11th Scientific Conference &12th Annual General Meeting of the ELECTRON MICROSCOPY SOCIETY OF MALAYSIA

Transmission Electron Microscopy Investigation on Defect Structures of Molybdenum Oxides

Dangsheng Su Di Wang Robert Schlögl

Fritz Haber Institute of the Max Planck Society Berlin

Johore Bahru 17 December 2002

Why I come here ?

born in China.

Ph.D in Austria

work in Germany

look like Malay

Reduction/Oxidation of Mo Oxides

A XRD and XAS studies on reduction of MoO₃

T<698K MoO_3+H_2 \longrightarrow MoO_2+H_2O

T>698K $3MoO_3+MoO_2$ \longrightarrow Mo_4O_{11}

 $Mo_4O_{11}+3H_2 \longrightarrow 4MoO_2+3H_2O$

No Crystalline intermediates is formed

(T. Ressler, etc., J. Phys. Chem. B (2000) 104, 6360)

XAS studies on reduction/oxidation of MoO_{3-x}

Presence of edge-shared octahedra with short Mo-Mo distance in MoO_{3-x}

(T. Ressler, etc., J. Catalysis (2000) 191, 75)

Short range order defect structure forms molybdenium suboxide ? Visualisation and detection by means of HREM and electron diffraction ?

Homologous series of Mo suboxides

Shear Structures

Mo_nO_{3n-2} (17£ n £25) Mo₁₈O₅₂, ¼ derived from MoO₃ (layered structure)
Mo_nO_{3n-1} (n<10) Mo₈O₂₃, ¼ derived from ReO₃-type structure

Other structures

♦ Mo₄O₁₁ ,
♦ Mo₅O₁₄ , ¼

Structure Model of MoO₃

Structure Model of MoO₂

Space group: P2₁/c

Structure type: Monoclinic

a=5.61 Å b=4.86 Å c=5.63 Å β=120.9°

Principles of Shear Operation

Structure Model of Mo₁₈O₅₂

Space group: p-1 Structure type: triclinic

a=8.15 Å b=11.89 Å c=21.23 Å α =102.7° β =67.8° γ = 110.0°

Simulated EDP and HREM images of Mo₁₈O₅₂ on [100] projection

EDP and HREM of Mo₁₈O₅₂

Structural Principles of Mo₈O₂₃

11 von 20

Simulated EDP and HREM images of Mo₈O₂₃ on [010] projection

EDP and HREM of Mo₈O₂₃

Structure Model of Mo₄O₁₁

Space group: P2₁/a

Structure type: Monoclinic

a=24.54 Å b=5.44 Å c=6.70 Å β=94.3°

Simulated EDP and HREM images of Mo₄O₁₁ on [010] projection

15 von 20

EDP and HREM of Mo₄O₁₁

Structure Model of Mo₅O₁₄

Simulated EDP and HREM images of Mo₅O₁₄ on [001] projection 1.5 MAX-PLANCK-GESELLSCHAFT 1.0 0.5 EDP 0.0 Thickness: 50 Å -0.5 -1.0 -1.0 0.0 1.0 Sample Thickness(Å) 19.7 59.1 137.8 98.4 **HREM Image** Defocus: -400 Å Defocus: -600 Å 18 von 20

Crystallographic shearing is important in understanding the oxygen diffusion and phase transition mechanism of transition metal oxides in catalytic reactions.

CS plane produces well defined satellite spots in electron diffraction pattern → Application of TEM in the investigation of the reaction mechanism in solid state chemistry

HREM, supported by image simulation, allows the visualization of the CS structures at nanometer scale — Opens the possibility for the in-situ HREM investigation of real catalytic reaction at atomic scale.