which are non-degenerate. Due to the spin-orbit and crystal field splitting,
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Table 3.3: Calculated and experimental band gap energies Egrap at the T" point for (-
and a-GaN bulk using LDA and PBE. PP stands for pseudo-potential and FP-LAPW
for full-potential linearized augmented plane waves. PP (nlcc) means that non-linear core
correction was used and PP(3d) that the Ga-3d electrons were explicitly included as valence

electrons. All values are given in eV.

B, (€V)
Ref. Method (-GaN a-GaN
LDA PBE LDA PBE
[99] PP(no 3d)  2.35  2.10
this work ~ PP(nlcc) 220 190 235 201
[99] PP(nlcc) 1.81  1.99
this work PP (3d) 1.60 1.27 1.76 1.39
[97] PP(3d) 160 128 176 145
[97] PP(3d) 1.89
[99] PP(3d) 148
87]  FP-LAPW  1.68
[12] exp. 3.45 3.41

the top of the valence band separates in three bands, two with I'; symmetry (called
light-hole and spin-orbit splitting band) and one with I's symmetry (called heavy-
hole).

In this calculation, we do not include spin-orbit coupling. Therefore, the spin-
orbit splitting is not seen in the band structure. However, the splitting due to
the crystal-field is found to be 10 meV. The experimental values lie in the range of
10-25meV [12].

The band structure was calculated at the optimized geometry for both struc-
tures. We can see that the band structures look almost identical for both exchange-
correlation functionals. For the cubic phase we find a band gap of 1.60eV us-
ing LDA (including the Ga-3d electrons) and 3.51eV (nlcc), while using PBE we
found 1.27eV (including the Ga-3d electrons) and 3.20eV (nlcc). For the hexago-
nal phase, we find a gap of 1.76eV using LDA (including the Ga-3d electrons) and
3.30eV (nlcc), while using PBE we found 1.39eV (including the Ga-3d electrons)
and 3.10eV (nlcc). The good agreement with the measured gaps for a-GaN (3.4eV)
and $-GaN (3.2eV) [12,111] using nlecc comes from the fact that the lattice con-
stant is significantly underestimated compared to the experimental values (=~ 3%)
and therefore the agreement is accidental.

3.2 Ga-bulk

Ga-bulk has different bulk phases (Ga-II, Ga-III [118], o [119], B [120], v [121],
0 [122] and € [118]), depending on the pressure and temperature. Several theoretical
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Figure 3.4: Bulk band structure of hexagonal (wurtzite) and cubic (zinc-blende) GaN.
(a) Hexagonal phase using PBE, (b) cubic phase using PBE, (c¢) hexagonal phase using
LDA, and (d) cubic phase using LDA. The optimized theoretical lattice constants were
used for the calculations.

and experimental studies have shown that a-Ga is the stable phase at room tempera-
ture and low pressure (up to 16 x 10% atm) [123]. Therefore we concentrate ourselves
only on the properties of a-Ga, because these conditions are similar to those in MBE
experiments. Besides, the other phases are similar in energy and would not affect
any of the conclusions drawn here. The a-phase has an orthorhombic structure with
eight atoms per unit cell.

A peculiar feature is that each atom has only one nearest neighbor at a distance
of 2.44 A. The second, third and fourth shell each contain two atoms and are 0.27,
0.30 and 0.39 A further away. The corresponding structure is shown in Fig. 3.6. The
primitive lattice vectors are a; = a?,a, = bj and azg = ck. The relative coordinates
of the atoms of the basis in the unit cell are: (0,+u,+v), (3, +u, 3 £ v), (3,4 £
u,+v), (0,3 + u, 3 £ v), where u and v are the internal parameters. We should
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Figure 3.5: First Brillouin zones with the highest symmetry lines of (a) face-centered
cubic (zinc-blende structure) and (b) hexagonal lattice.

mention that, for a sake of computational effort, all properties were calculated at
the experimental geometry, i.e., the structure was not relaxed.

The results for the calculated and experimental properties are shown in Table 3.4.
We can see that for LDA-nlce, the cohesive energy is in good agreement with the
all-electron calculations, although we should consider this agreement carefully, since
the structure was not relaxed. We again emphasize that the inclusion of the Ga-3d
electrons in principle should lead to a more accurate description of the bonds and
consequently of the properties of the solid. The cohesive energy calculated including
the Ga-3d electrons is overestimated by around 15% using LDA, while for PBE it is
underestimated by 10%.

3.3 Si-bulk

We also calculated the structural and thermodynamical properties of Si-bulk, which
will be needed when studying GaN surfaces. This element has a diamond structure
at low pressure with 2 Si atoms in the primitive unit cell at the positions (0,0,0)
and (1/4,1/4,1/4), as shown in Fig.3.6(a). The calculated properties are shown in
Table 3.5, where we compare our results with other calculations and experimental
values. As expected, LDA predicts a slighly smaller lattice constant (—1%) and a
larger cohesive energy (+10%) than the experimental value, while PBE gives a slighly
larger lattice constant (+1%) and cohesive energies closer to the experimental value
(+0.5%), as we have found for the other crystals.

3.4 SizNy-bulk

Here we present results for the 3-SizNy, which might be the solubility limiting phase
of Si in GaN structure. Such a structure has 14 atoms per unit cell (8 N and 6
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Table 3.4: Calculated and experimental structural and thermodynamic properties of Ga-
bulk in the « phase using LDA and PBE: equilibrium lattice constants ag, by/ag, co/ao,
u and v and cohesive energy F.on. The experimental lattice parameters were taken from
Ref. [123]. In our calculations they were not optimized. Parameters used in the calcula-
tions: 70 Ry and 216 k-points in the IBZ. The nlcc calculations were done using 50 Ry and
216 k-points in the IBZ. The cohesive energy was corrected by a spin-polarization correc-
tion of 0.145eV (LDA) and 0.179eV (PBE). These values were extracted from Ref. [85].
PP stands for pseudopotential, FP-LAPW for full-potential linearized augmented plane
waves and USPP for ultra-soft pseudopotential. PP(nlcc) means that the non-linear core
correction was used and PP(3d) that the Ga-3d electrons were explicitly included as va-
lence electrons.

LDA
Ref. Method ao (A) bo/ag  co/ag u v Econ (eV)
this work PP(3d) 4.51 1.001 1.695 0.0785 0.1525 —3.29
this work PP(nlcc) 4.51 1.001  1.695 0.0785 0.1525 —3.47
87] PP(nicc) 451  1.001 1.695 00785 01525  —3.21
[87] FP-LAPW 4.44 0.997 1.691 0.0801 0.1566 —3.46
[124] PP(nicc) 436  0.997 1692 0.080 0.1560  —3.48
[110] USPP 4.44 0.999 1.696 0.0816 0.1577 —3.48
[123] PP (nlcc) 4.38 0.994 1.688 0.0803 0.1567

PBE
this work PP(3d) 4.51 1.001  1.695 0.0785 0.1525 —2.54
this work PP (nlcc) 4.51 1.001  1.695 0.0785 0.1525 —2.76
87] PP(3d) 451 0997 1.691 0.0801 0.1566  —2.60
[87] FP-LAPW 4.59 1.690 0.993 0.803 0.1567 —2.71
[124]* PP(no 3d) 4.58 0.997 1.691 0.082 0.1530 —2.67
[110] USPP(3d) 4.60 0.992 1.696 0.0834 0.1559 —2.80
[125] exp. 4.511 1.001  1.695 0.0785 0.1525 —2.81

* Note: In this work the exchange-correlation functional used was PWII [65]. All
other calculations were done using PBE [68].

Si) and belongs to the point group P63/m (see Fig.3.7). Each Si atom is tetrahe-
drally coordinated with one N atom. The N atoms are nearly planarly three-fold
coordinated with Si.

The coordinates of the atoms of the basis in the primitive unit cell are: N atoms at
i(%, %, i), +(zN, YN, i), +(yxn — TN, — TN, i) and £(—yn, TN — YN, i) and Si atoms at
+(2si, Ysir 1) £(Ysi—si, —Tsi, 1) and £(—ys;, Tsi—ys;, 1), where the atomic positions
x,1, z are meant to be multiplied by a;, ay and ag. The primitive lattice vectors are
a; = 2+ a%lja, = % — alj, a3 = ck.

Recent theoretical investigations have shown that this phase is the most stable
oneat T=0and P=0. At P =42atm and T = 1770 K, the § phase transforms into
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Figure 3.6: Atomic structures of (a) Si- bulk (diamond structure) and (b) a-Ga (or-
thorombic structure). The two inequivalent Si atoms per primitive unit cell are indicated
(a) and the eight inequivalent Ga atoms per primitive unit cell are indicated in (b).

Figure 3.7: View along the [0001] plane of the hexagonal structure of $-SizN4 contains
14 atoms per unit cell (8 N and 6 Si). The primitive unit cell is indicated.

the « phase, which has twice as many atoms per unit cell and a different stacking
along the {c} direction [129]. The optimized structure and the cohesive properties
are shown in Table 3.6 and compared with the experimental and theoretical data
available. Our results for the lattice parameters show very good agreement with
experimental values for the structural properties and other theoretical calculations.

However, for the cohesive properties, our results differ drastically from the other
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Table 3.5: Calculated structural and thermodynamic properties of Si-bulk using LDA
and GGA: equilibrium lattice constant ag, bulk modulus By, bulk modulus derivative By,
and cohesive energy F.,n. We use a energy cutoff of 50 Ry and 10 k-points in the IBZ.
The spin-polarization correction for the Si atom is 0.66eV (LDA) and 0.79¢V (PBE).
These values were extracted from Ref. [85]. PP stands for pseudopotential, LAPW for
linear augmented plane waves and PAW for projected augmented waves and USPP for
ultra-soft pseudopotential. In brackets are the different parameterizations of the GGA
exchange-correlation functional (see Sec.2.2.4).

LDA
Ref. Method ap(A)  By(MBar)  E.u(eV)
this work PP 5.38 0.95 —5.18
[85] PP 5.38 0.94 —5.34
[126] PAW 5.38 0.98 —6.03
[126] LAPW 5.41 0.98 —5.92
[126] PP 5.39 0.98 ~5.99
[127] USPP 5.40 0.95 —5.96
[127] PAW 5.40 0.95 —5.96
GGA

this work PP(PBE) 5.47 0.85 —4.61
[85] PP(BP) 5.47 0.85 —4.46
[85] PP(PW) 5.46 0.87 —4.64
[128] LAPW(BP) 5.54 0.80

[128] LAPW(PW) 5.50 0.83

[125] exp. 5.43 0.99 —4.63

pseudopotential calculations (—100%). We believe our pseudopotentals give more
reliable results than the pseudopotential results of Ref. [112], since they give the
typical LDA behavior (~ 20% for the cohesive energy compared to experiment).

3.5 Ns-molecule

The results for the binding energy, bond length and vibration frequency for the Ny
molecule are shown in Table 3.7. The binding energy for the N5 molecule is obtained
as the energy difference between the Ny, molecule and the N atom total energies
Ey, = ENamolecule g pN-atom e vibration frequency is calculated from the total
energy versus Ny bond length. The procedure was the same done for the GaN bulk.
The bond length was varied around the experimental bond length (1.10 A) ranging
from —9% to 9%. Then, in the harmonic approximation the vibration frequency is
calculated according to
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Table 3.6: Calculated and experimental equlibrium lattice constants ag, co/ag, cohesive
energy FE..n and formation enthalpy AH?ZO for the 3-SisNy using LDA. In Refs. [130]
and [112] the ratio ¢/a was not relaxed. We use a energy cutoff of 70 Ry and 63 k-points
in the IBZ. The spin-polarization correction for the Si atom is 0.79eV and for the N atom
is 3.03 eV. These values were extracted from Ref. [85]. PP stands for pseudopotential, HF
for Hartree-Fock and OLCAO for orthogonalized linear combination of atomic orbitals.

T

Ref. Method a(A) co/ag  Bo(MBar)  FEeon (eV/cell) AH7=" (eV/atom)
this work PP 7.600 0.383 2.56 —-97.91 —9.95
112] PP 7.610 0.382  2.65 —48.96
[130] HF 7610 0382  2.97
120]  OLCAO 7.620 0.382  2.74 743
[131,132] exp. 7.608 0.382 2.56,2.58,2.73 —82.96 —7.71,—8.83
1 K
H= Y E ) (3.6)

where i, is the reduced mass of the Ny molecule and K is the force constant.

The present results are in good agreement with previous LDA and PBE calcula-
tions using the pseudopotential approach [87]. Compared to the LDA results, PBE
leads to very similar results, but slightly longer bond lengths, lower frequencies and
smaller binding energies which are closer to experiment. The binding energy is over-
estimated by 16% using LDA and 8% using PBE. From Table 3.7 we can see that
our results compare quite well with others, indicating that our pseudopotential is
reliable in describing properties of molecules as well.

3.6 Summary

After having examined the properties for the Ny molecule, GaN-bulk, Ga-bulk, Si-
bulk and SizN4-bulk described above, we can conclude that carefully constructed
pseudopotentials accurately describe these properties. In particular, PBE performs
better in describing the binding energy of solids and molecules. For the structural
properties we did not find real improvement, since LDA always underestimates the
experimental values, while PBE overestimate them by the same amount.

The formation enthalpy of GaN using PBE-3d is strongly underestimated, while
LDA provides a value very close to the experiment. However, the use of PBE within
nlce gives a value close to the experimental one. Therefore, as the formation enthalpy
is a key quantity to derive phase diagrams, we decided to use LDA in the following
calculations instead of GGA. Based on the discussion above, we state that, if LDA
is the chosen functional, the Ga-3d electrons should be treated as valence electrons.

Concerning to electronic properties we find a very good qualitative agreement
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Table 3.7: Calculated and experimental bond length d, binding energy Ej, and vibration
frequency w for an No molecule using LDA and GGA. The binding energy was corrected
by a spin-polarization correction of 3.03eV (LDA) and 3.12eV (PBE). These values were
extracted from Ref. [87]. We use a cubic supercell with lenght L = 20 Bohr, 1 k-point
in the IBZ and 70Ry cutoff energy. The zero point vibration energy of the molecule
(0.153€eV) has been included.

Ref. LDA GGA

d(A) Ey(eV) w(ecm™) functional d(A) Ep(eV) w(cm™)
this work 1.09 —11.71 2363 PBE 1.09  -10.66 2331
97] 110 —11.59 2384
87] 108 —11.75 2385 PBE 109 -10.69 2325
[87] 1.10  —11.57 2398 PW 1.10 —10.41 2354
[110] .11 —11.33 PBE .11 —10.56
[133] PW 1.10 —9.87 2346
68] PBE 110 —10.49
[75] BP 110 —1030 2330
[65] PWII  1.10 —10.10 2320
[

134](exp.) 1.10 —982 2360

between LDA and PBE for the band structure. We conclude that the difference in
the band gap is attributed only to different descriptions of the lattice parameters.

We have shown that the pseudopotential approach, when constructed in a careful
manner, can provide very good description of bulk, atoms and molecules, compared
to all-electrons calculations. Also, the necessity of optimizing the parameters that
control the transferability of the pseudopotential, such as cutoff radii, number of the
[ components is crucial, as pointed out by Fuchs et al. [87].



Chapter 4

Bare GaN (0001) surfaces

The structural and electronic properties of GaN surfaces depend sensitively on the
orientation of the surface (i.e., along which plane the crystal is cleaved), surface
termination (i.e., which chemical species is in the top surface layer) and reconstruc-
tion. The most common growth direction of epitaxial hexagonal GaN is normal to
the {0001} basal plane!.

In Fig.4.1 we show a schematic representation of two possible directions [0001]
(also called Ga-polar or Ga-face) and [0001] (also called N-polar or N-face). Tt is
important to note that the two possible directions are not equivalent, because the
wurtzite structure has no inversion symmetry. Experimentally the orientation can
be controlled by the choice of the substrate (surface orientation, surface prepara-
tion) and the growth process. A large number of studies have revealed that high
quality GaN films deposited by MOCVD results in growth along [0001] while MBE
commonly results in growth along the [0001] direction [13].

In this work we will focus on the GaN (0001) surface, which has been demon-
strated to have the better surface morphology and which is the relevant surface
for all technological applications realized up to now [5]. The polar (0001) sur-
face exhibits, depending on the growth conditions, a variety of structures, such as
(1 x 1)(unreconstructed), and reconstructed (2 x 2),(4 x 4),(5 x 5) and (6 x 4)
[32,135-138|.

Several theoretical and experimental studies were devoted to identifying the elec-
tronic structure of these surfaces. The (2 x 2) reconstruction has been explained
as being a N-adatom structure under N-rich conditions and a Ga-adatom structure
under Ga-rich conditions [139]. The (5 x 5) structure has been proposed to consist
of Ga- and N-adatoms [136] and for the (4 x 4) and (6 x 4) the atomic structure
has not been completely clarified yet.

Particular attention has been given to the (1 x 1) structure. Concerning the
atomic structure, Sung et al. [140] concluded from their LEED (low energy electron

!The planes in a crystal are usually denoted by Miller indices (hkl) where h, k,[ are the integer
reciprocal axes given by the intersections of the lattice planes with three crystallographic axes.
In the case of trigonal and hexagonal lattices, four crystallographic axes are needed. The lattice
planes are then characterized by four indices (hkil) instead of three (hkl). The first three are not
independent of each other. It holds thati = —h — k. The (hkil) are termed Bravais indices.

43
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diffraction) studies that both GaN (0001) and (0001) surfaces are neither recon-
structed nor relaxed.

The electronic structure of the (1 x 1) surface was addressed more recently by
angle-resolved photoemission spectroscopy (ARPES) where Dhesi and et al. [141]
investigated the bulk electronic band structure of thin GaN films grown by MBE. In
addition to the bulk bands, they observed a dispersionless surface state band near
the valence maximum as well.

Chao et al. [142] reported a more complete account on the electronic structure of
the (1x1) surfaces using synchrotron-radiation-excited ARPES. However, as ARPES
does not provide unambiguous information about the termination or polarity of the
films, the observed states can be due either from the (0001) or (0001) surface. One
band, close to the valence band maximum, was found to be weakly dispersive and
very sensitive to the hydrogen adsorption, suggesting the surface has dangling bonds
at the outermost layer. The other band was found to be very sensitive to the quality
of the sample, as determined by LEED.

Wang et al. [143] performed density-functional theory calculations within the
local-density approximation using pseudopotential method for the clean (0001) and
(0001) surface in order to compare with the available experimental data. They cal-
culated the atomic and electronic structure of several possible (1 x 1) structures.
They found that the clean Ga-terminated surface has a very small relaxation. Con-
cerning the electronic structure, none of the Ga-polar structures was consistent with
the ARPES data by Chao et al. [142]. Instead, the best agreement with the ex-
perimental result was achieved when comparing the theoretical surface states of the
N-terminated (0001) surface.

As we can see from the discussion above, although the atomic structure of the
GaN (0001) surface has been largely investigated , [31,36,135,136,144,145], concern-
ing the electronic structure our understanding is only at the beginning. Also, which
exchange-correlation functional (LDA, PBE) should be used to better describe the
GaN surfaces properties has not yet been verified.

In this chapter we will therefore focus on the study of the atomic and electronic
structure of the most relevant bare GaN (0001) surfaces employing LDA and PBE.
The conclusions about the performance of the functionals will be an useful informa-
tion in order to choose which functional will be used to study the adsorption of Si
on GaN surfaces.

4.1 Surface reconstructions and relaxations

We will first focus on the unreconstructed surfaces. In the present work, the unre-
constructed Ga and N-terminated (0001) surfaces are modeled using an (1 x 1) unit
cell. A top view of these surfaces is shown in Fig. 4.2(a). A side view of these surfaces
is shown in Fig. 4.2(b) (N-terminated) and Fig. 4.2(c) (Ga-terminated). Each (1 x 1)
unit cell contains one atom per layer. Structures with a Ga-adatom and N-adatom
are modelled using a (2 x 2) unit cell. Each (2 x 2) cell contains four atoms in each
of the underlying layers and one additional atom per layer. A top view of the (2 x 2)
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Figure 4.1: Schematic picture of the Ga- ([0001] direction) and N-polar ([0001] direction)
GaN (0001) surfaces. The shaded gray ellipses mark the surface dangling bonds which
are formed when cleaving the crystal. Here the (0001) surface is Ga-terminated and the
(0001) is N-terminated.

unit cell is shown in Fig.4.2(a) and a side view is shown in Figs.4.2(d) and (e).
There are many possible sites to adsorb atoms on the surface. Here we consider the
highest symmetry adsorption sites, hcp, fcc and ontop, as shown in Fig. 4.2(a).

In addition to the clean and adatom structures, we also studied structures where
additional Ga layers lay on the top layer of the clean Ga-terminated surface. The side
view of a strucure with an additional Ga layer (Ga-adlayer) on the top of the clean
Ga-terminated surface is show in Fig.4.3 (b) and with two Ga layers (Ga-bilayer)
on the top of the clean Ga-terminated surface is shown in Fig. 4.3 (c). Besides, we
also studied structures where the outermost top layer was contracted. To model the
laterally contracted adlayer and bilayer structures we employ a (v/3 x v/3)R30° unit
cell, as has been suggested in Ref. [36].

In these (\/5 X \/§)R300 cells there are four atoms in the laterally contracted
hexagonal overlayer for every three atoms in the (1 x 1) underlying hexagonal layer.
The lattice vectors of the overlayer are rotated by 30 degrees with respect to those of
the substrate. From now on we will call this cell (\/§ X \/§) Such a model allows the
the Ga-Ga spacing to be close to the value which minimizes the formation energy
of a free standing layer of Ga. Consequently, the (v/3 x v/3) cell should provide a
very good upper bound for the energy of the optimal laterally contracted overlayer
structure.

The laterally contracted Ga-Ga spacing is a. = (v3/2)ai1 = 2.75A, where
a1x1 = 3.19 A is the in-plane spacing of Ga-atoms on the (1 x 1) unit cell, i.e., the
Ga adatoms are compressed by around 14% compared to the full monolayer. The
side view of the contracted Ga-bilayer structure is shown in Fig.4.3(d) and of the
contracted Ga-adlayer structure in Fig. 4.3(e).

For all of these structures the equilibrium geometry has been calculated. For
the unreconstructed (1 x 1) surfaces the three topmost layers have been allowed to
relax. For the adatom structures the two top layers in addition to the adatom were
relaxed. For the contracted and non-contracted structures the four outermost layers
were alowed to relax. The non-contracted structures will be considered later on.
In Table4.1 we show results for the surface relaxations of the structures described
above.
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(a) (b)

Figure 4.2: (a) Top view of the (1 x 1) and (2 x 2) unit cells used to model the GaN
(0001) surfaces. The highest symmetry sites fce, hep and ontop are indicated. (b) Side
view of the clean N-terminated, (c) clean Ga-terminated, (d) adatom-fcc structure, and
(e) adatom-hcp structures. d is the bond length between the adatom (Ga or N) to the Ga
atoms at the first plane, Az,q, is the distance between the adatom and the first plane and
Azpp the distance between the first and second plane. Small gray balls are N atoms, big
gray balls mark the Ga atoms and white balls the (Ga,N) adatoms.

From the results listed in Table 4.1 we can see that the atomic geometries of GaN
(0001) surfaces are quite similarly described by LDA and PBE. The main discrepancy
is for the adatom structures where LDA gives slightly large values. However, the
distance d is very similar in both cases. This is because the relative relaxation of the
top layers is almost the same using both functionals. The LDA results are in good
agreement with previous LDA studies [146], for the Ga- and N-adatom relaxations.

For the adatom structures, we can see that the hollow sites fcc and hep show
a different behavior when N is the adatom. For the fcc site, the distance between
the N adatom and the first plane formed by Ga-atoms is much larger than for the
hep structure. This stems from the fact that N at the hcp site feels the presence
of the N atom at the third layer directly below, while for the fcc site it does not
occur, as pointed out in Refs. [144,147]. For the Ga adatom, the relaxations for
the fcc and hep sites are almost identical. For the contracted Ga-bilayer structures
the spacing between the Ga atoms between the first and the second layer (2.37 A)
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Figure 4.3: (a) Top view of the contracted Ga-adlayer and Ga-bilayer structures with the
top layer (gray balls having a (v/3 x v/3) unit cell) and second layer (white balls having a
(1x 1) unit cell), (b) side view of the Ga-adlayer structure, (c) side view of the Ga-bilayer
structure, (d) side view of the contracted Ga-bilayer strucure and (e) side view of the
contracted Ga-adlayer strucure. Az,q, and Az,q, indicate the distance between the first
and the second planes and between the second and third planes, respectively. In (c) and
(e) the pictures were rotated by 30 degrees for ease of viewing.

and between the second and the third layer (2.50 A) are close to that of the nearest
neighbor distance in the a-Ga bulk phase (2.44 A) For the contracted Ga-adlayer
the distance between the Ga atoms in the first and the second layer is 2.47 A. These
results are in very close agreement to the results of Ref. [36].

Our results using PBE are very similar to the results using LDA. For the con-
tracted Ga-bilayer structures the spacing between the Ga atoms in the first and the
second layer is 2.38 A and between the second and the third layer is 2.58 A. For the
contracted Ga-adlayer the distance between the Ga atoms in the first and the second
layer is 2.49 A.
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Table 4.1: Calculated relaxations using LDA and PBE for the clean Ga- and N-
terminated, Ga- and N-adatom structures, Ga-adlayer and Ga-bilayer surfaces as defined
in Figs.4.1(a)-(b), 4.2(b)-(e) and 4.3(a)-(b). d is the bond length between the adatom and
the surface, Azp; is the distance between the first and second plane for the bare surfaces,
Az,q, is the distance between the adatom and the first plane for the adatom, Ga-adlayer
and Ga-bilayer structures and Az,q, is the distance between the second and third planes
for the Ga-bilayer structures. All values are given in A.

LDA
unreconstructed N-adatom Ga-adatom contracted
N-term | Ga-term hep \ fec hep | fec Ga-bilayer | Ga-adlayer

d 2.05 2.01 2.46 2.47
Azpq 1.92 0.66 0.62 0.70 0.65 0.80 0.68 0.68
AZad, 1.13 1.51 1.57 1.57 2.37 2.47
Azadz 2.50

PBE
d 2.09 2.05 2.50 2.53
Azpq 1.97 0.69 0.60 0.91 0.75 0.82 0.67 0.69
Azag, 0.90 1.15 1.67 1.65 2.38 2.49
Azad2 2.58

4.2 Surface energy

To study the energetics of a surface it is important to note that the surface is
typically not an isolated defect but that it is interacting with its environment. At
usual growth temperatures adatoms/molecules can either adsorb to or desorb from
the surface. Also, interaction is possible by diffusion from the surface to the bulk
and vice-versa. If the surface is close to thermodynamic equilibrium (i.e. the growth
rate is negligible) the surface energy can be expressed employing thermodynamic
concepts [148]. Below we briefly describe the main aspects that relate surface energy
and thermodynamic quantities.

Considering a system of m particles, being n; the number of particles of type
1, T the temperature and p the pressure. If any of these quantities change
by a small amount during a process, then the change in the Gibbs free energy
G(T,p,ny,na,...ny,) during a process is given by

oG oG ™ [0G
dG = (—> + (—) + ( ) . (4.1)
or P, ap Tmn; ZZ: anl p,T\nj#n;

From Maxwell’s relations [149] we have

dG = —SdT + Vdp+ ) _ <§S> . (4.2)
i ©/ pTn;#n;
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The quantity <8§

5 ’>T7p,nj is called chemical potential p;

oG
L= 4.
Hi <3ni ) Tpm; ’ (43)

and for constant 7" and p we have

G = in,,ul (4.4)

Consider a system consisting of n, atoms and surface energy =, with area A in
equilibrium with other phases, like atoms or molecules. Then, in thermodynamical
equilibrium, we can write

Thus, for a surface of a crystal consisting of ng particles A and B, we have

dG = pgdng — padny — ppdng + dvsA =0, (4.6)

where p, is the chemical potential of the crystal with surface. Thus, we obtain for
the surface energy

73»’4 = Nglts — NAUA — NBUB (47)

In thermodynamic equilibrium it holds that the chemical potential of the crystal
equals the chemical potential of the individual species. Thus, we have

GAB = nafia + NBUB - (4.8)

It is important to note that the Gibbs free energy is dependent on the pressure and
temperature. Therefore

Gas(p:T) = napa(p, T) + npun(p, T) . (4.9)
For p, T = 0 the Gibbs free energy of the crystal is simply the free energy of the

crystal. If zero point vibrations are also neglected the chemical potentials is the
internal energy of the crystal Fi(AB)
MAB(p7 T) - Etot(AB) (410)

and thus the surface energy per area is given by

_ Eiot(na,np) — pans — pigns
Vs = 1 .
The change of the entropy and volume are not explicitely included in the calcula-

tions. Typically, they are small and do not affect the results qualitatively at realistic
growth conditions [150,151]. The first part in Eq. (4.11) is solely determined by the

(4.11)
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total energy calculations. The second part, however, depends on the choice of the
chemical potentials. One condition is that the chemical potential for each species
A, B must be smaller than the chemical potential of the corresponding elementary
bulk /molecule as phase. Otherwise the system would be thermodynamically unsta-
ble. In particular, for GaN we have

UGa < [HGa—bulk and N < HN3—molecule - (412)

Combining Egs. (4.12) and (3.5) (defined in Chapter 3) we obtain the range of ther-
modynamically allowed chemical potentials for N and Ga

A]’—I’f S UN — MNgfmolecule S O (413)

and
AHy < piga — ptga—bulk < 0. (4.14)

To relate the formation enthaply AH; and the surface energy where T and p
are essentially non-zero quantities, one needs to consider the corresponding temper-
ature and pressure dependence of the chemical potentials. It can be shown that the
experimentally relevant range of p and T the formation enthalpy changes by less
than 0.05eV [124]. Therefore, the temperature and pressure dependence will be
disregarded.

The surface energy, by definition, is the energy necessary to create two equivalent
surfaces by cleaving the crystal along a certain plane. However, for the GaN (0001)
surface, it is worth noting that we cannot calculate the absolute surface energy since
it is not possible to build up two equivalent surfaces cleaving the GaN crystal along
the {0001} plane. Therefore, what we calculate is the relative surface energy [32].
For all further studies, we have chosen the clean Ga-terminated surface as reference.

Besides, to avoid interaction between the two surfaces of the slab one side of the
slab is saturated with pseudo H atoms of fractional charge with 5/4e~. Doing so,
we passivate the remaining dangling bonds of the N atoms on the back side of the
slab. Thus, the N atom on the back side of the slab has three bonds with Ga atoms
and one bond with pseudo H. Using the above considerations, the surface energy is
expressed as

Yo = Biot(NGa; NN) — fgalica — pnnn — yoeenGa=tem) (0 nx). (4.15)

As discussed above, we limit our calculations to T" = 0, neglecting explicitly entropy
and temperature effects, due to the fact that the entropy of crystals and surfaces is
small compared to the gas phase. Implicitly, however, temperature and pressure are
taken into account by the choice of the chemical potentials of the elementary phases.
To estimate the dependence of ux on the temperature and pressure, let us take the
translational, vibrational, and rotational contributions. The chemical potential of
N is then given by

1 Ve
Q,UN — Eg)%—molecule + §hV + k?BTlll (ZB—%> - kBTanVib - k’BTlrerot s (416)
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Figure 4.4: Chemical potential of a gas of No-molecules as a function of temperature
according to Eq. (4.16) for various pressures. The energy zero is set to the Ny chemical
potential at p = 0,7 = 0. The dotted line represents the formation enthalpy of GaN
multiplied by a factor of two.

where E[? is the total energy of the N, molecule at p = 0 and T = 0, v is the zero
point vibration frequency, Vo = (h?/2rmkpT)*?, kp is the Boltzmann constant.
Zgin and Z,.o are the vibrational and rotational partition functions of the molecule
given by

—hv

e(%BT) 87T2/Ld2kBT
Loy = ————— Lo = ——————
vib and " 5h2

1— e(’zs%)
Here d is the bond length between the N atoms of the Ny molecule. The vibration
frequency v can be calculated using the relation

(4.17)

1 |K
=, (4.18)

v=—
2\l

where K is the force constant and p is the reduced mass. The reduced mass p was
taken from the Ref. [134] and the vibration frequency and the force constant K were
calculated theoretically from the curve Enz™0¢me a5 5 function of the Ny-molecule

bond length (see Table3.7 in Chapter 3). The values used here are:

K =23N/m, v =2363cm ", my = 7a..

In Fig.4.4 we plot the Ny chemical potential as a function of the temperature
(the typical growth temperature for MBE is 900 K and for MOCVD it is 1300 K),
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including the last three terms in Eq. (4.16) for various pressures. This figure shows
how it is possible to extract the N chemical potential for a certain temperature and
pressure. Results reported by Gzregory and Porowski [12] have found that GaN is
stable up to 1200 K at a pressure of 1 atm. Acoording to the Fig. 4.4, at 1 atm we find
that GaN decomposes at ~1140 K, in very good agreement with the experimental
value.

Now we will analyze the surface energy for the bare GaN (0001) surfaces shown
in Figs. 4.1 and 4.3. The optimization of the number of GaN layers and thickness of
the vacuum region have shown that 9-11 layers and 11 A are sufficient?.

In Figs.4.5(a) and (b) we show the results for the relative surface energy of the
clean Ga and N-terminated surfaces, Ga- and N-adatoms at fcc and hcp positions
on the clean Ga-terminated, Ga-adlayer and Ga-bilayer structures. We compare
PBE and LDA in order to verify whether they provide the same ordering (sequence)
of surface energies. Our results for LDA are in excellent agreement with the LDA
results from Refs. [31,36]. This means that the energy difference between two
particular structures, for example, agree within 10 meV/ A2, Also, the energetical
ordering of the structures are exactly the same as in Refs. [31,36].

From Fig.4.5(a), we see that under more Ga-rich conditions the Ga-adatom at
the hep position is the most stable structure. Under extreme Ga-rich conditions
(uy = —1.25eV) a structure consisting of a double layer on the top of the Ga-
terminated surface (contracted Ga-bilayer) is the energetically favorable structure,
in agreement with the theoretical results reported by Northrup et al. [36], who
suggested that this structure might be the one observed experimentally under such
growth conditions [32,135,140].

Under Ga-rich conditions the description using PBE is fully compatible with
the LDA calculations, as we can see from Fig.4.5(b), the sequence of structures is
identical in LDA and PBE. Under N-rich conditions, however, LDA and PBE give
qualitatively different results. While LDA predicts the N-adatom structure (on the
fec site) to be energetically most favorable, PBE predicts the Ga-adatom (on the
hep site) to be energetically preferred.

A closer look at Fig.4.5 shows that the discrepancy between LDA and PBE is
mainly due to the formation enthalpy, which defines the width of the phase dia-
gram (the allowed range of chemical potentials). As has been pointed out the GaN
formation enthalpy in PBE is significantly underestimated (—0.64eV compared to
experimental value of —1.15eV).

This deficiency can be largely corrected if we use the experimental GaN formation
enthalpy (rather than the PBE value). The allowed range extends then into the gray
region in Fig.4.5(b). Applying this shift the LDA results are reproduced. Thus,
if we correctly shift the N-boundary to the experimental formation enthalpy, we
can reproduce the correct ordering. In this sense, our results show that the only
deficiency in PBE is the wrong description of the boundary (i.e. the binding energy

2The convergence of the surface energy with respect to the film thickness depends on how the
inner layers of the film approach the GaN bulk. This is because we are interested in the surface
energy itself and want to remove any contribution due to the bulk (see Eq.4.11). Tests to determine
the optimum number of layers and vacuum region thickness are presented in Appendix A.
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Figure 4.5: Relative surface energy per A2 for bare GaN (0001) surfaces as a function
of the N chemical potential un. (a) using LDA and (b) using PBE. The labels have the
following meaning: clean Ga-term refers to the clean Ga-terminated surface, N-fec(hep)
refers to a structure with a N-adatom on the fec(hep) site of the clean Ga-terminated
surface, Ga-fcc(hep) refers to the a structure with a Ga-adatom on the fec(hep) site of the
clean Ga-terminated surface, Ga-adlayer refers to the contracted Ga-adlayer surface and
Ga-bilayer refers to the contracted Ga-bilayer surface (see Figs.4.1 and 4.3). The energy
zero is set to the clean Ga-terminated GaN surface. The surface area of the (1 x 1) unit
cell is 8.84 A2 for LDA and 9.16 A2 for PBE. The experimental formation enthalpy of GaN
(AH}ZO) is indicated. The shaded region indicates the extrapolation to the experimental
value of the theoretical PBE value of the formation enthalpy.

of the Ny-molecule) under N-rich conditions.

4.3 Electronic properties

4.3.1 Band structure

Having calculated the equilibrium geometry for various bare GaN surfaces, we will
now use these results to calculate the electronic structure of these surfaces. Let
us first focus on the clean Ga-terminated surface (see Fig.4.1(a)). Simple electron
counting arguments show that this surface has one Ga dangling bond in the top
layer, which is partially filled with 7/4 of an electron. The existence of a partially
filled state means that this state gives rise to a metallic surface with the Fermi
energy crossing the surface state. In Figs.4.6(a)-(b) we show calculated surface
band structures.
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Figure 4.6: Band structure of the clean (unreconstructed) GaN (0001) Ga-terminated
surface using (a) LDA (solid line) and PBE with LDA optimized geometry (dotted line).
(b) shows the band structure using PBE calculation where the atomic geometry has been
optimized using PBE. The inset in (a) shows the first surface Brillouin zone. The dashed
lines indicates the position of the Fermi level Er. The shaded region represents the
projected bulk-band structure.

In Fig. 4.6(a) the calculated band structure using LDA and an optimized geome-
try (with respect to the lattice constant) is shown. Fig.4.6(b) shows the equivalent
result but using PBE. We can see that both exchange-correlation potentials give an
almost identical dispersion for the surface state. Also, the position of the surface
state above the top of the valence band of the projected bulk GaN band structure
is the same for both calculations.

The main difference is that the band gap using LDA (1.7¢eV) and PBE (1.4¢V)
differs by 0.3 eV. The difference between LDA and PBE results may have two origins:
i) electronic effects and i) structural effects, since PBE leads typically to slightly
larger bond lengths. To separate the two contributions we performed also a calcu-
lation within PBE but taking the geometry as optimized for LDA. Comparing this
calculation with the fully optimized LDA allows to eliminate structural effects. As
can be seen in Fig. 4.6 (a) the differences are smaller than 0.01eV. We can therefore
conclude that the differences (solid versus dotted line) in the electronic structure
are primarely due to the effect of the exchange-correlation potential on the atomic
structure.

Now we want to analyse the band structure of the clean Ga-terminated, Ga-
adatom, contracted Ga-adlayer and contracted Ga-bilayer surfaces. Figs.4.7(a)-(d)
show the band structure of these surfaces. For the clean Ga-terminated surface, as
we already mentioned, there is one partially occupied surface state in the band gap
due to the Ga dangling bond. This result is in good agreement with what is found in
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Figure 4.7: Band structure of the (a) clean Ga-terminated surface, (b) Ga-adatom, (c)
contracted Ga-adlayer and (d) contracted Ga-bilayer structures. The shaded region shows
the projected GaN bulk band structure. The surface states are the black dotted points.
The dashed line indicates the Fermi level.

Ref. [143]. The Ga-adatom structure has four surface states in the band gap, as we
can see in Fig. 4.7(b). The two empty states are due to the two empty Ga-dangling

bonds at the surface. The two ocuppied states are due to the three back bonds of
the Ga atoms in the first layer.

The contracted Ga-adlayer and Ga-bilayer structures have metallic character, as
we can see in Figs.4.7(c) and (d). The surface states are do due the Ga adlayers.
From these band structures we can see that the metallization of the surface increases
with increasing Ga coverage, as expected.
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4.3.2 Tonization energy, electron affinity and work function

One of the measurable and calculable surface properties are the work function ¢, ion-
ization energy I (or photoelectric threshold) and electron affinity x. Those quantities
are relatively easy to measure and allow to monitor changes in the surface geometry.
However, so far there is no relation between work function and surface structure for
GaN surfaces available. Therefore it is worth to study how these quantities change
with the stoichiometry of the surface.

In the following we use a procedure described in Ref. [152] to calculate the work
function, electron affinity and ionization energy. We start with the definition of
these quantities. The main idea is to combine bulk and slab calculations. In the
bulk calculation, the top of the valence band EPU¥ is fixed relative to the bulk
potential VPulk

The slab calculation determines the bulk potential relative to the vacuum level.
Once the slab is sufficiently thick that both vacuum and bulk regions are well de-
scribed, the electrostatic potential for the central bulk-like layer in the slab V:llsab(bulk)
is identical to the potential in the bulk calculation except by a constant shift (see
Fig.4.8). Using the results of the bulk calculation, which fixes the band energies
relative to the bulk potential, we chose the potential so that the calculated top of
the bulk valence band is at the energy zero.

The ionization energy is the energy difference between the vacuum level and the
valence band maximum, i.e. it is the minimum energy which is necessary to lift
one electron from the highest occupied state to the vacuum level. Based on it, the
ionization energy is calculated as

] = exlf:(:uum - EV(bUIk) - EShift = e\fscuum - Ev(slab) y (419)

where V2™ is the electrostatic potential in the vacuum region, Ey gy is the

energy of the top of the valence band in the bulk, E\ap) is the energy of the top

of the valence band in the slab and Eg = Vs’llsab(bulk region) __y/bulk ig the difference

e els
between the electrostatic potential in the slab in the bulk region and the electrostatic
potential of the bulk. A schematic picture of this procedure for the ionization energy
is shown in Fig. 4.8.

For metals, the energy difference between the vacuum level and the Fermi level
is defined as the work function. The work function of a metal is attributed to the
atomic binding energies and the surface dipole [153]. In the simplest sense, the
surface dipole is a quantum mechanical effect that is attributed to the fact that the
wave function of the electrons extends beyond the positive ion background. This
results in excess negative charge at the surface. Just below this excess negative
charge will be an unbalanced positive charge due to the ion background. The two
charge sheets will form a dipole at the surface. For a semiconductor the same process
may be involved, but the directional bonding at the surface can lead to even larger
effects (surface reconstructions and adsorbate layers, for instance). For example,
filled dangling bond type surface states will contribute with a negative charge at the
surface which is balanced by a positive charge nearby. The work function is defined
as
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Figure 4.8: Averaged electrostatic potential for the clean surface and GaN-bulk parallel
to the surface normal. F\ ) is the top of the valence band in the bulk, Vj2<""™ is the
electrostatic potential in the vacuum region and Fg;¢ is the shift of the top of the valence
band in the slab with respect to the bulk. Eyap) is the calculated top of the valence band

in the slab.
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els

where Er is the Fermi level.
The electron affinity relates the vacuum level to the conduction band minimum
at the surface being calculated as

X =1 — Egap, (4'21)

where Fg,, is the bulk band gap.

A schematic picture showing the quantities defined in Eqgs. (4.19),(4.20) and
(4.21) is shown in Fig.4.9. We calculated the quantities defined above for the clean
Ga- and N-terminated, Ga-adatom, Ga-adlayer (contracted and non-contracted) and
Ga-bilayer (contracted and non-contracted) surfaces. The results are presented in
Table4.2. We can see from our results that all the calculated properties change quite
significantly depending on the stoichiometry of the surface. The main difference
comes when going from the clean N-terminated surface to the clean Ga-terminated
surface. So far, detailed surface investigations regarding surface reconstructions,
termination, stoichiometry, impurities and dopants for the investigated surfaces are
missing. Thus, only a very tentaive comparison is possible. Experimentally, values
for the electron affinity range between 2.1 and 4.1eV. More recent experiments are
in the range of 3.1 — 3.5eV [25,154,155].

Grossner et al. [156] have performed first-principles calculations for the (111)
face of the GaN in cubic phase [156]. Since the [111] direction corresponds to the
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Figure 4.9: The definition of work function ¢, electron affinity x and ionization energy I.
EF is the Fermi energy and Eg,p, is the energy gap. V2™ is the electrostatic potential in
the vacuum, AE. and AFE,, the quasi-particle corrections for the conduction band minimum
and for the valence band maximum [156]. E. is the conduction band minimum, E\ the
valence band maximum, E, the quasi-particle corrected conduction band minimum and
E, the quasi-particle corrected valence band maximum.

[0001] [111]

(a) (b)

Figure 4.10: Schematic picture showing the stacking sequence of the wurtzite and
zincblende GaN structures. a) along [0001] and b) along [111] directions.

{c}-axis in the wurtzite structure parallel to the hexagonal [0001] direction, the
(111) surfaces could provide a direct comparison with our results. However, we
should keep in mind that our clean Ga-terminated surface should be compared with
their clean Ga-terminated surface, our non contracted Ga-adlayer structure should
be compared with their structure with 1 ML Ga, and our non contracted Ga-bilayer
structure should be compared with their structure with 2 ML Ga (see Table4.2).

Also, while we study the clean N-terminated surface, they have one layer of
N adsorbed on the clean Ga-terminated surface, which leads to a slightly different
surface, because wurtzite and zincblende structures have different stacking, as shown
in Fig.4.10. Thus, a direct comparison between their N terminated structure and
ours is not straightforward.
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Table 4.2: Calculated and experimental work function ¢, electron affinity y and ionization
energy I for the bare GaN (0001) surfaces shown in Figs. 4.2(b)-(e) and 4.3(b)-(c). The
values in brackets are calculated using the quasi-particle corrections for the valence band
maximum (-0.74eV) and conduction band minimum (0.44eV) from Ref. [156]. All values
are given in eV.

Ref. ‘ Surface | x(eV) | ¢(eV) | I(eV)
theory

this work (0001) clean N-terminated 7.82(7.38) 9.06 9.52(10.26)
this work (0001) clean Ga-terminated 4.47(4.03) 4.42 6.17(6.91)
this work (0001) Ga-adatom hcp 4.17(3.73) 4.20 5.87(6.61)
this work| (0001) Ga-adlayer(non-contracted) | 4.67 (4.23) 5.31 6.37(7.11)
this work| (0001) Ga-adlayer(contracted) | 3.20(2.76) 3.40 4.72 (5.46)
this work| (0001) Ga-bilayer(non-contracted) | 3.97 (3.53) 4.80 5.67(6.41)
this work|  (0001) Ga-bilayer(contracted) | 2.42(1.98) 3.10 4.12 (4.86)
[156] (111) clean N-terminated 4.64 7.74
[156] (111) clean Ga-terminated 2.49 5.59
[156] (111) with 1 ML Ga 1.79 4.89
[156] (111) with 2 ML Ga 2.02 5.12
[156] (111) with 3 ML Ga 1.78 4.88
[157] (0001) clean 4.5

exp.

[155] (0001) n-type 3.50£0.10 | 4.30£0.10]  6.90
[155] (0001) p-type 3.5040.10| 4.30£0.10|  6.90
[158] n-type 4.10

[158] intrinsic 2.10

[156] 6.80
[154] 3.10+0.20

[159] n-type 3.88

[160] Ga-face

[161] 4.30£0.15

[25] 3.2

[162) Ga-bulk 4.20

It is expected that as the Ga coverage increases, there is a metallization of the
surface: the ionization energy should converge to the work function of the elementary
phase of bulk Ga (which is metallic). According to Table4.2 we do not find a clear
trend as the number of Ga atoms (or Ga coverage) increases at the surface. The
experimental value of the Ga metal work function is 4.2 eV citeFomenko1981 and
our results show a better agreement for the Ga-adatom structure work function.

However we should keep in mind that the melting point of Ga is 300 K and thus
the additional Ga layers have a liquid-like behavior on the top of the Ga-terminated
surface. Thus, a comparison of the calculated quantity and the experimental value
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Figure 4.11: Calculated ionization energy as a function of the Ga coverage for the bare
GaN (0001) surfaces shown in Figs.4.1, 4.2, and 4.3. The dotted line is a guide for the
eyes. The crossed indicate the thermodynamically not stable structures Ga-adlayer and
Ga-bilayer and the dashed line the work function for Ga bulk.

for the work function of Ga bulk may not be direct. In fact, it is well know that

the non contracted Ga-adlayer and Ga-bilayer structures are thermodynamically
unstable [36].

This might explain the oscilatory behavior of the ionization energy and electron
affinity as the number of Ga atoms increases, which is similar to the one found in Ref.
[156]. Indeed, if we do not consider the thermodynamically not stable non-contracted
Ga-adlayer and Ga-bilayer structures, we can see a clear trend: with increasing Ga
coveragee the ionization energy and work function decrease monotonically, as shown
in Fig.4.11.

Although we can find a qualitative trend for the calculated properties, we should
mention that the main problem in determining the ionization energy and electron
affinity is that DFT-LDA/GGA does not provide the correct band gap. Grossner
et al. [156] included quasi-particle corrections for the top of the valence band AF,
(for the ionization energy) and the minimum of the conduction band AFE, (for the
electron affinity) to correct the gap. Our DFT-LDA band gap is 1.7eV. We use this
value together with the quasi-particle corrections given in Ref. [156]. This give us a
band gap equal to 2.9eV, which is closer to the experimental value (3.4eV). With
those values we re-calculated the properties listed in Table4.2 (values in brackets).
Generally that correction brings our results closer to the results of Ref. [156]. How-
ever, the agreement is not complete, which is not expected, since the structures are
not completely equivalent.
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4.4 Summary

With the results presented in this chapter we showed that LDA and PBE give very
similar results for the atomic relaxations and electronic structure of the surfaces.
We showed that PBE does not provide the same energetical ordering of structures,
but that this is due to the underestimation of the GaN formation enthalpy. If the
formation enthalpy is corrected, the LDA ordering is exactly reproduced. Also, our
results clearly showed that the position of the surfaces states is not affected by the
choice of the exchange-correlation functional. Therefore, LDA is our choice to study
Si adsorption on GaN surfaces, as we will describe in the next chapter.

Concerning the band structure of the bare surfaces, we found a good agreement
between our results and other theoretical results for the clean Ga-terminated surface.
We also found that the surface becomes metallic as the number of Ga layers on the
surface increases.

Concerning the ionization energy, electron affinity and work function, a direct
comparison with experiment is not straightforward. This stems form the difficulty in
determining experimentally the stoichiometry and termination of the surface, which
strongly affect the surface properties. We also argue that the problem in determining
correctly these properties lies on the wrong DFT/LDA-GGA description of the band
gap, although we have shown that the quasi-particle corrections do not really bring
the results close to the experimental values.
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Chapter 5

Si on GalN (0001) surfaces

In this Chapter we will analyze and discuss our results for adsorption of Si on the
GaN (0001) surface. Before the analysis we will discuss some aspects that will be
helpful in order to interpret our results. We first briefly discuss some thermodynamic
aspects of growth modes. Then we discuss the Si incorporation in GaN-bulk. We
also give an overview about

According to the classification of Bauer [163], where thermodynamic equilibrium
is assumed, there are three growth modes. Both lattice strain and surface free
energy help to determine whether a film undergoes layer-by-layer growth followed by
islanding (Stranski-Krastanov) [164], layer-by-layer growth (Frank-Van der Merwe)
[165] or islanding (Volmer-Weber) [166]' Fig.5.1 shows schematically these three
growth modes. We should mention, however that experimentally, the therminology is
often used in a pure phenomenological sense, since growth involves kinetic processes.
Theoretical models of epitaxial growth suggest that the growth model is determined
by the free energy of substrate surface s, the interface free energy i, and the surface
free energy of the heteroepitaxial layer 7¢ (neglecting the strain energy of the film).

e The inequality 75 > 7 + ¢ sets the condition for the epitaxial film to wet the
substrate. In this case Frank-Van der Merwe (FvdM) growth may occur (see
Fig.5.1(a)). The surface will remain flat, as it minimizes the total surface area.
If adatom incorporation occurs either at step edges or kink sites, then layer-
by-layer growth results, as shown in Fig.5.2(b)-(c). Otherwise, if nucleation
does not occur, step-flow growth takes place, as shown in Figs. 5.2(d).

e If the inequality has the opposite sign, i.e.;vs < ¥ + 7, one usually obtains
Volmer-Weber (VW) growth as shown in Fig. 5.1(c). The heteroepitaxial layers
will thus not wet the substrate but form droplets or clusters on the surface.

e The Stranski-Krastanov (SK) growth generally occurs when there is wetting of
the substrate but the overlayer strain is unfavorable. In such a case, layer-by-
layer growth will take place for a few monolayers, followed by island formation
as shown in Fig. 5.1(b).

1A complete description of this subject can be found in Refs. [167,168].

63



64 CHAPTER 5. SI ON GAN (0001) SURFACES

(a) (b) (c)
N >
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Figure 5.1: Schematic picture showing the growth modes a) Frank-van der Merwe (layer-
by-layer mode), b) Stranski-Krastanov (layer-by-layer followed by island formation) and
c¢) Volmer-Weber (island mode).

Uﬂ#\ / /

2347

Figure 5.2: Schematic picture showing (a) multilayer growth, (b) layer-by-layer growth

with high nucleation rate, (c¢) layer-by-layer-growth with low nucleation rate and (d) step-
flow growth.

Although most experimental growth studies are made on high symmetry surfaces,
where growth is dominated by nucleation of adatom clusters, it would seem that the
best way to grow a good crystal is to use a substrate cut along a direction vicinal to
a high symmetry orientation, i.e., a vicinal surface [169]. In this way, by choosing
proper experimental conditions, the crystal will grow through a regular flow of the
steps, avoiding all problems related to random nucleation. A schematic view of
possible multilayer modes is shown in Fig. 5.2(a)-(d).
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5.1 Si doping in GaN-bulk

Si can be incorporated in GaN-bulk at very high concentrations (10*°cm™2) and
behaves as a shallow donor, with binding energy of 30 meV [38]. Before starting
the description of our results for Si adsorbed on GaN surfaces, we will describe
some results for incorporation of Si in GaN-bulk. These results will be useful when
analyzing the concentration of Si at the surface, subsurface and in bulk.

We therefore calculate Si incorporation in GaN-bulk, where Si replaces a Ga
atom (Sig,). Configurations with Si at interstitial positions or at the N site have
been found to be energetically unfavorable [20]. This can be understood considering
that Si has an atomic radius (1.1 A) very similar to Ga (1.26 A). Si on the N site
or interstitially causes a large strain, because Si has a much larger atomic radius
than N (0.75 A) The calculations were performed using a super-cell with 64 atoms
containing 1 defect, i.e., 1 Si atom. A 64 atom supercell has been found to be
sufficiently large to describe an isolated impurity.

To calculate the concentration of substitutional Sig, in GaN-bulk we have to
take into account that the corresponding reaction is not stoichiometric: first a Ga
atom has to be removed (i.e., a Ga vacancy is created) and then a Si is incorporated
on the vacancy site. To be more specific, let us consider the chemical potential of a
vacancy

OG(N 4, N : VEC
Hvacancy = ( AaCB A ) s (51)

where C' is the number of vacancies of type A and G is the Gibbs energy of an ideal
crystal containing the N4 and Np host atoms. At large defect-defect distances (i.e.
C' < N), the interaction between dopants can be neglected. Then the energy to
create C' vacancies is just the number of vacancies times the energy to create one
isolated vacancy. For a substitutional impurity in GaN, the number of Ga or N
sites is 4.4 x 10?2cm™3. In thermodynamic equilibrium the systems are connected
by the condition of constant chemical potential. If a difference between the chemical
potential in two open subsystems exists, then an exchange of particles occurs, which
reduces and eventually eliminates the chemical potential difference. In thermody-
namic equilibrium the chemical potential of the vacancy and of the thermodynamic
reservoir must be identical. Thus, the vacancy concentration is given by

C = Nsitese_EfD/kBT = 4.4 x 10% cm_?’e_EfD/kBT, (5.2)

where kp is the Boltzmann constant, 7" is the temperature. E}D denotes the defect
formation energy and it is given by

EP = AG? + Znu (5.3)

with ¢ running over all chemical species n; with chemical potential u; involved in the
creation of the defect. The number of atoms of species ¢ is positive if one atom is
removed from the host and negative if it is added. In the case of Sig, (denotes one
Si atom replacing substitutionally one Ga atom) we have
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E]]? = AGfD + NGallGa — MNSilbs; - (54)

At p, T =0, AG? becomes

AGD _ Eg?Nfbulk . ES)?Nfbulk<SiGa) ’ (55)

where EGaN-Pulk anq pCaN=bulk(gi. Y are the total energy of the GaN-bulk without
and with a defect. Assuming thermodynamic equilibrium, the N and Ga chemical
potentials are not independent, but related by pagan = pga + pn, where pgan is
the GaN chemical potential. For Si in GaN bulk, the following phases can limit
the solubility: Si can form droplets on the surface or diffuse into the bulk forming
Si/N and/or Si/Ga compounds. All these processes have to be considered, since
the formation of such compounds is not desired. Thus, the Si chemical potential is
imposed to obey the lower bound

psi < [Si—bulk - (5.6)

Other upper bounds may exist since Si may form parasitic phases with N or Ga.
Si/Ga compounds are not known in nature. However, several Si/N compounds are
known. Since SizNy is a very stable compound, we consider also the following bound

3psi +4pun < psisNy - (5.7)

Combining Egs. (5.6) and (5.7), we obtain that the limit under N-rich conditions is

1 .
Hsi — HSi—bulk = gAH?13N4 = —3.32eV, (5.8)
and under Ga-rich conditions
1 SigN 4 GaN
HUsi — USi—bulk — gAHfg 4 — §AHf = —1.66eV. (59)

In Fig.5.3 we plot the Si concentration in GaN bulk as a function of the Si
(usi) and N (un) chemical potentials for typical temperatures of MBE and MOCVD
growth. The concentration increases going from N-poor (Ga-rich) to N-rich condi-
tions if the Si chemical potential is kept constant. The solubility is limited by the
formation of SigN4. The region where the system is unstable against SizNy is marked
by the gray area in Figs.5.3(a)-(b).

The maximum Si concentration which can be incorporated in GaN increases with
temperature. However, with increasing temperature the Ga vacancy concentration
increases and approaches the Si concentration, as shown by Neugebauer et al. [20].
Since the Ga vacancy is an acceptor, it will partially compensate the Si donors. It is
interesting to note that the maximum solubility is achieved under N-poor conditions,
because N-rich conditions promote the formation of SizNy.
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Figure 5.3: Si concentration as a function of the Si (usi) and N (un) chemical potentials
for typical temperatures of (a) MOCVD (1300 K) and (b) MBE (900 K) growth. The solid
lines represent the Si concentration given in log;gem ™. The shaded region shows the
allowed region where the formation of SigNy is thermodynamically stable.

5.2 Si doping on GalN (0001) surfaces

5.2.1 MOCVD/MOVPE growth

Experimentally, depending on the growth conditions (for instance, temperature and
doping concentration) and on the growth techniques, Si doping affects in various
ways the surface morphology, as we will describe in the following. MOCVD studies
performed by Tanaka et al. [41] reported that Si concentrations in the range of
10*%-10¥%cm =3 during MOCVD modify the GaN growth from a step-flow mode to
three-dimensional, suggesting that Si may act as an anti-surfactant. Under certain
experimental conditions it might even lead to the formation of QDs. Such dots are
shown in the Atomic Force Microscopy (AFM) images in Fig.5.4.

In this experiment, a Al;Ga; (N (x =~ 0.15) buffer layer was grown on the Si
face of the AIN/SiC (0001) substrate. The Al,Ga; 4N surface was treated with
tetraethyl-silicon [Si(CoHs)s (TESI)] prior deposition of an amount of GaN equiva-
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Figure 5.4: Atomic Force Microscopy images showing the effect of Si doping on GaN
surfaces. a) GaN growth on the AlyGaj_«N buffer layer (step-flow growth mode), b) QDs
formed doping the Al,Ga;_xN buffer layer with TESi before the growth of GaN and c)
zoom of the QDs shown in b). Such QDs have an average width of 400 A and a height of
60 A. The density of dots is 3 x 10° cm™2. After Tanaka et al. [170].

lent to an approximatelly 10 A thick uniform layer. By adding a small amount of Si
on the Al,Ga; (N surface, the growth mode was changed from step-flow (smooth)
to three-dimensional mode (rough).

In Fig.5.4(a) we see a step-flow growth-mode, for GaN on a Al,Ga;_ N buffer
layer. The growth is smooth, with large terraces. In Fig.5.4(b) we can see the
formation of small dots once Si is used to dope the Al,Ga;_ N buffer layer before
growing the GaN epilayer. Depending on the Si concentration, the surface shows
different degrees of roughness. Once the Si doping concentration exceeds a critical
value of 32nmol (1nmol of TESi corresponds to ~ 0.001 ML), the roughness en-
hances and the spontaneous formation of QDs takes place. The dots of Fig.5.4(b)
and (c) have an average width of 400 A and height of 60 A. The density of dots was
found to vary over the range of 107-10' cm~2 and to depend on the Al, Ga and N
contents, the Si doping and also the temperature.

Studies using MOVPE (which has a larger growth rate than MOCVD, but uses
hydrides as precursors as well) confirm these results [42]. Indeed, MOCVD growth
has shown that Si concentrations above 1 x 10 cm™ induce roughness [43] and
crack formation [44]. However, at low temperature MOCVD growth (=~ 1070 K), Si
adsorption leads to smooth surfaces even for high Si concentrations (3 x 10" cm™3)
[171]. In the latter case, the adsorption of Si appeared to change the surface mobility
of the Ga species, resulting in a larger average terrace length. Munkholm et al. [45]
have also reported that Si has a strong effect on the growth mode. They have
found that at concentrations above 2 x 10Y cm ™ Si segregates to the surface and
changes the growth mode from step-flow to layer-by-layer over a large range of
growth temperatures (890-1220 K).

5.2.2 MBE growth

Si doping on GaN surfaces using MBE growth has been shown to lead to smooth
surfaces. Recent STM measurements done by Lee et al. [39,40] after MBE growth
of GaN (0001) surfaces demonstrated that the incorporation of Si does not affect the
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Figure 5.5: STM images of GaN (0001) surface following 0.5 ML Si exposure. (a) Surface
displaying regions of mixed (2 x 2) and (5 x 5) reconstructions, together with islands of
‘(1 x 1)" structures. (b) High resolution view of ‘(1 x 1)’ island surrounded by (2 x 2)
structure. Images were acquired with sample bias voltages of -2.0 and -2.5 V, respectively,
and are shown with gray-scale ranges of 4.9 and 5.3 A, respectively. (c) Following ~1 ML Si
exposure. Large image diplaying terraces of ‘(1 x 1)’ reconstruction with (4 x 4) structure
seen at the terrace edges. (d) High resolution view of (4 x 4) structure near a terrace
edge. Images were both acquired with a sample bias voltage of +2.0V, and are shown
with gray-scale ranges of 13 and 2.1 A, respectively. After Lee et al. [39)].

smooth surface morphology under Ga-rich conditions. Fig.5.5 shows STM images
of GaN (0001) exposed to ~0.5-1 ML Si.

In this experiment Si exposure was performed on various GaN surface reconstruc-
tions at 570-620 K. At higher temperatures the Si induced reconstructions disappear.
In fact, during growth and under Si exposure, the surface does not show any recon-
structions except ‘(1 x 1)’. If Si is deposited on a Ga-rich (0001) surface displaying
‘(1 x 1) reconstructions, no change in the surface structure is observed by reflec-
tion high-energy electron diffraction (RHEED). Si appears not to have modified the
surface structure. If, alternatively, Si is deposited on an (5 x 5) reconstruction, a
Si-induced (2 x 2) reconstructions results, as shown in Fig. 5.5(a)-(b). However, the
formation of the (2 x 2) reconstruction is quite narrow. With increasing substrate
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temperature the (2 x 2) disappears after it has formed, implying that the (2 x 2)
structure is metastable.

Auger experiments estimate the Si coverage in Fig. 5.5(a) to be ~ 0.5 ML. The
central part of the sample consists of (2x2)/(5x5) reconstructions. This is probably
due to incomplete Si coverage, where the (5 x 5) reconstruction is without Si on it,
whereas the (2 x 2) is the changed reconstruction due to Si adsorption. The ‘(1 x 1)’
reconstruction seems not to react with the Si atoms.

When additional ~ 0.5 ML of Si is deposited on the surface, small domains of
well-ordered (2 x 2) reconstruction are seen on the surface, as well as numerous small
islands with ‘(1 x 1)’ reconstructions, as shown in Fig. 5.5(c). Relative to the initial
Si exposure, the density of ‘(1 x 1)’ domains increases.

Upon continuing the Si exposure up to ~ 1ML at 570K, the (2 x 2) pattern
becomes weak and a (4 x 4) pattern appears. In addition, the featureless ‘(1 x 1)’
region is dominant and the (4 x 4) region is seen only near step edges. This feature
is shown in Fig.5.5(d). With increasing annealing temperature, the (4 x 4) region
disappears and at room temperature only the ‘(1 x 1)’ reconstruction is seen. Auger
experiments indicate that the whole surface is covered by ~2 ML of Ga atoms.

In view of such an amount of experimental data, but no clear conclusion on what
is the rule of Si on GaN surfaces, we performed density-functional theory calculations
of Si adsorption on GaN (0001) surfaces. As we do not have information about the
stoichiometry of the surface, we study various Si coverages Og; and consider different
adsorption sites (on the top layers and at subsurface sites).

5.3 Adsorption of Si at GaN (0001)

5.3.1 Si-adatom on Ga/N-terminated surfaces

For the sake of computational effort, we restricted our calculations to (1 x 1), (2 x 2)
and (v/3 x v/3) surface unit cells. To study the adsorption of Si at GaN (0001) sur-
faces we first deposited Si adatoms on the clean Ga- and N-terminated surfaces. The
procedure is done as follows: Si atoms have been placed on the fec, hep and ontop
positions on the Ga- and N-terminated surfaces, as shown in Fig. 5.6. Considering a
(2 x 2) unit cell, the Si coverage thus can assume the values Og; = 1/4,1/2 and 3/4
ML. For ©g; = 1 ML we use an (1 x 1) unit cell. For all reconstructions the atoms of
the two top-layers of the slab are allowed to relax in addition to the adatoms. The
relaxation of additional sublayers was found not be negligible.

In order to determine the stability of the different configurations we use the
same procedure as in Chapter 4, Sec.4.2. We calculate the relative surface energy
as a function of the chemical potentials of the involved atomic species, Ga and N.
However, now we have an additional variable, the Si chemical potential. Thus, the
relative surface energy as a function of the N and Si chemical potentials is written
as
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Vs (1in, f151) = Brot (Nca, N, i) — INTIN — fiGanca — Hsinsi — Vo " ™) (nga, ny) |

(5.10)
where Fio(nga, nn, nsi) is the total energy of the slab used to model the surface,
1o is the atomic chemical potential of each species, n, is the number of atoms of
each species a, and 7™ @) 4 the surface energy of the clean Ga-terminated

surface, used as the reference energy.

Surface energy

In Fig. 5.7 we plot the relative surface energy as a function of the N chemical po-
tential. The Si chemical potential is set to Si-rich conditions (us; = pgi—puk). From
Fig.5.7 we can see that all structures with Si on the clean Ga-terminated surface
have a higher surface energy than the clean Ga-terminated surface, which means that
they are energetically unstable against the formation of the clean Ga-terminated sur-
face. This is found for all Si coverages, regardless of the adsorption site. The only
exception is the hollow site for small coverages (©g = 1/4), which is energetically
more favorable than the clean Ga-terminated surface.

For the N-terminated surface we found that adorption on the ontop site is ener-
getically unfavorable, regardless of the Si coverage. The hollow hcp and fcc sites are
degenerate in energy within the estimated accuracy and become more favorable as
the Si coverage increases.

Based on the results of Fig. 5.7 we can see that Si strongly prefers the adsorption
on N-terminated surfaces rather than on the Ga-terminated surface. Besides, Si
prefers to maximize the formation of Si-N bonds. This can be seen noticing that
the three-fold coordinated hollow site is preferred rather than the singly coordinated
ontop site.

Relaxations

In order to understand why adsorbing Si on the Ga-terminated surface destabilizes
the surface while adsorption of Si on the N-terminated surface stabilizes it for high
Si coverages, we analyze in the following the bond lengths of Si-N and of Si-Ga as
a function of the coverage for all adsorption sites fce, hep and ontop. As reference
we model the strength of single Si-Ga and Si-N bonds, by calculating the Si-Ga and
Si-N dimers. The calculations have been performed using a large cubic supercell of
20 Bohr to avoid the interaction of the dimer with another dimer of a neighboring
cell.

The optimized bond lengths of these dimers are shown in Table5.1. We can
see that there is no significant difference between the bond length of a Si-Ga dimer
(2.3 A) and the bond lengths of a Si-Ga when Si is adsorbed on the ontop site of the
Ga-terminated surface (maximum difference is smaller than 0.1 A). For the fec and
hep sites, the difference between the dimer bond length and the Si-Ga bond length
on the surface lies in the range 0.1 — 0.3A. The general tendency is that the Si-Ga
bond lengths tend to increase when the coverage increases.
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(a) clean Ga-term (b) clean N-term

(d) adatom-ontop

(e) adatom-fcc (f) adatom-hep

d f d i
Figure 5.6: (a) Side view of the clean Ga-terminated and (b) N-terminated (0001) GaN
surfaces. (c) Top view of the (1 x 1) and (2 x 2) unit cells of the clean GaN (0001) surface,
indicating the highest simmetry adsorption sites fee, hep and ontop. (d) Side view of the

Si-ontop, (e) Si-fcc and (f) Si-hep structures. d is the bond length between the Si-adatom
and the Ga atoms in the first plane. Also, the atoms in the first plane can be N.

For the adsorption on the N-terminated surface, we found that there is no signif-
icant difference between the Si-N dimer bond length and the Si-N bond lengths on
the surface the ontop position (less than 0.1 A) for 1/4 < Og; = 3/4 ML. However,
for Og; = 1ML the difference is slightly larger (0.3 A) For the hollow sites, the
tendence is that the bond length increases as the coverage increases. In particular,
for a full adsorbed monolayer, the bond length is 0.4 A larger than the bond length
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Figure 5.7: Relative surface energy per A? for Si adsorbed on the clean Ga- and N-
terminated GaN (0001) surface for a) ©g; = 1/4, b) Ogi = 1/2, ¢) Og; = 3/4 and d)
O©g; = 1 ML. Si-rich conditions (usi = psi—buik) are assumed. Here LDA was employed.

of the dimer.

Besides, as the coordination of Si with the N atoms in the first layer increases,
the bond length tends to the bond length of a Si-N bond in SizN,-bulk (1.74 A) for
Ogi = 3/4 ML. We can understand it by noting that in Si3N-bulk Si is tetrahedrally
coordinated with N (see Fig.3.7). Thus the 3 Si atoms at the surface are arranged
in a similar tetrahedral configuration as in SizNy-bulk, except that on the surface
the Si atoms are only three-fold coordinated. For ©g; = 1 ML, however, the bond
length is a bit larger (O.SA for the hollow sites and 0.5 A for the ontop site).
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Table 5.1: Bond lengths between the Si-adatoms and the substrate atoms (see Fig. 5.6) .
dsi_N for adsorption on the N-terminated and ds;_q, for adsorption on the Ga-terminated
surface. Coverages in the range 1/4 < Og; < 1ML were considered. Additionally, the bond
length for the Si-N and Si-Ga dimers are presented.

| dsi—x (A) [ dsi—ca (A)
Og; (ML)‘ hcp‘ fec ‘ ontop‘ dimerH hcp‘ fec ‘ ontop‘ dimer
1.58 2.3
1/4 1.68| 1.68 1.60 240 2.48| 2.30
2/4 1.70) 1.77| 1.65 2.46| 2.46| 2.31
3/4 1.76| 1.75 1.64 2.02| 2.52 2.35
4/4 2.01| 2.02 1.86 2.54| 2.58| 2.37

Adsorption energy

The adsorption energy per adatom FE,4 of an adatom on a clean surface is written
as

E g = Esutrf—i—adatom _ Esutrf o Eta(iatom (5 11)
a [} [} o : :
where Efurtradatom jq the total energy of the surface with the adsorbed atoms, E3uf

is the total energy of the surface without the adatom (clean surface) and E2datom jg

the total energy of the adatom, i.e., of the free atom. For ease of viewing, Eq. (5.11)
is referred with respect to the cohesive energy of Si-bulk. Therefore Eq. (5.11) is
written as

ref __ rosurf+adatom surf adatom Si—bulk
Ead - Etot - Etot - Etot - Ecoh )

(5.12)

ulk a5 the reference energy.

where E' means that we have taken E5 "

In Fig.5.8 we plot the adsorption energy of Si on the Ga- and N-terminated
surfaces as a function of the coverage. Here we set the zero of energy to the cohesive
energy of the bulk phase of Si-bulk. If the adsorption energy lies above the zero
of energy, then the adsorption on a specific site is favored, otherwise Si droplets
may be formed. As we can see from Fig.5.8(b), the adsorption energy of Si on
the N-terminated surface is very large. This can be understood noticing that the
experimental binding energy of a Si-N molecule is rather large (-4.8 V) [134]. As the
clean N-terminated surface has three dangling bonds, once one Si atom is adsorbed
on this surface, it will form bonds with the N atoms on the surface, leading to a
gain of energy of approximately 4.8 eV per bond.

However, clean N-terminated surfaces are found to be thermodynamically un-
stable [136] and it might be difficult to prepare a N-terminated surface in order
to adsorb Si on it. Adsorption on the hollow (fecc,hep) site is preferred instead of
adsorption on the ontop site. We note that the adsorption energy for the ontop
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Figure 5.8: Adsorption energy calculated according to Eq. (5.12) of Si on the (a) Ga-
terminated and (b) N-terminated GaN (0001) surface for 1/4 < ©g; < 1ML for the fec,
hep and ontop sites. The zero of energy is set to the cohesive energy of Si-bulk.

site is approximately the same for all coverages, while adsorption on the hollow site
decreases with increasing Si-coverage.

Adsorption of Si on the Ga-terminated surfaces leads to a relatively small energy
gain compared to the energy gain of Si on the N-terminated surfaces and is favored
only for ©g; = 1/4 ML at the hollow site.

Density of states

In order to have insight on the electronic structure (covalent/metallic character) we
have calculated the total density of states (DOS) for the N-and Ga-terminated sur-
faces as a function of the Si coverage for the (2 x 2) and (1 x 1) reconstructions. The
total density of states describes how many electrons are located in an infinitesimal
region de around a given energy €. In practice it is calculated from the Kohn-Sham
eigenvalues ¢; x from the weighted sum

g(e) = w, Z fle—éix). (5.13)

Here f is a broadening function necessary because the eigenvalues are discrete and
wy, is the weight associated with each k point with } 7, wy, = 1. We have used
Gaussian functions as broadening functions

1 (efei’k)Q
fle—ex) = e 22 | (5.14)
2mo

where 0 = 0.1eV.
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Figure 5.9: Total density of states for Si-adsorbed on the hcp site of a (a)-(d) Ga-
terminated GaN (0001) surface and (e-h) N-terminated GaN (0001) surface. Silicon cov-
erages in the range 1/4 < ©g; < 1 ML were considered. The dashed vertical line indicates
the Fermi level. The zero of energy is set to the top the valence band of GaN-bulk. Here
LDA was employed.

The total density of states of Si adsorbed on the hollow of the clean Ga- and
N-terminated surfaces is shown in Figs.5.9(a)-(d) and 5.9(e)-(h), respectively. Si
coverages in the range 1/4 < Og; < 1 ML were considered. In the case of Si adsorbed
on Ga-terminated surfaces, we can see that the Fermi level almost does not change
with the coverage, and the surfaces have metallic character.

On the other hand, for Si-adsorbed on the N-terminated surfaces the surface
changes from a metallic behavior, with states inside the band gap, for Og = 1/4 ML
(Fig.5.9(e)) to an almost semiconducting character for ©g; = 1 ML (Fig.5.9(h)).
The Fermi level for Og; = 1ML in Fig.5.9(h) is almost pinned at the top of the
valence band.
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Figure 5.10: Top view of the mixed (2 x 2) surfaces. The starting point to obtain the

a®

mixed (2 x 2) structures is the clean Ga-terminated surface shown in (a). In (b)-(e) atoms
on the first layer are systematically replaced by Si atoms, which leads to surfaces with
coverages 15i/3Ga (b), 2Ga/2Si (c), 35i/1Ga (d), 4S5i+0Ga (e) in the first layer. In (f)-(i)
structures with adatoms on the mixed surfaces are shown. (f) Ga-adatom on 3Si/1Ga, (g)
Ga-adatom on 3Ga/18Si, (h) Si-adatom on 3Ga/1Si and (i) Si-adatom on 3Si/1Ga. White
balls are Si atoms, big grey balls Ga atoms and small grey balls N atoms.

5.3.2 Mixed surfaces

Si/Ga mixed surfaces

During the STM experiments described in Sec. 5.2.2, a (2 x 2) reconstruction is found
as ~ 0.5 — 1 ML Si is adsorbed on the clean surface. Therefore, we systematically
studied structures with (2 x 2) periodicity, containing Si and Ga atoms in the first
layer. As the observed (2 x 2) structure was found to be semiconducting. We also
studied structures that obey the electron counting rule (ECR) 2.

It is worth noting, however, that Si and Ga atoms have very similar electroneg-
ativity. Therefore, in this case, the ECR should be taken with restriction.

At a first step, we studied structures that contain Ga and N atoms together
with Si atoms in the first layer. For such a study we replace the Ga atoms in the
outermost layer, as shown in Fig.5.10(a) by Si atoms in the (2 x 2) unit cell, as
shown in Fig.5.10(b)-(e). Doing so, we obtain surfaces with Ga coverage in the
range 0 < Og, < 1ML and Si coverage in the range 0 < Og < 1 ML.

In addition, we study structures with Ga and Si adatoms on the mixed structures
containing Si and Ga in the first layer, as shown in Fig. 5.10(f)-(i). Doing so, the Si

2It is widely accepted that the surfaces of polar III-V semiconductors should reconstruct such
that all the dangling bonds on the electropositive surface atoms (III) are unoccupied and all
those on the electronegative atoms (V) are doubly occupied, with the resulting surface band gap
similar to that of the bulk. This guiding principle is usually referred as the electron counting rule.
The most prominent application of the electron counting rule has been to narrow the possible
structural models for the many reconstructions observed. It has been shown that it works well
for the conventional ITI-V materials, but it is insufficient to explain surface stability in the case of
clean GaN surfaces (see for example Ref. [147]).
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(a) Si-ad on 1Si+3Ga (b) Ga-ad on 3Ga+18Si + Si-sub
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Figure 5.11: Schematic pictures showing how the energetics of the surfaces changes de-

pending on the position of the Si atoms for (2 x 2) reconstructions. (a) Si-adatom on a
surface with 3 Ga and 1 Si atoms in the first layer, and (b) Ga-adatom on a surface with 3
Ga and 1 Si atoms plus 1 Si in the third layer. The energy difference per unit cell between
the two structures is also indicated.

coverage is in the range 1/4 < Og; < 1 ML.

Si/Ga mixed surfaces with Si-subsurface

We will now relax the condition of Si staying at the surface layers, and allow incorpo-
ration at subsurface sites. We study Ga terminated surfaces, with Si substitutionally
incorporated in the first and third layers. As a first set of structures we considered
a Si adatom on a Ga-terminated surface where 0 or 1 of the Ga atoms in the Ga
surface layer have been replaced by Si atoms. The top view of these structures is the
same as shown in Figs. 5.10(b)-(i). The only difference is that the structures contain
additionaly Si atoms in the third layer. One example of such structure is shown in
Fig.5.11(b).

In Fig. 5.12 we show the relative surface energy of the thermodynamically stable
(2 x 2) structures we have studied. The (2 x 2) include structures where Si resides at
the surface and at subsurface sites. Under N-rich conditions a full monolayer of Si on
the hollow site of a N-terminated surface is found to be energetically favorable. This
is expected, as we have seen from the last section, since Si prefers to form bonds with
N atoms rather than with Ga atoms. Going to intermediate Ga-rich conditions, we
find that the structure with the lowest energy consists of a configuration where the
Ga-adatom is replaced by a Si-adatom and a Ga atom in the first layer is substituted
by a Si atom (Og; = 1/2 ML). Under this condition, the structure is 1.25e¢V /(2 x 2)
lower in energy than the original (2 x 2) adatom structure, as schematically shown
in Fig.5.11(a) and (b). Its low energy and topology makes this structure an ideal
candidate to explain the (2 x 2) Si-induced structure observed in STM images (see
Fig.5.5)(a)-(b). Finally under extreme Ga-rich conditions a (2 x 2) structure with
a Si-adatom on a surface with termination consisting of 3 Si atoms plus 1 Ga atom
is found to be stable. As we will discuss later, none of these structures are found to
be energetically stable against other structures with subsurface incorporation.
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Figure 5.12: Relative surface energy of the (2 x 2) mixed surfaces shown in Fig.5.10. Si-

rich conditions are assumed. The energy zero was set to the clean Ga-terminated surface
(dotted line).

Ga-bilayer with Si-subsurface

Concerning structures with Si residing at subsurface sites, we additionally studied
Ga-bilayers on the top of Ga-terminated surfaces with Si in the third and fifth layers.
This study is motivated considering that Auger experiments [39] done at the surface
shown in Fig. 5.5 (¢) have shown that this structure contains 2-3 ML of Ga atoms on
the top layers. From a topological point of view, this structure is equivalent to the
observed clean contracted Ga-bilayer structure [32,135,140]. In analogy to the clean
contracted Ga-bilayer ‘(1 x 1)’ surface this structure is also denoted by ‘(1 x 1)’.

Therefore, we studied Ga-bilayer structures containing between 1/3 and 1 ML of
Si at subsurface sites, using a (\/§ X \/§) unit cell as described in Sec.4.1. Under
Si-rich/Ga-rich conditions, we find an energetically very favorable structure consist-
ing of a double layer of Ga on a Ga-terminated surface with Og = 1/3ML (see
Fig. 5.13(b)) to be energetically favorable. This structure is 1.15eV/(v/3 x v/3) unit
cell lower in energy than the clean contracted Ga-bilayer shown in Fig.5.13(a).

It is worth mentioning that incorporation of Si at N sites, Si in the fifth layer or
Si coverage higher than 1/3 ML were found to be energetically unfavorable.

5.3.3 Construction of a surface phase diagram

In the previous analysis we have plotted the relative surface energy for various
structures as a function of the N/Ga and Si chemical potentials. Here we want to
combine all the results we have obtained in the last sections. This includes all of the
(1x 1), (2x2) and (v/3 x v/3) structures described in the last sections. The results
we have obtained in two dimensional plots, can be summarized by building up a
three dimensional surface diagram ~(pun, fisi), i-e., vs(un) for us; fixed and ~,(us;)
for pun fixed. In this surface diagram, the surface energy is plotted as a function of
the N and Si chemical potentials. The construction of such a phase diagram allows
us to run over various possible values of the chemical potentials and compare our
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Figure 5.13: Atomic geometries of the (a) Ga-bilayer structure and (b) Ga-bilayer struc-
ture with Si in the third layer. The energy difference per unit cell between the two
structures is also indicated (-1.15eV/(v/3 x v/3)).

results with experiment (see for example Ref. [146,172]).

Before we discuss the surface diagram, we show the relative surface energy as a
function of the Si chemical potential for the most stable structures we have found.
This is shown in Figs.5.14(a), where N-rich conditions are assumed and (b), where
Ga-rich conditions are assumed. The corresponding structures are shown in Fig. 5.15.

Let us first discuss Fig. 5.14(a), where N-rich conditions are assumed. We can
see that under Si-rich conditions, a (1 x 1) N-terminated structure with Si in the
second layer is found to be thermodynamically stable. This structure is shown in
Fig.5.15(a).

Under Si-rich /N-rich conditions, a structure consisting of a full monolayer of Si on
a N-terminated surface and 1 ML of Si in the third layer is found to be energetically
stable. This structure is shown in Fig.5.15(f). Going to less Si-rich conditions,
structures without Si are found to be energetically favorable. We found the N-
adatom at the fcc site on the clean Ga-terminated surface to be the most stable
surface (see Fig. 5.15(e)).

Analyzing the behavior under Ga-rich/Si-rich conditions (Fig.5.14(b)) a con-
tracted Ga-bilayer containing 1/3 ML of Si residing in the third layer is found to be
favored. This structure is sketched in Fig. 5.15(c). Under less Si-rich conditions, the
contracted Ga-bilayer structure is found to be energetically favorable, which means
that under these conditions, incorporation of Si is not favored.

Now we want to summarize all these results in one phase diagram. For ease of
viewing, we build up a two dimensional picture, where the relative surface energy is
projected on a plane whose axes are the N(uy) and Si (ug;) chemical potentials. The
range of the chemical potentials obeys the same boundaries as explained in Sec. 4.2.

Fig. 5.16 shows the surface diagram with the energetically most stable structures
among all structures with (1 x 1), (2 x 2), (v/3 x v/3) periodicity discussed in the
last sections. The shaded area shows the region where the structures are unstable
against the formation of SigNy.
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structures are shown in Fig. 5.15.
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Figure 5.15: Atomic geometries of the thermodynamically stable structures. (

a) N-
terminated with Si in the second layer, (b) contracted Ga-bilayer, (c) contracted Ga-bilayer
with Si at subsurface site in the third layer, (d) Ga-adatom at the hep site on the clean
Ga-terminated, (e) N-adatom at the fcc site on the Ga-terminated surface and (f) 1 ML
of Si on the N-terminated surface with 1 ML of Si in the third layer. White balls are Si
atoms, big grey balls are Ga atoms and small grey balls are N atoms
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Figure 5.16: Phase diagram showing the energetically stable structures determined from
first-principles calculations as function of both Si (psi) and N (un) chemical potentials.
The shaded area shows the region where all structures are unstable against the formation
of SizsNy. The atomic geometry of these structures is shown in Fig. 5.15.

5.3.4 Discussions and consequences for growth

Now we want to use the surface phase diagram of Fig.5.16 to compare our results
with the experimental data in order to identify the mechanisms of Si adsorbed on
the GaN (0001) surfaces.

Under more N-rich/Si-rich conditions the activation barrier to form SizN, is
expected to be rather low. Thus SizNy islands/precipitates may be formed on the
surface, since SizNy is well known to chemically passivate GaN surfaces and blocking
growth [173]. Although all the structures we found are unstable against the forma-
tion of SigNy, the structures we have found, with a large number of Si-N bonds,
might be considered as precursor states for SizN, formation. Thus, the presence of
Si precipitates leads to three-dimensional growth, as observed in MOCVD growth
(see Fig.5.4).

On the other hand, under more Ga-rich conditions we observe a fundamentally
different behavior, where Si prefers subsurface configurations rather than on-surface
sites. Surface segregation of Si does not occur and Si can be easily incorporated
in GaN-bulk. Adsorbing 1/4 — 1/2 ML of Si on the clean (5 x 5) surface (we use
the model structures shown in Fig.5.17(a) changes the reconstruction to (2 x 2)
(Fig.5.17(e)) This would lead to the a metastable phase, which we identify as being
the (2 x 2) surface shown Fig. 5.17(b).

With increasing Si coverage (1/4 — 1/2ML of Si) more and more excess Ga
atoms are created (because first a Ga vacancy should be created in order that Si
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Figure 5.17: Comparison between our calculated structures using density-functional the-
ory and the STM experiment of Ref. [39]. (a) Ga-adatom and N-adatom structures used
to model the clean (5 x 5) reconstruction shown in (d). (b) Once 1/4 — 1/2ML of Si
is adsorbed on the clean surface, the reconstruction changes to the metastable (2 x 2)
reconstruction shown in (e), which we found to be a Ga-adatom on a surface with 3 Ga
and 1 Si atoms plus 1 Si in the third layer. (c¢) With additional 1/4 — 1/2 ML of Si, the
surface is almost completely covered by the ‘(1 x 1)’ surface shown in (f) which we explain
as being a contracted Ga-bilayer with Si at subsurface site in the third layer.

is incorporated in the Ga site) and the area covered by the Ga-bilayer will increase
until eventually it covers the entire surface. Under these conditions, the Si-induced
surfaces are essentially free of Si in the top surface layer and topologically very similar
to the bare GaN surfaces, demonstrating efficient incorporation of Si (Fig.5.17(e)).
This is consistent with our results that predict the formation of a Ga-bilayer on the
top of a Ga-terminated surface with Si being incorporated at subsurface sites (third
layer), as shown in Fig.5.17(c).

Therefore, from the topological point of view, no change in the growth mode
occurs and the surface presents the same surface termination as the clean contracted
bilayer surface observed under Ga-rich conditions. Thus, we can conclude that Ga-
rich conditions are the optimum regime to incorporate Si in GaN, as observed in
MBE growth.
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5.4 Polarity inversion of GalN (0001) surfaces

A serious problem when going to high Mg doping levels is an instability of the
GaN (0001) surface with respect to polarity inversion [27,174]. Polarity inversion
means that the starting sequence in the GaN double layer changes, i.e., the (0001)
surface converts into a (0001) surface. From a crystallographic point of view, such
a structure is regarded to be highly unstable since polarity inversion cannot be
achieved by conserving the local tetrahedral environment of the atoms but only by
local bond deformations. Thus, according to common wisdom a transformation of a
(0001) into (0001) was considered to be impossible.

Theoretical models have found the formation of 1 ML of Mg-terminated (0001)
surface atop an IDB to be more favorable than a Mg-terminated (0001) surface [27].
A consequence for growth is that the density of dislocations in the film increases
dramatically (of the order of 10 times) as the polarity changes, sinced N-terminated
surfaces are found to have poor morphology. It also results in a poor growth mor-
phology. Since this mechanism limits the achievable doping efficiency it is crucial to
understand its origin.

In this respect it is interesting to point out that one of the stable surface struc-
tures (Fig.5.15(a)) we identified in the last chapter can be regarded as precursor
for polarity inversion. In this structure the N atoms in the top surface layer have
a single dangling bond pointing along (0001) and three bulk bonds pointing along
(0001), i.e., equivalent to the configuration that N atoms have in GaN (0001).

The large stability of such a structure, as indicated by the large area in which this
structure is stable (see Fig. 5.16) is a surprising result, since GaN structures with N-
termination are highly unstable (see Sec.4.2). Besides, Si is three-fold coordinated
with N and forms only a very weak bond with the Ga-atom in the third layer,
which would make such structure unstable against structures where Si is four-fold
coordinated with N atoms (because Si-N bonds are much stronger than Si-Ga bonds).

In order to understand why and under what conditions polarity inversion takes
place, we will analyze in the following the structural and electronic properties of
relevant structures containing 1 ML of Si.

It is worth mentioning that recent experiments have found that inversion polarity
of GaN surfaces can be caused by adsorption of Si [175] for concentrations above
7 x 102%cm™3. Specifically, the GaN films were grown using MBE, which commonly
leads to GaN with (0001) polarity. As Si is adsorbed on the (0001) surface, the
polarity is observed to change to (0001). The polarity inversion is observed in the
change of RHEED patterns. However, RHEED provides only average information
about the surface polarity. On the macroscopic scale there are many Ga-polar (N-
polar) domains in the dominant N-polar (Ga-polar) sample. Therefore, a direct
comparison with our theoretical results is at this stage not possible and further
experimental studies are called for.
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(a) Ga-hcp on Si-term (b) Si-hcp on Ga-term (c) clean Ga-term

(d) Ga-term + Si-3rd layer (e) Si-hcp on N-term  (f) N-hcp on Si-term
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Figure 5.18: Atomic geometries of the energetically most stable structures with ©g; =
IML. Each surface has a dangling bond with 7/4e~. All structures have a (1 x 1) surface
unit cell. (a) Ga-adlayer (hcp site) on the Si-terminated surface, (b) Si-adlayer (ontop site)
on the Ga-terminated surface, (c) clean Ga-terminated surface, (d) Ga-terminated surface
with Si in the third layer, (e) Si-adlayer ( hcp site) on the N-terminated surface and (f)
N-adlayer (hcp site) on the Si-terminated surface. The big grey balls are Ga atoms, the
small grey balls are N atoms and the white balls are Si atoms.

5.4.1 Surface energy

The structures we studied are schematically represented in Figs.5.18 (a)-(f). For
the following discussion we will assume that the surfaces can always reach the ther-
modynamic equilibrium configuration, i.e., kinetic effects (barriers for exchanging
atoms) are not considered. In Fig.5.19 we show the relative energy of such struc-
tures assuming Si-rich conditions, i.e., us; = psi—puk. From Fig. 5.19 we can see that
the exchange of Si atoms in the first layer with N or Ga atoms in the second layer
is energetically favorable.

For example, a Ga monolayer on the hcp site of a Si-terminated surface, shown
in Fig.5.18(a) is energetically more favorable than a Si monolayer on the hcp of a
Ga-terminated surface, shown in Fig. 5.18(b). Also, a Si monolayer adsorbed on the
hep on a N-terminated surface, shown in Fig. 5.18 (e) is energetically more favorable
than and a N monolayer surface at the hcp site on a Si-terminated surface, shown
in Fig.5.18(f). Besides, exchange of surface Si atoms with Ga atoms in the third
layer, as shown in Fig.5.18(d) was found to lower the surface energy compared to
structures with Si in the outermost layer.

To identify the mechanism that makes the inverted structure so stable, we will

concentrate in the following discussion on structures with the same stoichiometry
(structures shown in Figs. 5.18(d)-(f)). This has the advantage that the only differ-
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Figure 5.19: Relative surface energy for structures with Og; = 1IML. The labels (a)-(f)
refer to the atomic geometries shown in Figs.5.18 (a)-(f). Si-rich conditions are assumed

(Msi = psisNyg)-

ence between the structures is the position of the Si, N and Ga atoms, i.e., effects
due to different chemical potentials can be excluded.

5.4.2 Relaxations

Let us now analyze the atomic relaxations of the structures shown in Figs. 5.18(d)-
(f). Note that the nearest distance between Ga and N in wurtzite GaN is 1.95 A.

For the structure in Fig.5.18 (d), the bond length between the Ga in the first
layer and the N in the second layer is 2.11 A, meaning that the surface relaxes
inwards. On the other hand, we find that the Si-N bond is 1.63 A, 0.1 A shorter
than Si-N bond in SigNy, where Si is fourfold coordinated with N.

For the Si-terminated structure with N in the second layer (Fig.5.18(e)), we
found that the surface relaxes towards, with the Si-N being 2.01 A. The bond length
between the N in the second layer and Ga in the third layer is 1.96 A, slightly larger
than in the ideal wurtzite structure.

For the N-terminated structure with Si in the second layer (Fig.5.18(f)), we
found a slightly shorter Si-N bond length (1.90 A) The bond length between the
Si-subsurface and the Ga in the third layer is found to be 2.45 A, which is slightly
larger than the bond lenght of a Si-Ga dimer (2.30 A).

5.4.3 Electronic structure

All the structures shown in Figs. 5.18(d)-(f) have one dangling bond on the surface.
Since the stoichiometry of all structures is identical the occupation of the dangling
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Table 5.2: Calculated bond lengths for Si-N, Si-Ga and Ga-N bonds of the structures
shown in Figs. 5.18 (d)-(f). All values are given in A.

structure Si-N Ga-N Si-Ga
Ga-term + Si-3rd layer 1.63 2.11
Si-hcp on N-term 2.01 1.96
N-hep on Si-term 1.90 2.45
6 6 6
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Figure 5.20: Surface states of the energetically most stable Si:GaN (1 x 1) surfaces (a)
Ga-term with Si in the third layer (Fig.5.18 (d)), (b) Si-hcp on N-term (Fig.5.18 (e))
and (c) N-hep on Si-term (Fig. 5.18 (f)) Ep is the Fermi level, the solid line represent the
surface state and the shaded region is the projected band structure of GaN-bulk. The top
of the valence band has been set to zero energy.

bond state must be identical. Taking into account that each Si atom substituting
a Ga atom brings an additional electron, the dangling bond state is occupied with
7/4e~. As the dangling bond is partially occupied, these surfaces become metallic.

In Fig5.20 we show the corresponding band structures of the surfaces mentioned
above. As expected from the simple electron counting analysis, the Fermi level
crosses a surface state in the band gap. We further find a clear correlation between
the position of the Fermi level and the stability of the surface: with decreasing
Fermi level the structure becomes energetically more favorable. The Ga-terminated

surface shown in Fig. 5.18(d) shows a larger dispersion compared to the structures
of Figs.5.18 (e) and (f).

The mechanism that stabilizes the inverted structure is understood considering
that Si is a donor in GaN. Since N is much more electronegative than Si, charge is

transferred from Si to the N dangling bond located at the surface. The Fermi level
thus pins the surface state and so stabilizes the structure.
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Table 5.3: Calculated and experimental binding energy Ey, and cohesive energy per bond
E.on of Si-N, Si-Ga and Ga-N bonds using LDA. All values are given in eV.

‘ Eb ‘ Ecoh

‘ Si—Ga‘ Si-N ‘ Ga—N‘ Si—Ga‘ Si-N ‘ Ga-N
theory -1.64| -5.40| -4.07 -1.801 -2.60
exp. [131,134] -4.87| -2.18 -3.45| -2.24

5.4.4 Electron counting model

In order to discuss whether the stability of the inverted structures can be explained
alone by this mechanism or whether it is important to include further processes
we will derive a rather crude model, which will allow to estimate the stability of
structures based on the dangling bond charge. The dangling bond energy Fg, is
estimated assuming that

Eay, = Fyona — Er X q. (5.15)

Here Eyonq is the binding energy of the adsorbed layer adsorbed on the surface, Ep
is the Fermi energy of the system and ¢ is the occupation number of the dangling
bond, i.e. for the surfaces discussed here ¢ = 7/4e~. Epong is defined as

dsorbed 1
Ebond - Etot - Etaotsor o e ) (516)

where FE\ is the total energy of the system without the adsorbed layer and
pdsorbed layer 34 the total energy of the adsorbed layer. In this case, the adsorbed
layer is composed by a double layer of Si-N, Si-Ga or Ga-N atoms.

To estimate the energy of the Si-Ga, Si-N and Ga-N bonds we follow two ap-
proaches. The first one is to take the binding energy of the Si-N, Si-Ga, Ga-N dimers.
The other one is to extract it from the cohesive energy of a Si-N, Si-Ga and Ga-N
compound. A problem with this approach is that in nature no Si-Ga compound
exist. We therefore use as Si-Ga binding energy that of the Si-Ga dimer throughout.

For the bulk calculation, we use the cohesive energy per bond of GaN (Ga-
N) and SizNy (Si-N). The binding energy of the dimers is calculated as Efmer =
Edimer _ N™ Bl ., where EQir is the total energy of the dimer and Ef, is the total
energy of the atoms that form the dimer. The corresponding energies are listed in
Table 5.3.

We can see that the estimated binding energy using the cohesive energy of the
bulk phases is higher than the cohesive energy of the dimer, as it was first pointed
out by Pauling [176], who noted that the bonds are stronger in an environment with
a smaller number of nearest neighbours (in this case the dimer). We note that our
LDA values follow this trend for Si-N bonds.

With the values of Table 5.3 we calculated the dangling bond energy according
to the Eq.5.16.
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Table 5.4: Ab-initio E®~™%° and model, E™°9°! calculation of the dangling bond energy
for the structures shown in Figs.5.18(d)-(f). Here we shown the differences of energy,

where the zero of energy was set to the most stable structure (Fig.5.18 (f). For pmedel

the binding energy of the dimer was used and for Egllﬁl‘fel was used. The energies are given
in eV.
| Si-N| Si-Ga| Ga-N| Epocel| prodel[ pob—imitio
N-hep on Si-term 3 1 3 0 0 0
Si-hep on N-term 4 0 3 -0.33 | -0.62 -0.40
Ga-term + Si-3rd layer| 3 0 4 -1.62 | -1.20 -0.65

The results are shown in Table 5.4. We can see that the dangling bond counting
model quantitatively predicts the stability of the surfaces. If we take the cohesive
energy of the dimer, the energy differences using the model are closer to the ab initio
calculations. It is worth noting that such simple model has its limitations and up to
now has been applied only to surfaces with the same stoichiometry. To improve it,
more sophisticated schemes to extract the binding energies and more refined total
energy functionals (going beyond the single bond counting model) are needed.

5.5 Summary

In this chapter we studied the adsorption of Si on GaN (0001) surfaces. We found
that for adsorption on the outermost layer, Si adsorption on the N-terminated surface
is preferred rather than on Ga-terminated surfaces. Besides, Si prefers to form the
maximim number of bonds with N atoms.

Relaxing the condition that Si stays on the surface, we found that adsorption at
subsurface sites is energetically favorable compared to adsorption on the top layers.
In particular, we find that under Ga-rich conditions a Ga-bilayer is formed on the top
of a Ga-terminated surface with Si incorporated underneath. Under such conditions
Si does not affect the surface morphology. Under N-rich/Si-rich conditions, a N-
terminated structure with Si in the second layer is preferred. Under such conditions
Si leads to rough surfaces

The structure which is stable under N-rich/Si-rich conditions is found to lead
to polarity inversion of the GaN (0001) surface. The mechanism that stabilizes the
polarity inverted structure is understood considering charge transfer from Si to the
N dangling bond located at the surface.
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Chapter 6

Conclusions and outlook

In the present work we have performed a systematic study on the adsorption and
incorporation of Si atoms on GaN (0001) surfaces and their effect on surface morphol-
ogy employing density-functional theory. Based on these results we could identify
the microscopic mechanisms which affect the surface morphology, the doping effi-
ciency of Si-donors and which determine the growth of quantum dots. Furthermore,
the structural and electronic properties of the most relevant bare GaN (0001) sur-
faces have been calculated to provide further understanding on relevant properties
of these surfaces. In the following, the key contributions of the present work will be
summarized and discussed.

In the beginning of this work there was no clear picture of how different exchange-
correlation functionals performed on describing GaN surfaces. Therefore, calcula-
tions for the most relevant bare GaN surfaces have been performed to understand
how PBE performs compared to LDA. Our results show that atomic geometries
(bond lengths and relaxations) are similarly described using both functionals. Con-
cerning the electronic structure we have found that the surface states are affected
neither qualitatively nor quantitatively by the exchange-correlation functional. The
location of the states in the band gap are, for matter of comparison, practically iden-
tical. Besides, we concluded that the difference in the band gap energy is exclusively
due to the difference in the atomic geometry.

Regarding the thermodynamic stability of the bare surfaces, we find that un-
der Ga-rich conditions the description using PBE is fully compatible with the LDA
calculations. However, due to the fact that the formation enthalpy is significantly
underestimated under N-rich conditions we do not have the same ordering of struc-
tures as obtained for LDA results. Nevertheless, if we shift the N-boundary, such
that it correctly describes the experimental GaN formation enthalpy, the correct
ordering is reproduced. Based on these results, we concluded that LDA provides
very similar results compared to PBE and it is suitable to describe surface proper-
ties. Since a good description of the formation enthalpy is needed in our approach
to describe correctly the stability of the surfaces, we have chosen to apply LDA to
investigate adsorption of Si on the GaN (0001) surfaces.

Besides, we performed a systematic study on the work function, electron affinity
and ionization energy of the bare GaN (0001) surfaces. We found a qualitative trend
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for the calculated properties as the Ga coverage increases. However, quantitative
agreement of the ionization energy and electron affinity values with experimental
results is limited by the incorrect description of the band gap using LDA /GGA.

The main difficulty we encountered when studying adsorption of Si on GaN bare
surfaces concerned the lack of experimental data regarding the surface stoichiom-
etry, i.e., regarding the precise number of each species in the top surface layers.
Therefore, we had to study a large variety of structures, taking into account various
possible Si coverages, adsorption sites and reconstructions. In a first step, we studied
adsorption of Si on the outermost layer of the surface. For these surfaces, we found
that under Si-medium conditions all Si-induced structures are thermodynamically
unstable against bare GaN surfaces, meaning that the incorporation of Si at the
surface is energetically unfavorable. Under Si-rich conditions, adsorption of Si on
the Ga-terminated surfaces is even energetically unfavorable against the formation
of the clean Ga-terminated surface.

In a second step, we investigated structures where Si is incorporated in subsurface
sites. These structures were found to be energetically more stable than surfaces
with Si on the outermost layer. Under Si-rich/N-rich conditions, a structure with
N-termination and Si directly underneath is found to be stable in a large range of
the chemical potential. This structure leads to polarity inversion of the GaN (0001)
surface. Under Si-rich/Ga-rich conditions Si is buried in the third layer under a
bilayer of Ga atoms.

All these results are summarized in a surface phase diagram which allows a direct
comparison with experiment. Under Si-rich/Ga-rich conditions, Si prefers subsurface
configurations rather than on surface sites. Under these conditions surface segrega-
tion of Si does not occur and Si can be easily incorporated in GaN bulk. The excess
Ga atoms cluster in islands and form a Ga-bilayer with a pseudo (1 x 1) structure
stabilized by Si atoms in the third layer. As a consequence for growth, we conclude
that the Si-induced surfaces are essentially free of Si in the top surface layer and
topologically very similar to the bare GaN surfaces. Thus we expect no change in
the growth mode. These results are perfectly consistent with MBE growth, where
Si is found to not affect the surface morphology.

On the other hand, under Si-rich/N-rich conditions Si is stabilized at the surface.
Under such conditions the activation barrier to form SizNy is expected to be rather
low. Thus SizNy islands/precipitates may be formed on the surface, since SizNy is
well known to chemically passivate GaN surfaces and blocking growth. Therefore,
the presence of Si precipitates leads then to three-dimensional growth and Si acts
as an anti-surfactant.

One important conclusion that has been derived from the phase diagram is that
all Si-induced structures are unstable against the formation of SisN4. Our calcula-
tions have shown that, in thermodynamic equilibrium, the formation of SigN, limits
the solubility of Si in GaN to 10 /10'" cm™ at characteristic MBE/MOCVD growth
temperatures.

In order to identify chemical trends as described above, we assumed thermo-
dynamic equilibrium throughout. The assumption of thermodynamic equilibrium
works well for many impurities in semiconductors, but one should keep in mind that
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kinetic effects might play a role, in particular at low growth temperatures. Under
those conditions, the doping concentration may be determined by kinetic process
rather than thermodynamic equilibrium. As we could see from our results, kinetic
effects are involved, since assuming thermodynamic equilibrium, SigN, formation is
expected, which is not observed experimentally. The explicit inclusion of kinetic
effects would be an interesting task for the future. The main problem to include
kinetic effects theoretically comes from the large number of possible paths for dif-
fusion of the atoms between the surface and bulk, such as exchange of atoms or
incorporation at interstitial sites.
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Appendix A

Convergence Tests

Before starting the calculations of surface properties, it is important to determine
the optimum parameters that control the accuracy of the results. The optimization
of such parameters also helps to minimize the computing time and memory for
the calculations. The calculations consists in determining the optimum number of
k-points in the irreducible part of the Brillouin zone (IBZ), cutoff energy for the
bulk calculations. Below we present convergence tests for GaN-bulk in the wurtzite
and zinc-blende structures, for the Ny molecule, Ga-bulk, and SizNy-bulk. We also
include optimization for the clean Ga-terminated GaN (0001) surface with respect
to the thickness of the vacuum region and number of layers in the slab to model the
substrate.

A.1 GaN-bulk

In Tables A.1 and A.2 we present tests for the structural properties of the -GaN
and a-GaN, respectively, for various sets of k-points and cutoff energies. According
to Table A.1 we can see that the lattice constant is converged for an energy cutoff
equals to 70 Ry if 2 k-points in the IBZ are used. However, the bulk modulus By and
the bulk modulus derivative Bj, are still not converged. The cohesive energy FEcopn
changes within 100 meV as one goes from 70 to 80 Ry. The convergence is achieved
when 90 Ry is used. The convergence of the lattice constant follows the same trend
described above for 10 k-points in the IBZ. However, the convergence of B, and B,
is better. The cohesive energy in this case changes within 30 meV as one goes from
70 to 80 Ry. The complete convergence is achieved when 28 k-points in the IBZ and
70 Ry is used. All the structural properties do not change within our accuracy and
the cohesive energy changes by 10 meV as one goes from 70 to 80 Ry. Therefore, in
the case of 3-GaN, we conclude that the converged parameters are 28 k-points in
the IBZ and cutoff energy equal to 70 Ry.

According to Table A.2 we can see that all paremeters are quite well converged
already for 10 k-points in the IBZ and for a energy cutoff equals to 70 Ry. However,
as the ¢/a ratio still oscillates a bit for this k-points sampling, we decided to use a
mesh consisting of 33 k-points and cutoff energy equals to 70 Ry.
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Table A.1: Structural and cohesive properties of 5-GaN. Lattice constant ag, bulk mod-
ulus By, bulk modulus derivative By, and cohesive energy Ec,, for various number of
k-points in the IBZ and cutoff energies E¢.;. Here LDA was employed.

T

E..t(Ry) k-points ap(A) By(Mbar) B, Eon(eV)
40 2 4.33 1.56 13.53 -11.31
10 4.40 2.08 9.11 -11.33
28 4.49 2.11 3.91 -11.31
60 2 4.50 2.00 4.53 -10.38
10 4.53 1.96 3.88 -10.48
28 4.52 1.91 4.29 -10.45
70 2 4.52 1.85 4.35 -10.29
10 4.53 1.87 4.38 -10.40
28 4.52 1.88 4.34 -10.38
80 2 4.52 1.75 5.71 -10.22
10 4.53 1.88 4.16 -10.40
28 4.52 1.88 4.35 -10.38
90 2 4.52 1.89 4.19 -10.22
10 4.53 1.88 4.35 -10.40
28 4.52 1.88 4.35 -10.38
100 2 4.52 1.89 4.32 -10.22
10 4.53 1.88 4.35 -10.40
28 4.52 1.88 4.34 -10.38

Table A.2: Structural and cohesive properties of a-GaN. Lattice parameters a and ¢ and
ratio ¢/a for various cutoff energies F¢,4 and number of k-points in the IBZ. Here LDA
was employed.

E.(Ry)  k-points  ag(A)  c(A) co/ap  Bo(MBar) B Econ(eV)

60 10 3.187 5.193 1.629 1.87 4.35 -10.42
33 3.187 5.193 1.629 1.88 4.35 -10.38
63 3.185 5.198 1.632 1.88 4.35 -10.38
70 10 3.187 5.193 1.629 1.88 4.35 -10.38
33 3.186 5.195 1.630 1.88 4.35 -10.38
63 3.186 5.196 1.631 1.88 4.35 -10.38
80 10 3.188 5.190 1.628 1.87 4.35 -10.38
33 3.186 5.195 1.630 1.87 4.35 -10.38
63 3.186 5.196 1.631 1.87 4.35 -10.38
A.2 Ga-bulk

In Table A.3 we present tests for the cohesive energy of a-Ga using LDA and PBE.
In this case, the lattice parameters a, b, ¢, u and v were not optimized. We can



A.3. No-MOLECULE 97

Table A.3: Cohesive energy of Ga-bulk for various cutoff energies Ecy using LDA and
PBE. A 8 x 8 x 8 k-point mesh (128 k-points in the IBZ) was used.

Ecut (Ry) ‘ Eb (eV)
LDA PBE
60 3.40 2.57
70 3.29 2.55
30 3.27 2.50

Table A.4: Equilibrium distance d and binding energy FE}, as a function of the cutoff

o

energy for the No molecule using LDA for various supercell lengths L(A). The special
k-point (1/4,1/4,1/4) was used.

L(A) | 12| 15| 17 | 20

Eu(Ry)| d(A)| d(A)| d(A)  Ey(eV)| d(A)  Ey(eV)
40 1.074] 1.080] 1.080 12.14 | 1.080 12.14
60 1.076| 1.076| 1.076 1221 | 1.075 12.21
70 1.076| 1.076| 1.076 1171 | 1.076 11.71
80 1.076| 1.076| 1.076  11.70 | 1.076  11.70

see from these results that the convergence of the Ga-bulk cohesive energy changes
0.02¢eV as one goes from 70 to 80 Ry for LDA and 0.05eV for PBE. Therefore, we
conclude that 70 Ry are enough to converge the cohesive energy.

A.3 Njy-molecule

In Table A.4 we optimize the equilibrium distance d of a Ny molecule with respect
to the cutoff energy for the Ny molecule using LDA. We can see form these results
that a supercell size of 17 A and cutoff energy equals to 70 Ry are the parameters
for convergence.

In Fig. A.1 we show the total energy difference of a N atom in a cubic supercell
as a function of the unit cell size. The special k-point (1/4,1/4,1/4) was used. We
can see that the total energy is not converged for a 40 Ry energy cutoff. Besides,
the energy difference is rather large as one goes from 40Ry to 60 Ry. The best
convergence is achieved for a size of 9A. The energy difference as one goes from
70 Ry to 80 Ry is smaller than 50 meV.



98 APPENDIX A. CONVERGENCE TESTS
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Figure A.1: Total energy difference as a function of the unit cell size for a N atom using
different energy cutoffs. The zero of energy was set on the lowest energy value. Here LDA
was employed.

A.4 Slab

Fig. A.2(a) shows the surface energy for the clean Ga-terminated GaN (0001) surface
versus thickness of the vacuum region for three different approximations, LDA and
PBE including the Ga-3d electrons as valence states, LDA within the nlcc approxi-
mation (Ga-3d electrons in the core region). We can see that the surface energy is
converged for a vacuum thickness of 9 A within an accuracy of less than 10 meV.

Fig. A.2(b) shows the surface energy for the clean Ga-terminated GaN (0001)
surface versus number of GaN layers in the slab. We can see that the surface energy
is converged within 5 meV already for 2 double layers. For 4 double layers the surface
energy is converged.
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Figure A.2: (a) Surface energy for the clean Ga-terminated GaN (0001) surface versus
thickness of the vacuum region using LDA, LDA within nlcc and PBE. (b) Surface energy
for the clean Ga-terminated GaN (0001) surface versus number of GaN layers. The cutoff
energy used for LDA and PBE was 70 Ry and for LDA within nlcc was 50 Ry. The k-point
mesh was 4 x 4 x 1. The zero of energy is set on the lowest energy value.
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