Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Investigation of the Gas-Phase Amino Acid Alanine by Synchrotron Radiation Photoelectron Spectroscopy

MPG-Autoren
/persons/resource/persons21997

Rennie,  Emma E.
Molecular Physics, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21622

Hergenhahn,  Uwe
Molecular Physics, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21773

Kugeler,  Oliver
Molecular Physics, Fritz Haber Institute, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Powis, I., Rennie, E. E., Hergenhahn, U., Kugeler, O., & Bussy-Socrate, R. (2003). Investigation of the Gas-Phase Amino Acid Alanine by Synchrotron Radiation Photoelectron Spectroscopy. Journal of Physical Chemistry A, 107(1), 25-34. doi:10.1021/jp0266345.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0011-122A-B
Zusammenfassung
Valence and C1s core level photoelectron spectra of gaseous alanine have been recorded with synchrotron radiation. Using ab initio Green's Function calculations of the vertical outer valence ionization energies and CMS-X calculations of the orbital ionization cross-sections, it is possible to account well for the features of both the new h = 92 eV valence photoelectron spectrum and also its differences with an earlier h = 21.2 eV spectrum. Good agreement may be achieved by considering just the contribution of a single molecular conformation. This agrees with previous experimental findings, but conflicts with calculations which suggest that a range of molecular conformations would coexist in an equilibrium sample. A study of the valence photoelectron spectrum of the amino acid threonine complements that of alanine, but unlike the latter is limited by the effects of thermal decomposition of the sample. The C1s core level spectrum of alanine is reported and its peaks are assigned to ionization of the three C atoms in the molecule. A fourth minor peak that is observed is tentatively assigned to a peptide CONH2 linkage which may be formed between alanine monomers.